# CMSA Quantum Matter in Mathematics and Physics: Anomalies and Supersymmetry

CMSA EVENTS

##### Speaker:

Ioannis Papadimitriou *- KIAS*

Diffeomorphisms and supersymmetry transformations act on all local quantum field theory operators, including on the Noether currents associated with other continuous symmetries, such as flavor or R-symmetry. I will discuss how quantum anomalies in these symmetries produce the local Bardeen-Zumino terms that ensure that the corresponding consistent Noether currents in the diffeomorphism and supersymmetry Ward identities are replaced by their covariant form. An important difference between diffeomorphisms and supersymmetry is that, while the effective action remains invariant under diffeomorphisms in the absence of a gravitational anomaly, the local terms in the supersymmetry Ward identity generated by quantum anomalies in other symmetries generally result in the non-invariance of the effective action under supersymmetry. In certain cases, however, supersymmetry invariance may be restored by suitably enlarging the multiplet that contains the anomalous Noether current. The structure of all local terms in the Ward identities due to quantum anomalies can be determined by solving the Wess-Zumino consistency conditions, which can be reformulated as a BRST cohomology problem. I will present a generalization of the standard BRST algebra for gauge theories and the associated anomaly descent procedure that is necessary for accommodating diffeomorphisms and supersymmetry transformations. I will also discuss how, in some cases, the solution of the Wess-Zumino consistency conditions in the presence of supersymmetry can be efficiently determined from a supersymmetric Chern-Simons action in one dimension higher through anomaly inflow. I will conclude with a brief discussion of the implications of the local terms in the supersymmetry Ward identity for the dependence of supersymmetric partition functions on backgrounds that admit Killing spinors.

Zoom: https://harvard.zoom.us/j/977347126