QUALIFYING EXAMINATION
HARVARD UNIVERSITY
Department of Mathematics

Tuesday January 20, 2026 (Day 1)

1. (Algebra) In this question, g is a non-zero, finite-dimensional Lie algebra
over C.
(a) Define the Killing form on g.
(b) Characterize semisimplicity for g in terms of the Killing form.

(c) The Lie algebra g is nilpotent if its lower central series terminates at {0}.
Show that the Killing form of a nilpotent Lie algebra is zero.

(d) Exhibit a 2-dimensional g that is neither semisimple nor nilpotent.
Solution.

(a) The Killing form is the symmetric bilinear form (a,b) = tr(ad(a)ad(b)).
(b) The Lie algebra is semisimple if and only if the Killing form is non-

degenerate.
(c¢) In anilpotent Lie algebra, the subalgebra [g, [g, ... [g,9]...]] is eventually
zero. In particular [z, [y, [z, [y, ..., [z, [y, 2]]...] is zero for all x and y

and z eventually; which is to say that (ad(x)ad(y))"z is eventually zero.
That is (since g is finite-dimensional), ad(z)ad(y) is nilpotent. Its trace
is therefore zero.

(d) The Lie algebra of traceless uppper-triangular 2-by-2 matrices has a
Killing form of rank 1. (Its kernel is the 1-dimensional subalgebra of
diagonal, traceless matrices.)

2. (Algebraic Geometry) Let A C PS be a fixed 3-plane and let G(4,6) be the
Grassmannian of 4-planes in PS. Let

S ={D:dim(T'NA)>2}C G(46).

Show that X is irreducible and compute the dimension of X.

Solution. Consider the incidence variety
®={(A,B): AC B} CG(2,3) x G(4,6)

where we have identified G(2, 3) with the Grassmannian of 2-planes in A = P3
contained in P%. The projection 71 : ® — G(2,3) is surjective. The fiber
7 1(A) over any A € G(2,3) is the set of 5-dimensional subspaces of a 7-
dimensional vector space V' containing a 3-dimensional subspace A, or the set



of 2-dimensional subspaces of the 4-dimensional vector space V/A. In other
words, 7 has fibers G(1, 3) of dimension 4. Because G(2,3) has dimension 3,

dim(®) =3+4=71.

Moreover, ® is irreducible because G(2,3) is irreducible, and all fibers of are
irreducible of the same dimension.

The second projection my : & — G(4,6) has image equal to ¥. There exist
B € ¥ C G(4,6) with dim(BNA) = 2, and the fiber 7, '(B) consists of a single
point (BN A, B) € G(2,3) x G(4,6) for any such B. By upper-semicontinuity
of fiber dimension, s is generally one-to-one onto ¥, and

dim(¥) = dim(®) = 7.

Finally, ¥ is irreducible because it is the image of an irreducible projective
variety ®.

. (Algebraic Topology) Let F5 = (a,b) denote the free group on two letters
a,b. Consider the homomorphism f : Fy — Z/27Z defined by f(a) = f(b) = 1.

(a) Draw the cover of S' Vv S! corresponding to the subgroup ker(f) of
7T1(Sl V Sl) = F.

(b) There is a group isomorphism ker(f) = F, for some r > 1, where F,
denotes the free group on r letters. Determine 7.

Solution.
(a) The subgroup ker(f) has generators
ker(f) = (a®,b%, ab).

To see this, first observe that ker(f) is the subgroup of elements of even
word length, so it suffices to show that any word w of even length in Fy
is contained in (a?,b?,ab). First, if w has length 2 then w is one of

a?, %, ab, ba="b*(ab)"'a?, a'b=a"%(ab), ab = (ab)b

or their inverses. Therefore, (a?,b% ab) contains any word of length 2,
and hence any word of even length.

