Loading Events

Surgeries on knots and tight contact structures

GAUGE THEORY AND TOPOLOGY

When: February 20, 2026
3:30 pm - 4:30 pm
Where: Science Center 507
Address: 1 Oxford Street, Cambridge, MA 02138, United States
Speaker: Shunyu Wan (Georgia Tech)
The existence and nonexistence of tight contact structures on 3-manifolds are interesting and important topics studied over the past thirty years. Etnyre-Honda found the first example of a 3-manifold that does not admit tight contact structures, and later Lisca-Stipsicz extended their result and showed that a Seifert fiber space admits a tight contact structure if and only if it is not smooth (2n-1)-surgery along the T(2,2n+1) torus knot for any positive integer n. Surprisingly, since then no other example of a 3-manifold without tight contact structures has been found. Hence, it is interesting to study if all such manifolds, except those mentioned above, admit a tight contact structure. Towards this goal, I will discuss the joint work with Zhenkun Li and Hugo Zhou about showing any negative surgeries on any knot in S^3 admit a tight contact structure.