

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday January 20, 2026 (Day 1)

1. (Algebra) In this question, \mathfrak{g} is a non-zero, finite-dimensional Lie algebra over \mathbb{C} .

- (a) Define the Killing form on \mathfrak{g} .
- (b) Characterize semisimplicity for \mathfrak{g} in terms of the Killing form.
- (c) The Lie algebra \mathfrak{g} is *nilpotent* if its lower central series terminates at $\{0\}$. Show that the Killing form of a nilpotent Lie algebra is zero.
- (d) Exhibit a 2-dimensional \mathfrak{g} that is neither semisimple nor nilpotent.

2. (Algebraic Geometry) Let $\Lambda \subseteq \mathbb{P}^6$ be a fixed 3-plane and let $\mathbb{G}(4, 6)$ be the Grassmannian of 4-planes in \mathbb{P}^6 . Let

$$\Sigma = \{ \Gamma : \dim(\Gamma \cap \Lambda) \geq 2 \} \subseteq \mathbb{G}(4, 6).$$

Show that Σ is irreducible and compute the dimension of Σ .

3. (Algebraic Topology) Let $F_2 = \langle a, b \rangle$ denote the free group on two letters a, b . Consider the homomorphism $f : F_2 \rightarrow \mathbb{Z}/2\mathbb{Z}$ defined by $f(a) = f(b) = 1$.

- (a) Draw the cover of $S^1 \vee S^1$ corresponding to the subgroup $\ker(f)$ of $\pi_1(S^1 \vee S^1) \cong F_2$.
- (b) There is a group isomorphism $\ker(f) \cong F_r$ for some $r \geq 1$, where F_r denotes the free group on r letters. Determine r .

4. (Complex Analysis) Prove that

$$\sum_{n \geq 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$

by applying the residue theorem to the meromorphic function

$$f(z) = \frac{\pi \cot(\pi z)}{z^2}$$

integrated over the boundary of the rectangle R_N with vertices $\pm(N + \frac{1}{2}) \pm i(N + \frac{1}{2})$, and letting $N \rightarrow \infty$.

5. (Differential Geometry) Prove that

$$M := \{x_1^2 + x_2^2 - x_3^2 - x_4^2 = 0\} \cap \{x_1^2 + x_2^2 + x_3^2 + x_4^2 = 4\}$$

is a 2-dimensional submanifold of \mathbb{R}^4 . Compute the tangent space of M at the point $(1, 1, -1, -1)$.

6. (Real Analysis) Let $n \geq 3$ be an integer and ω be the volume of the unit sphere in \mathbb{R}^n . Let

$$K(x) = \frac{-1}{(n-2)\omega} \frac{1}{|x|^{n-2}}.$$

Let δ_0 be the Dirac delta in \mathbb{R}^n which means that the value of δ_0 at a C^∞ function f with compact support on \mathbb{R}^n is equal to $f(0)$. Let

$$\Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

the Laplacian on \mathbb{R}^n with coordinates x_1, \dots, x_n . Prove the identity

$$\Delta K = \delta_0$$

as distributions on \mathbb{R}^n . In other words, for any C^∞ function f on \mathbb{R}^n with compact support the identity

$$\int_{\mathbb{R}^n} K(x)(\Delta f)(x) = f(0)$$

holds.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday January 21, 2026 (Day 2)

1. (Algebra) Let G be a non-abelian group of order 12. Show that G has either 4 or 6 irreducible complex representations, and show that both of these possibilities do occur.

2. (Algebraic Geometry)

(a) For each ring R below, determine whether R is the coordinate ring of an affine variety (not necessarily irreducible).

- $R = \mathbb{C}[x]/(x^3 - 2x^2 + x)$.
- $R = \mathbb{C}[x]/(x^3 - 1)$.

(b) Consider the following affine varieties

$$X = V(xy(x - y)) \subseteq \mathbb{A}_{\mathbb{C}}^2, \quad Y = V(xy, yz, xz) \subseteq \mathbb{A}_{\mathbb{C}}^3.$$

Are X and Y isomorphic varieties?

3. (Algebraic Topology) Consider $S^2 \times S^2$ with the product orientation. Let $u \in H^2(S^2; \mathbb{Z}) \cong \mathbb{Z}$ be the positive generator, and set

$$x := \pi_1^* u, \quad y := \pi_2^* u \in H^2(S^2 \times S^2; \mathbb{Z}),$$

where $\pi_i : S^2 \times S^2 \rightarrow S^2$ denotes the projection to the i -th factor. Suppose $f : S^2 \times S^2 \rightarrow S^2 \times S^2$ is a continuous map of degree 1 with no fixed points. Prove that

$$f^* x = -x, \quad f^* y = -y$$

in $H^2(S^2 \times S^2; \mathbb{Z})$.