Consider the following cover p : X — St v §1

SeTHeR



Contracting one of the edges of X shows that X is homotopy equivalent
to a wedge of three circles and that three generators of m1(X) = F3 have
images a2, ab, and b. Therefore, p, (71 (X)) = ker(f).

(b) Let p: X — S' Vv S! be the cover coresponding to ker(f). The solution
to part (a) shows that X is homotopy equivalent to S* Vv S'Vv S, and so
71 (X) = F3. Recall that p, : m1(X) — m1 (S v S1) is injective and has
image ker(f) by construction, and hence

ker(f) = F3.
4. (Complex Analysis) Prove that
3 1=
= n2 6
by applying the residue theorem to the meromorphic function

f(z) =

integrated over the boundary of the rectangle Ry with vertices +(N + %) +
i(N + 3), and letting N — co.

7 cot(mz)
52

Solution. The function 7 cot(mz) has simple poles at all integers n € Z with
residue 1, so for any non-zero integer n,

mcot(mz 1
z n
At z =0,
t 2
meolns) s T o)
SO (r2) )
weot(mz ™
RGSZZOT = —?

Therefore, applying the residue theorem, we have

1 al 2 o1
f(Z)dZ = E ReSZ:nf(Z) = _g +2 < E n2> y
n=—N

27 JoRry o
and thus it suffices to show that

lim f(z)dz=0
N—o0 ORN

to conclude the proof.

For this, observe that there is a uniform upper bound C of |7 cot(7z)| on IRy,
independent of N. For instance, we can take
1 —T
C—nlte ™
1—e™T

since



e on the vertical sides,

1
7 cot <7r( + (N + 5) + Zt)) ’ =|r cot(g +imt)| = |7 tanh(wt)| < m,

e and on the horizontal sides,

e2m’(t:|:z‘(N+%)) +1 14 e m(@N+1)

1+e™™

, 1
m cot <7r(t +i(N+ 2))> ‘ =T e 7T1 — o—m(2N+1)

Hence, since the perimeter of ORy is 8(N + %),

f(z)dz

C
n < /8 W M S G 8+ 5) = Yo%,

. (Differential Geometry) Prove that
M:={2? +23 -2t —ai=0yn{a? + 22+ 22 +2]=4}

is a 2-dimensional submanifold of R*. Compute the tangent space of M at
the point (1,1, —1,—1).

Solution. Let F': R* — R? be the smooth function given by

F(x1, 20,23, 24) = (27 + 23 — 22 — 2, 2? + 23+ 224+ 27 —4).
Observe that M = F~1(0), so that it will be enough to show that 0 is a regular
value of F'. We have

2.1‘1 21‘2 —2$3 —4.@3

VE (1,22, 23, 74) = 2x1 2z9  2x3 4$§

But, if (z1, 72, 23,74) € M, then 2% + 23 = 2 so that at most one of z; and
x2 vanishes. Likewise, we have 2% + 2] = 2, so that at most one of z3 and z4
vanishes. It follows that the above matrix has full rank on every point of M,
which proves the first part.

The tangent space of the submanifold M at the point p = (1,1, —1, —1) is the
kernel of the linear map

VF(1,1,—1,—1)_[2 2 2 4],

2 2 -2 —4
which is spanned by the two vectors

1 0
-1 0
01" 2
0 -1

€ T,R* = R*.

< .
l—eT™



6. (Real Analysis) Let n > 3 be an integer and w be the volume of the unit

sphere in R™. Let
-1 1

(n— 2w [z["~2
Let dg be the Dirac delta in R™ which means that the value of §y at a C*
function f with compact support on R is equal to f(0). Let

K(x) =

the Laplacian on R™ with coordinates x1,--- ,x,. Prove the identity
AK = dy

as distributions on R™. In other words, for any C*° function f on R™ with
compact support the identity

K(z)(Af)(z) = [(0)

