CMSA Quantum Matter/Quantum Field Theory Seminar: Fermion-fermion dualities in 3+1 dimensions
Dualities play an important role in both quantum field theories and condensed matter systems. They can map hard-to-solve, interacting theories to free, non-interacting ones often trigger a deeper understanding of the systems to which they apply. Recently, a web of (non-supersymmetric) dualities has been discovered in 2+1 dimensions inspired by novel developments in topological phases of matter.
In this talk, I will present some extensions of the original 2+1-dimensional fermion-fermion duality in 3+1 dimensions and in presence of axial gauge fields. By employing the slave-rotor approach in the lattice, I will show the central role of the Kalb-Ramond field and chiral anomaly in their formulation. Finally, I will present some applications of these novel dualities in topological systems such as Weyl and Dirac semimetals and non-symmorphic topological insulators.