CMSA Quantum Matter in Mathematics and Physics: Entanglement Criticality in Random Gaussian Quantum Circuits


View Calendar
March 11, 2021 10:30 am - 12:00 pm
via Zoom Video Conferencing

Chaoming Jian - Cornell University

Quantum systems out of equilibrium can exhibit different dynamical phases that are fundamentally characterized by their entanglement dynamics and entanglement scaling. Random quantum circuits with non-unitarity induced by measurement or other sources provide a large class of systems for us to investigate the nature of these different entanglement phases and associated criticality. While numerical studies have provided a lot of insight into the behavior of such quantum circuit models, analytical understanding of the entanglement criticality in these models has remained challenging in many cases. In this talk, I will focus on the random non-unitary fermionic Gaussian circuits, namely non-unitary circuits for non-interacting fermions. I will first present a numerical study of an entanglement critical phase in this type of circuit. Then, I will discuss the analytical understanding of general entanglement phases in this type of circuit via a general correspondence among (1) non-unitary fermionic Gaussian circuits, (2) fermionic Gaussian tensor network, and (3) unitary non-interacting fermions subject to quenched disorder. In particular, we show that the critical entanglement phase numerically found in the non-unitary Gaussian circuit without any symmetry can be described by the theory of (unitary) disordered metal in the symmetry class DIII. I will comment on the entanglement critical phases that correspond to unitary disordered fermion critical points or unitary disordered metals in other symmetry classes.

Subscribe to Harvard CMSA seminar videos (more to be uploaded): (all in playlist)