R
holds.
Solution. First, straightforwardly verify that
AW}LQ =0
on R™ — {0} as follows. From
0 1 9 1 _ n—1 2z
Oxj|z|"=2  Ox; (|x|2)"772 N 2 (|z]2)2
and
2 1 -1 2 (n—1n (2z;)?
afleln 2 (kP)E 4 (@)
on R"™ — {0} it follows that
921 (n=1)n (n—1)n
S0l T (eP)E | (2P)F

on R™ —{0}. For n > 0 let B(n) be the closed ball of radius 1 in R™ centered
at the origin. Apply the divergence theorem to

div (fgrad K) — div (Kgrad f) = (fAK) — (KAf) = — (KAf)

on R"™ — B(n), where div is the divergence operator and grad is the gradient
operator. Let I/ be the unit outward-pointing normal vector of the boundary
0B(n) of B(n). Then

/ f(gradK)-ﬁ/ K(gradf)'ﬁ:/ KAf.
9B(n) 9B(n) "—B(n)



Since K = O (ﬁ) and the volume of dB(n) is 0 (n"~1) and f is C*, as

n — 0 the term
/ K(grad f)-v
9B(n)

goes to zero. Since

(grad K) - =

w1 + (lower order terms)

and the volume of dB(n) is wn™ !, it follows that as  — 0 the term

/ f(grad K) - U
9B(n)

approaches — f(0). This finishes the proof that

f0)= | KAf.
Rn
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1. (Algebra) Let G be a non-abelian group of order 12. Show that G has
either 4 or 6 irreducible complex representations, and show that both of these
possibilities do occur.

Solution. The order of GG is the sum of the squares of the dimensions of the
irreducible representations; and the number of 1-dimensional representations
is the order of the abelianization G/[G,G], which must divide |G|. Going
systematically we find that the only ways to write 12 as a sum of squares with
the constraint that the number of 1’s divides 12 are the following:

12=1%+-.- 412, (12 times),
12=3>+12 +12 + 12
12=22+22 4+ 124+ 12 +12 + 12

In the first case, G is abelian. So for non-abelian G, only the last two pos-

sibilities are feasible, and there are either 4 or 6 irreducible representations,
whose dimensions are either (3,1,1,1) or (2,2,1,1,1,1) respectively.

Consider now the group A4, which has order 12. It has four conjugacy classes,
represented by the elements e, (12)(34), (123) and (132). This group therefore
has four irreducible representations, because the number of irreducible repre-
sentations is equal to the number of conjugacy classes. Alternatively, A4 is the
group of rotational symmetries of the regular tetrahedron, so it has an irre-
ducible 3-dimensional representation, and therefore the representations must
be (3,1,1,1) by the above classification. Alternatively again, the abelianiza-
tion has order 3, so there must be exactly three 1-dimensional representations,
again implying that it must be (3,1, 1,1).

Consider next the group dihedral group D of order 12, presented as (r,s | 76 =
5?2 =e,srs =r~1) (so that r is a rotation through 27/6 in the plane and s is
a reflection, in the usual way). There are 6 conjugacy classes, represented by
the elements e, r, 72, 73, s and rs. (As symmetries of the hexagon, the latter
two are reflections in a line through vertices and a line through midpoints
of edges, respectively.) The group therefore has 6 irreducible representations.
Alternatively, the abelianization has order 4, implying that there are 4 abalian
characters and we must be in the case (2,2,1,1,1,1) by the classification.

2. (Algebraic Geometry)

(a) For each ring R below, determine whether R is the coordinate ring of an
affine variety (not necessarily irreducible).



(b)

o R=Clz]/(z? —22% + 2).
e R=C[z]/(z3 - 1).
Consider the following affine varieties

X =V(zy(z —y)) C AZ, Y =V(zy,yz,xz) C A%.

Are X and Y isomorphic varieties?

Solution.

