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1. (Algebra) In this question, g is a non-zero, finite-dimensional Lie algebra
over C.

(a) Define the Killing form on g.

(b) Characterize semisimplicity for g in terms of the Killing form.

(c) The Lie algebra g is nilpotent if its lower central series terminates at {0}.
Show that the Killing form of a nilpotent Lie algebra is zero.

(d) Exhibit a 2-dimensional g that is neither semisimple nor nilpotent.

Solution.

(a) The Killing form is the symmetric bilinear form (a, b) = tr(ad(a)ad(b)).

(b) The Lie algebra is semisimple if and only if the Killing form is non-
degenerate.

(c) In a nilpotent Lie algebra, the subalgebra [g, [g, . . . [g, g] . . . ]] is eventually
zero. In particular [x, [y, [x, [y, . . . , [x, [y, z]] . . . ] is zero for all x and y
and z eventually; which is to say that (ad(x)ad(y))nz is eventually zero.
That is (since g is finite-dimensional), ad(x)ad(y) is nilpotent. Its trace
is therefore zero.

(d) The Lie algebra of traceless uppper-triangular 2-by-2 matrices has a
Killing form of rank 1. (Its kernel is the 1-dimensional subalgebra of
diagonal, traceless matrices.)

2. (Algebraic Geometry) Let Λ ⊆ P6 be a fixed 3-plane and let G(4, 6) be the
Grassmannian of 4-planes in P6. Let

Σ = {Γ : dim(Γ ∩ Λ) ≥ 2 } ⊆ G(4, 6).

Show that Σ is irreducible and compute the dimension of Σ.

Solution. Consider the incidence variety

Φ = {(A,B) : A ⊆ B} ⊆ G(2, 3)×G(4, 6)

where we have identified G(2, 3) with the Grassmannian of 2-planes in Λ ∼= P3

contained in P6. The projection π1 : Φ → G(2, 3) is surjective. The fiber
π−1
1 (A) over any A ∈ G(2, 3) is the set of 5-dimensional subspaces of a 7-

dimensional vector space V containing a 3-dimensional subspace A, or the set



of 2-dimensional subspaces of the 4-dimensional vector space V/A. In other
words, π1 has fibers G(1, 3) of dimension 4. Because G(2, 3) has dimension 3,

dim(Φ) = 3 + 4 = 7.

Moreover, Φ is irreducible because G(2, 3) is irreducible, and all fibers of are
irreducible of the same dimension.

The second projection π2 : Φ → G(4, 6) has image equal to Σ. There exist
B ∈ Σ ⊆ G(4, 6) with dim(B∩Λ) = 2, and the fiber π−1

2 (B) consists of a single
point (B ∩Λ, B) ∈ G(2, 3)×G(4, 6) for any such B. By upper-semicontinuity
of fiber dimension, π2 is generally one-to-one onto Σ, and

dim(Σ) = dim(Φ) = 7.

Finally, Σ is irreducible because it is the image of an irreducible projective
variety Φ.

3. (Algebraic Topology) Let F2 = ⟨a, b⟩ denote the free group on two letters
a, b. Consider the homomorphism f : F2 → Z/2Z defined by f(a) = f(b) = 1.

(a) Draw the cover of S1 ∨ S1 corresponding to the subgroup ker(f) of
π1(S

1 ∨ S1) ∼= F2.

(b) There is a group isomorphism ker(f) ∼= Fr for some r ≥ 1, where Fr

denotes the free group on r letters. Determine r.

Solution.

(a) The subgroup ker(f) has generators

ker(f) = ⟨a2, b2, ab⟩.

To see this, first observe that ker(f) is the subgroup of elements of even
word length, so it suffices to show that any word w of even length in F2

is contained in ⟨a2, b2, ab⟩. First, if w has length 2 then w is one of

a2, b2, ab, ba = b2(ab)−1a2, a−1b = a−2(ab), ab−1 = (ab)b−2,

or their inverses. Therefore, ⟨a2, b2, ab⟩ contains any word of length 2,
and hence any word of even length.

Consider the following cover p : X → S1 ∨ S1

a

a
b

b

a b
p



Contracting one of the edges of X shows that X is homotopy equivalent
to a wedge of three circles and that three generators of π1(X) ∼= F3 have
images a2, ab, and b2. Therefore, p∗(π1(X)) = ker(f).

(b) Let p : X → S1 ∨ S1 be the cover coresponding to ker(f). The solution
to part (a) shows that X is homotopy equivalent to S1 ∨S1 ∨S1, and so
π1(X) ∼= F3. Recall that p∗ : π1(X) → π1(S

1 ∨ S1) is injective and has
image ker(f) by construction, and hence

ker(f) ∼= F3.

4. (Complex Analysis) Prove that∑
n≥1

1

n2
=
π2

6

by applying the residue theorem to the meromorphic function

f(z) =
π cot(πz)

z2

integrated over the boundary of the rectangle RN with vertices ±(N + 1
2) ±

i(N + 1
2), and letting N → ∞.

