Universal multipartite entanglement in quantum spin chains
CMSA EVENTS: CMSA QUANTUM MATTER IN MATH & PHYSICS SEMINAR
Quantum entanglement has played a key role in studying emergent phenomena in strongly-correlated many-body systems. Remarkably, The entanglement properties of the ground state encodes information on the nature of excitations. Here we introduce two new entanglement measures $g(A:B)$ and $h(A:B)$ which characterizes certain tripartite entanglement between $A$, $B$, and the environment. The measures are based off of the entanglement of purification and the reflected entropy popular among holography. For 1D states, the two measures are UV insensitive and yield universal quantities for symmetry-broken, symmetry preserved, and critical phases. We conclude with a few remarks regarding applications to 2D phases.