(a)

The ring C[z]/(2® — 22 + x) is not the coordinate ring of any affine
variety. Factor

2 — 222 f o = x(x —1)?
and observe that z(z(z — 1)2) = (22 — z)? is contained in the ideal
(23 — 222 +2) C C[z], while 22 — 2 is not. Therefore, Clx]/(z3 — 222 + )
has nilpotent elements, and so is not the coordinate ring of any affine
variety.
For the ring C[z]/(z3 — 1), consider the factorization

1= (z—1)(z—G)z—C3)

where (3 = e’ € C. Because 2% — 1 is square-free, Clx]/(z® — 1) has no
nilpotent elements; for example, there is a ring isomorphism

Clz]/(2z® —1)=C?

by the Chinese remainder theorem. By the Nullstellensatz, Clx]/(z3 —
1) is the coordinate ring of an affine variety. (In particular, it is the
coordinate ring of the set of three points {1, (3, (3} in AL.)

Although both X,Y are unions of three lines intersecting at one point,
the varieties X and Y are not isomorphic. To see this, observe that both
X and Y have unique singular points, at (0,0) and (0,0, 0) respectively.
We will show that the Zariski tangent space T(g )X is 2-dimensional,
while T ,0)Y is 3-dimensional. (In fact, the latter computation shows
that Y has no embedding into A% at all.)

Consider the maximal ideal of functions of X vanishing at (0,0)

m = (z,y) € Clz,yl/(zy(z - y)).

Then m? = (22, 2y,y?) C Clz,y]/(xy(x — y)). The elements z,y are
linearly independent in m/m?: if az + by € m? for some a,b € C then
ax + by is contained in the ideal (22, zy,y?) as an element of C[z,y],
meaning a = b = 0. Therefore, dim(m/m?) = 2.

Now consider the maximal ideal of functions of Y vanishing at (0,0, 0)

m = (z,y,2) C Clz,y, 2]/ (xy,yz,2).



Then m? = (22,92, 22) C Clz, vy, 2]/(zy, yz,22). The elements z,y, z are
linearly independent in m/m?: if ax + by + cz € m? for some a,b,c € C
then ax + by + cz is contained in the ideal (z,y,2)? as an element of
Clx, vy, 2], meaning a = b = ¢ = 0. Therefore, dim(m/m?) = 3.

3. (Algebraic Topology) Consider S? x S? with the product orientation. Let
u € H%(S%,Z) = Z be the positive generator, and set

xi=miu, y:=mou € H(S? x S*Z),

where 7; : 82 x S? — S? denotes the projection to the i-th factor. Suppose
f:8%x 8% = 52 x S?is a continuous map of degree 1 with no fixed points.
Prove that

ffea=—-z  fly=-y
in H?(S? x S%; 7).
Solution. By Kiinneth formula, the cohomology ring of S? x S? is
H* (8% x §%,2) = Z[x)/(2°) @ Z[y)/ (v?).
In particular, its cohomology groups are
H°(S?xS%,7) = 7(1), H*(S*xS%7Z) = Z{x)®Zly), H(S*xS%Z) = Zxy),
and zero otherwise. Write

ffe=ax+by, ffy=cr+dy, a,bcdéeZL.

Then,
0=f* (gc2) = (ax + by)(azx + by) = 2abxy,
0= f*(y?) = (cx + dy)(cx + dy) = 2¢day,
SO
ab=0, cd=0. (1)
Moreover,

[ (xy) = (az + by)(cx + dy) = (ad + be)zy,

so from the degree-1 assumption,
ad + be = 1. (2)

It follows from (1) and (2) that, either

a b\ [+l 0 0 +1
e d) Vo 1) % \x1 o)



Finally, the Lefschetz number of f is

L(f) = Z(_DkTr(f*’Hk(S?xS?;Q))

k>0
=14+ (a+d)+ (ad+bc)=2+a+d,

so from the fixed-point-free assumption,

a+d= -2,

(¢ o) (0" 4)

. (Complex Analysis) Let D := {z € C | |2| < 1} be the unit disk. Suppose
f:D — D is a holomorphic function with two distinct fixed points a # b € D.
Prove that f(z) = z for all z € D.