4. (Complex Analysis) Let $\mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disk. Suppose $f : \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic function with two distinct fixed points $a \neq b \in \mathbb{D}$. Prove that $f(z) = z$ for all $z \in \mathbb{D}$.

5. (Differential Geometry) Consider the disk $D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with the metric

$$g = \frac{1}{1 - (x^2 + y^2)} (dx \otimes dx + dy \otimes dy).$$

Compute the Levi-Civita connection of the corresponding Riemann manifold.

6. (Real Analysis) Suppose that f_j ($j = 1, 2, \dots$) and f are real functions on $[0, 1]$. We say that $f_j \rightarrow f$ in measure if and only if for any $\varepsilon > 0$ we have

$$\lim_{j \rightarrow \infty} \mu \{ x \in [0, 1] : |f_j(x) - f(x)| > \varepsilon \} = 0,$$

where μ is the Lebesgue measure on $[0, 1]$. In this problems, all functions are assumed to be in $L^1[0, 1]$.

(a) Suppose that $f_j \rightarrow f$ in measure. Does it follow that

$$\lim_{j \rightarrow \infty} \int |f_j(x) - f(x)| \, dx = 0.$$

Prove it or give a counterexample.

(b) Suppose that $f_j \rightarrow f$ in measure. Does it follow that $f_j(x) \rightarrow f(x)$ almost everywhere in $[0, 1]$? Prove it or give a counter example.

(c) Suppose that $f_j(x) \rightarrow f(x)$ almost everywhere in $[0, 1]$. Does it follow that $f_j \rightarrow f$ in measure? Prove it or give a counter example.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday January 22, 2026 (Day 3)

1. (Algebra) Let k be a field. Let K/k be a finite separable extension, and L/k be an arbitrary extension. Prove that the commutative k -algebra $K \otimes_k L$ splits as a finite product of finite separable extensions of L .

Hint. You may find it useful to apply the theorem of the primitive element.

2. (Algebraic Geometry) Let $X = \text{Bl}_0(\mathbb{A}^2)$ be the blow-up of \mathbb{A}^2 at the origin.

- Using local coordinates, identify the exceptional divisor E and show that $E \simeq \mathbb{P}^1$.
- Show that the strict transform of the curve $C = \{(x, y) \in \mathbb{A}^2 \mid y^2 = x^3\}$ is smooth.

3. (Algebraic Topology) Let $n \geq 1$. Compute the homotopy groups $\pi_k(\mathbb{CP}^n)$, for each $1 \leq k \leq 2n$.

4. (Complex Analysis) Suppose f is a doubly-periodic meromorphic function on \mathbb{C} with periods ω_1, ω_2 which are \mathbb{R} -linearly independent. Let $a \in \mathbb{C}$ such that the sides of the parallelogram Ω with vertices $a, a + \omega_1, a + \omega_2, a + \omega_1 + \omega_2$ do not contain any zeroes or poles of f . Let b_1, \dots, b_p (respectively a_1, \dots, a_q) be the zeroes (respectively the poles) of f with multiplicities k_1, \dots, k_p (respectively ℓ_1, \dots, ℓ_q) inside Ω . By considering the residues of the function

$$\frac{1}{2\pi i} \frac{wf'(w)}{f(w)} dw$$

or otherwise, prove that

$$\left(\sum_{\mu=1}^p k_\mu b_\mu \right) - \left(\sum_{\nu=1}^q \ell_\nu c_\nu \right)$$

belongs to $\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. In other words, in a fundamental parallelogram the sum of the coordinates of the zeroes of an elliptic function equals the sum of the coordinates of its poles modulo a period.

5. (Differential Geometry)

- Compute $H_{\text{dR}}^k(\mathbb{R}^n \setminus \{0\})$ for all k .

(b) Show that the $(n - 1)$ -form

$$\eta = \frac{1}{||x||^n} \sum_{i=1}^n (-1)^{i-1} x_i dx_1 \wedge \dots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \dots \wedge dx_n$$

is closed on $\mathbb{R}^n \setminus \{0\}$ and $\int_{S^{n-1}} \eta = \text{Vol}(S^{n-1})$.

(c) Deduce that $[\eta]$ generates $H_{\text{dR}}^{n-1}(\mathbb{R}^n \setminus \{0\})$.

6. (Real Analysis) Let f be a bounded real-valued function on $X = [0, 1] \subset \mathbb{R}$, and define a function $\phi : [1, \infty) \rightarrow \mathbb{R}$ by

$$\phi(p) = \|f\|_{L^p(X)}^p.$$

Prove that ϕ is convex.