Solution. The function π cot(πz) has simple poles at all integers n ∈ Z with
residue 1, so for any non-zero integer n,

Resz=n
π cot(πz)

z2
=

1

n2
.

At z = 0,
π cot(πz)

z2
= z−3 − π2

3
z−1 +O(z),

so

Resz=0
π cot(πz)

z2
= −π

2

3
.

Therefore, applying the residue theorem, we have

1

2πi

∫
∂RN

f(z)dz =

N∑
n=−N

Resz=nf(z) = −π
2

3
+ 2

(
N∑

n=1

1

n2

)
,

and thus it suffices to show that

lim
N→∞

∫
∂RN

f(z)dz = 0

to conclude the proof.

For this, observe that there is a uniform upper bound C of |π cot(πz)| on ∂RN ,
independent of N . For instance, we can take

C = π
1 + e−π

1− e−π
,

since



• on the vertical sides,∣∣∣∣π cot(π(± (N +
1

2
) + it

))∣∣∣∣ = |π cot(π
2
+ iπt)| = |π tanh(πt)| ≤ π,

• and on the horizontal sides,∣∣∣∣π cot(π(t± i(N +
1

2
)
))∣∣∣∣ = π

∣∣∣∣∣e2πi(t±i(N+ 1
2
)) + 1

e2πi(t±i(N+ 1
2
)) − 1

∣∣∣∣∣ ≤ π
1 + e−π(2N+1)

1− e−π(2N+1)
≤ π

1 + e−π

1− e−π
.

Hence, since the perimeter of ∂RN is 8(N + 1
2),∣∣∣∣∫

∂RN

f(z)dz

∣∣∣∣ ≤ ∫
∂RN

|f(z)| ≤ C

(N + 1
2)

2
· 8(N +

1

2
) =

8C

N + 1
2

N→∞−→ 0.

5. (Differential Geometry) Prove that

M := {x21 + x22 − x23 − x44 = 0} ∩ {x21 + x22 + x23 + x44 = 4}

is a 2-dimensional submanifold of R4. Compute the tangent space of M at
the point (1, 1,−1,−1).

Solution. Let F : R4 → R2 be the smooth function given by

F (x1, x2, x3, x4) = (x21 + x22 − x23 − x44, x
2
1 + x22 + x23 + x44 − 4) .

Observe thatM = F−1(0), so that it will be enough to show that 0 is a regular
value of F . We have

∇F (x1, x2, x3, x4) =
[
2x1 2x2 −2x3 −4x34
2x1 2x2 2x3 4x34

]
.

But, if (x1, x2, x3, x4) ∈ M , then x21 + x22 = 2 so that at most one of x1 and
x2 vanishes. Likewise, we have x23 + x44 = 2, so that at most one of x3 and x4
vanishes. It follows that the above matrix has full rank on every point of M ,
which proves the first part.

The tangent space of the submanifold M at the point p = (1, 1,−1,−1) is the
kernel of the linear map

∇F (1, 1,−1,−1) =

[
2 2 2 4
2 2 −2 −4

]
,

which is spanned by the two vectors
1
−1
0
0

 ,


0
0
2
−1

 ∈ TpR4 ∼= R4 .



6. (Real Analysis) Let n ≥ 3 be an integer and ω be the volume of the unit
sphere in Rn. Let

K(x) =
−1

(n− 2)ω

1

|x|n−2
.

Let δ0 be the Dirac delta in Rn which means that the value of δ0 at a C∞

function f with compact support on RN is equal to f(0). Let

∆ =
n∑

j=1

∂2

∂x2j

the Laplacian on Rn with coordinates x1, · · · , xn. Prove the identity

∆K = δ0

as distributions on Rn. In other words, for any C∞ function f on Rn with
compact support the identity∫

Rn

K(x)(∆f)(x) = f(0)

holds.

Solution. First, straightforwardly verify that

∆
1

|x|n−2
≡ 0

on Rn − {0} as follows. From

∂

∂xj

1

|x|n−2
=

∂

∂xj

1

(|x|2)
n−2
2

= −n− 1

2

2xj

(|x|2)
n
2

and
∂2

∂x2j

1

|x|n−2
= −n− 1

2

2

(|x|2)
n
2

+
(n− 1)n

4

(2xj)
2

(|x|2)
n+2
2

on Rn − {0} it follows that

n∑
j=1

∂2

∂x2j

1

|x|n−2
= −(n− 1)n

(|x|2)
n
2

+
(n− 1)n

(|x|2)
n
2

= 0

on Rn − {0}. For η > 0 let B(η) be the closed ball of radius η in Rn centered
at the origin. Apply the divergence theorem to

div (fgrad K)− div (Kgrad f) = (f∆K)− (K∆f) = − (K∆f)

on Rn − B(η), where div is the divergence operator and grad is the gradient
operator. Let ν⃗ be the unit outward-pointing normal vector of the boundary
∂B(η) of B(η). Then∫

∂B(η)
f(grad K) · ν⃗ −

∫
∂B(η)

K(grad f) · ν⃗ = −
∫
Rn−B(η)

K∆f.