Solution. Let

meaning

as desired.

¢g:D—D
. z—a
z
1—az

be the standard biholomorphic automorphism of D sending a to 0, with inverse

—1. w+a
¢g w15 Define

fo :=¢aof0¢;1-
Then fo(0) = 0 and fo(6a (b)) = da(b) # 0.

Recall that Schwarz lemma states that any holomorphic map ¢ : D — D with
g(0) = 0 must satisfy

lg(2)| < |z| for all z € D,

and moreover, if the equality holds at some nonzero point, then g must be a
rotation g(z) = €z, for some . It follows that fy is the identity map, and so

is f.
. (Differential Geometry) Consider the disk D? = {(z,y) € R?|2? +¢? < 1}
with the metric

1

g

Compute the Levi-Civita connection of the corresponding Riemann manifold.

Solution. Recall that Vy,0; = >, Ffj@k, where

1
pf’j = 5g’f"/’(é?i;qkj + 0j9ki — OkGij) »



as g is diagonal. We find

z Y
e =—>-_ 1v=-_—7
=TI @ ) T - @)
—y e
ry =— 2 _ T¢=—""°
IS @ry) Y =@ )
y x
e =r =—< ¥ =TY =— "
zy ve T T (22 + ) Ty vET T (22 + )

. (Real Analysis) Suppose that f; (j = 1,2,...) and f are real functions on
[0,1]. We say that f; — f in measure if and only if for any € > 0 we have

lim i {2 € [0,1): |f;(@) ~ f(@)] > £} =0,

where 1 is the Lebesgue measure on [0, 1]. In this problems, all functions are
assumed to be in L]0, 1].

(a)

(b)
()

Suppose that f; — f in measure. Does it follow that

tim [ |fy(2) ~ f(@)]do =0,

J]—00

Prove it or give a counterexample.

Suppose that f; — f in measure. Does it follow that f;(x) — f(z)
almost everywhere in [0,1]? Prove it or give a counter example.

Suppose that f;(z) — f(x) almost everywhere in [0,1]. Does it follow
that f; — f in measure? Prove it or give a counter example.

Solution.

(a)

(b)

No. For a counterexample, take f = 0 and take f; to be j times the
characteristic function of [0,1/j]. Then f; — f is non-zero on a set of
measure 1/ while [|f; — f| = 1.

No. Forn > 0 and j = 2" +k with 0 < k < 2", let f; be the characteristic
function of the interval 27" [k, k+1]. Let f = 0. Then |f— f;| is supported
in an interval of measure at most 27" for j > 2", so f; converges to f in
measure. But f; does not converge almost everywhere to 0, because for
every x € [0,1], the value fj(z) is 1 infinitely often.

Yes. For clarity, we can take f = 0 (subtracting the original f from
everthing) and we may assume f;j(z) — 0 for all z by modifying the
functions on a null set. To show convergence in measure, fix any € > 0.
Let Ej = {x:|fj(x)| > €}, let

S; = Ex,

k>j



and let s; be the characteristic function of S;. Pointwise convergence
implies that, for all z, the value s;(z) is eventually 0. By the dominated
convergence theorem then, [ |s;| — 0. In other words, the measure of S;
tends to zero as j — oo, and a fortiori the same holds of the measure of
E;. Since € was arbitrary, it follows that f; — 0 in measure.
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1. (Algebra) Let k be a field. Let K/k be a finite separable extension, and
L/k be an arbitrary extension. Prove that the commutative k-algebra K ®j L
splits as a finite product of finite separable extensions of L.

Hint. You may find it useful to apply the theorem of the primitive element.
Solution.

