Kardar-Parisi-Zhang dynamics in integrable quantum magnets
CMSA EVENTS: CMSA QUANTUM MATTER IN MATH & PHYSICS SEMINAR
In this talk, I will discuss another possibility that arises from the interplay of integrability and symmetry; in integrable one dimensional quantum magnets with complex symmetries, spin transport is neither ballistic nor diffusive, but rather superdiffusive. Using a novel method for the simulation of quantum dynamics (termed Density Matrix Truncation), I will present a detailed analysis of spin transport in a variety of integrable quantum magnets with various symmetries. Crucially, our analysis is not restricted to capturing the dynamical exponent of the transport dynamics and enables us to fully characterize its universality class: for all superdiffusive models, we find that transport falls under the celebrated Kardar-Parisi-Zhang (KPZ) universality class.
Finally, I will discuss how modern atomic, molecular and optical platforms provide an important bridge to connect the microscopic interactions to the resulting hydrodynamical transport dynamics. To this end, I will present recent experimental results, where this KPZ universal behavior was observed using atoms confined to an optical lattice.
[1] Universal Kardar-Parisi-Zhang dynamics in integrable quantum systems
B Ye†, FM*, J Kemp*, RB Hutson, NY Yao
(PRL in press) – arXiv:2205.02853
[2] Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion
D Wei, A Rubio-Abadal, B Ye, FM, J Kemp, K Srakaew, S Hollerith, J Rui, S Gopalakrishnan, NY Yao, I Bloch, J Zeiher
Science (2022) — arXiv:2107.00038
For information on how to join, please see: https://cmsa.fas.harvard.edu/event_category/quantum-matter-seminar/
——–
Subscribe to Harvard CMSA Quantum Matter and other seminar videos
(more to be uploaded):
https://www.youtube.com/
Subscribe to Harvard CMSA seminar mailing list:
https://forms.gle/