A new proof for the nonlinear stability of slowly-rotating Kerr-de Sitter
CMSA EVENTS: CMSA GENERAL RELATIVITY SEMINAR
The nonlinear stability of the slowly-rotating Kerr-de Sitter family was first proven by Hintz and Vasy in 2016 using microlocal techniques. In my talk, I will present a novel proof of the nonlinear stability of slowly-rotating Kerr-de Sitter spacetimes that avoids frequency-space techniques outside of a neighborhood of the trapped set. The proof uses vector field techniques to uncover a spectral gap corresponding to exponential decay at the level of the linearized equation. The exponential decay of solutions to the linearized problem is then used in a bootstrap proof to conclude nonlinear stability.
For more information on how to join, please see: https://cmsa.fas.harvard.edu/event/general-relativity-2021-22/