By the primitive element theory, there exists an irreducible separable polyno-
mial f € k[z]| such that K = k[z]/f as fields. It is therefore enough to analyze
the structure of the commutative k-algebra K ®j L = L[z]/f. In order to do
so, let

f@) = fi(@) -~ fr(x)

be the factorization of f into monic irreducible polynomials in L[x]. As f is
separable, the polynomials fi, ..., f, are pairwise relatively prime. It follows
from the Chinese remainder theorem that

,
Llz]/f =[] Ll=l/f;
i=1
as commutative L-algebras. But L[z]|/f; is a finite separable extensions of L
as f; is irreducible and separable. This concludes the proof.

2. (Algebraic Geometry) Let X = Bly(A?) be the blow-up of A? at the origin.

(a) Using local coordinates, identify the exceptional divisor E and show that
E ~PL

(b) Show that the strict transform of the curve C = {(z,y) € A?|y? = 23}
is smooth.

Solution.

(a) We have
X C A? x P!, X ={((x,y),[s: t]) |zt = ys}.

It follows that the fiber over (0,0) € A2 is P!

(b) The strict transform C C X is the closure of 7~ 1(C \ {0}), where
7: Blp(A%) — A? is the natural morphism.



Let us cover X by two open charts and verify that the intersection of C
with both of them is smooth. We have

X =Us; UUy,

where Us consists of ((x,y),[s : t]) € X such that s # 0 and U; consists
of ((z,y),[s: t]) € X such that t # 0.

On Us we have y = %t and setting v = é we get y = zv. Now C is

given by the equation f = y? — 23 = 0. Substituting y = zv we see that
f becomes 7%v? — 23 = 2%(v? — z), so the strict transform of C being
intersected with U, is given (in coordinates (z,y,v)) by the equation

v2 — 2 = 0 so is indeed smooth.

On U; we have x = y§ so x = yu, where u = §. Substituting x = yu in

the equation defining f we obtain y? — y?u3, so the strict transform of C
being intersected with U; is given by the equation 1 — yu? = 0 and also
defines a smooth variety.

3. (Algebraic Topology) Let n > 1. Compute the homotopy groups m(CP"),
foreach 1 < k < 2n.

Solution. Using the Serre fibration
Sty g2t cpn,
we get a long exact sequence in homotopy groups
oo = (87T = (CP™) — mp1(SY) — mp_1 (82T — -
Since k < 2n+1, the portion of the long exact sequence shown above becomes
0 — m,(CP") = m_1(SY) — 0,
and thus

7 iftk=2
75 (CP™) 22 7 (S = ’
W(CPT) = M- (57) {0 ifk=1o0r3<k<2n.
4. (Complex Analysis) Suppose f is a doubly-periodic meromorphic function
on C with periods wi,ws which are R-linearly independent. Let a € C such
that the sides of the parallelogram §2 with vertices a,a+ w1, a+ws, a+wi +wo

do not contain any zeroes or poles of f. Let by, - - , b, (respectively a1, - - , aq)
be the zeroes (respectively the poles) of f with multiplicities ki,--- ,k, (re-
spectively £1,--- , ;) inside Q. By considering the residues of the function

1 wf(w)

dw

2t f(w)



or otherwise, prove that

p q
Z kb, | — (Z m,,)
n=1 v=1

belongs to Zwi + Zws. In other words, in a fundamental parallelogram the
sum of the coordinates of the zeroes of an elliptic function equals the sum of
the coordinates of its poles modulo a period.

Solution. It follows from the computation of residues that the integral of

1 wf(w)

o flw) Y

over the boundary 92 of the fundamental parallelogram 2 is equal to

p q
> kb | - (Z m,,) :
n=1 v=1

We compute the boundary integral over 92 by integrating over the two pairs
of opposite sides of 2. The sum of the integrals over the opposite sides [a +
w1, a0+ wy +ws] and [a,a + ws] is

1 wf! (w) 1 w f'(w)
— dw— — d
2mi [at+wi,a+wi+w3) f(w) 2mi [a,a+w2] f(w) Y (3)
=w ! f'w) dw.

