Universal signatures of a black hole’s photon ring

CMSA GENERAL RELATIVITY SEMINAR

View Calendar
November 22, 2019 10:30 am - 11:30 am
Science Center 530
Speaker:

Shahar Hadar - Harvard University

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin “photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole “shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high order subrings. In the talk, I will discuss the structure of the photon ring, starting with non-rotating black holes, and then proceeding to the complex patterns that emerge when rotation is taken into account. Subsequently I will argue that the subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.