15,

2mi [a,a+w3] f(w)

Note that
S f'(w)
2mi [a,a+w2) f(w)
equals 1/27i times the difference of the value of log f(w) at a + we and at a
when w runs along [a, a+ws]. Since f(w) has the same value at a as at a+wa,
the difference of the value of log f(w) at a + wy and at @ when z runs along

[a, a + wo] must be 27i times an integer. Therefore (4) is an integer and (3) is
a period of f. Likewise

1 wf’(w)d 1 wf'(w)

2mi la,a+w1] f(w) ~ 2mi [atwz,at+wi+ws] f(w)

dw (4)

dw

is also a period of f.
5. (Differential Geometry)

(a) Compute H¥: (R™\ {0}) for all &.



(b) Show that the (n — 1)-form

1 n .
= w Z(_l)z 1{L‘id$1 A ANdxri—1 A dl‘iJrl A...Ndxy,

=1

Ui

is closed on R™\ {0} and [g,_, n = Vol(S"1).
(c) Deduce that [n] generates H)ji ' (R™\ {0}).

Solution.

(a) The space U := R™\ {0} deformation retracts onto the unit sphere S !
via the radial retraction

roU — 8" r(:c):i.
gdl

Hence U is homotopy equivalent to S"~!, so de Rham cohomology agrees:
Hir(U) = Hig(S" ).

Since

R k=0,
HiR(S" 2R k=n—1,
0 otherwise,

the same holds for U.
(b) Let Q =dxy A --- Adzy be the standard volume form on R", and let

" 0
R = i—
be the radial vector field. Then
Lp§) = Z(—l)i_lxi dxi A+ A d/m\z A Aday,
i=1
SO
n= |z~ R
Write r = ||z||. Then
dn=d(r ") ANegQ +r " d(Lrf).

By Cartan’s formula, d(tgQ) = L2 — tr(dQ) = LN since dQ = 0.
Moreover L2 = (div R)2 = nf2, so d(trf2) = nfd.
Next, d(r~™) = —nr~""1dr. Since dr = r=1 31 | x; dx;, we get

d(r™™) = —nr"2 sz dx;.
i=1



Let a = )" x; dx;. It’s easy to see that
a A =12Q.
Therefore
dr™) ArQ = —nr " Pa A g = —nr T Q= —nr ",
while
rTd(egQ) = 7" = nrT Q.

These cancel, hence dn =0 on U.

On S" ! we have r = 1, 50 n|gn-1 = tgQ|gn-1. Along the sphere, R
is the outward normal vector field, and contracting the ambient volume
form with the outward unit normal gives the induced oriented volume
form on the hypersurface. Hence 1|gn—1 is the standard volume form, so

/ n = Vol(S"1).
Sn—1

(c) We know H'z'(U) 2 R, so it is one-dimensional. To show [5] # 0, note
that if n = dB on U, then by Stokes theorem

/sm " /S 46 = /a(Bn) ds= |  d(dp) =0,

contradicting [g,_,n = Vol(§"~!) # 0. Hence [n] # 0, and in a one-
dimensional vector space this means [n] is a generator.

6. (Real Analysis) Let f be a bounded real-valued function on X = [0, 1] C R,
and define a function ¢ : [1,00) — R by

¢(p) = Hf”zip(x)-

Prove that ¢ is convex.

Solution. The exponential function is convex, so for any fixed a > 0, the
function ¢ (p) = a? is a convex function of p. This means that if we take any
po,p1 € [1,00) and any ¢ € [0, 1], and set

p=(1—1t)po +tp1,
then
[f(@)[P < (1 =0)f @)[*° + [ f(@)["
for all € [0,1]. (Take a = |f(z)| in the above.) Integrating this inequality
over [0, 1] gives

o(p) < (1 —1t)é(po) + top(p1),

which says that ¢ is convex.