Since K = O
(

1
|z|n−2

)
and the volume of ∂B(η) is 0

(
ηn−1

)
and f is C∞, as

η → 0 the term ∫
∂B(η)

K(grad f) · ν⃗

goes to zero. Since

(grad K) · ν⃗ =
−1

ωηn−1
+ (lower order terms)

and the volume of ∂B(η) is ωηn−1, it follows that as η → 0 the term∫
∂B(η)

f(grad K) · ν⃗

approaches −f(0). This finishes the proof that

f(0) =

∫
Rn

K∆f.
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1. (Algebra) Let G be a non-abelian group of order 12. Show that G has
either 4 or 6 irreducible complex representations, and show that both of these
possibilities do occur.

Solution. The order of G is the sum of the squares of the dimensions of the
irreducible representations; and the number of 1-dimensional representations
is the order of the abelianization G/[G,G], which must divide |G|. Going
systematically we find that the only ways to write 12 as a sum of squares with
the constraint that the number of 1’s divides 12 are the following:

12 = 12 + · · ·+ 12, (12 times),

12 = 32 + 12 + 12 + 12

12 = 22 + 22 + 12 + 12 + 12 + 12.

In the first case, G is abelian. So for non-abelian G, only the last two pos-
sibilities are feasible, and there are either 4 or 6 irreducible representations,
whose dimensions are either (3, 1, 1, 1) or (2, 2, 1, 1, 1, 1) respectively.

Consider now the group A4, which has order 12. It has four conjugacy classes,
represented by the elements e, (12)(34), (123) and (132). This group therefore
has four irreducible representations, because the number of irreducible repre-
sentations is equal to the number of conjugacy classes. Alternatively, A4 is the
group of rotational symmetries of the regular tetrahedron, so it has an irre-
ducible 3-dimensional representation, and therefore the representations must
be (3, 1, 1, 1) by the above classification. Alternatively again, the abelianiza-
tion has order 3, so there must be exactly three 1-dimensional representations,
again implying that it must be (3, 1, 1, 1).

Consider next the group dihedral groupD of order 12, presented as ⟨ r, s | r6 =
s2 = e, srs = r−1 ⟩ (so that r is a rotation through 2π/6 in the plane and s is
a reflection, in the usual way). There are 6 conjugacy classes, represented by
the elements e, r, r2, r3, s and rs. (As symmetries of the hexagon, the latter
two are reflections in a line through vertices and a line through midpoints
of edges, respectively.) The group therefore has 6 irreducible representations.
Alternatively, the abelianization has order 4, implying that there are 4 abalian
characters and we must be in the case (2, 2, 1, 1, 1, 1) by the classification.

2. (Algebraic Geometry)

(a) For each ring R below, determine whether R is the coordinate ring of an
affine variety (not necessarily irreducible).



• R = C[x]/(x3 − 2x2 + x).

• R = C[x]/(x3 − 1).

(b) Consider the following affine varieties

X = V (xy(x− y)) ⊆ A2
C, Y = V (xy, yz, xz) ⊆ A3

C.

Are X and Y isomorphic varieties?

Solution.

(a) The ring C[x]/(x3 − 2x2 + x) is not the coordinate ring of any affine
variety. Factor

x3 − 2x2 + x = x(x− 1)2

and observe that x(x(x − 1)2) = (x2 − x)2 is contained in the ideal
(x3−2x2+x) ⊆ C[x], while x2−x is not. Therefore, C[x]/(x3−2x2+x)
has nilpotent elements, and so is not the coordinate ring of any affine
variety.

For the ring C[x]/(x3 − 1), consider the factorization

x3 − 1 = (x− 1)(x− ζ3)(x− ζ23 )

where ζ3 = e
2πi
3 ∈ C. Because x3 − 1 is square-free, C[x]/(x3 − 1) has no

nilpotent elements; for example, there is a ring isomorphism

C[x]/(x3 − 1) ∼= C3

by the Chinese remainder theorem. By the Nullstellensatz, C[x]/(x3 −
1) is the coordinate ring of an affine variety. (In particular, it is the
coordinate ring of the set of three points {1, ζ3, ζ23} in A1

C.)

(b) Although both X,Y are unions of three lines intersecting at one point,
the varieties X and Y are not isomorphic. To see this, observe that both
X and Y have unique singular points, at (0, 0) and (0, 0, 0) respectively.
We will show that the Zariski tangent space T(0,0)X is 2-dimensional,
while T(0,0,0)Y is 3-dimensional. (In fact, the latter computation shows
that Y has no embedding into A2

C at all.)

Consider the maximal ideal of functions of X vanishing at (0, 0)

m = (x, y) ⊆ C[x, y]/(xy(x− y)).

Then m2 = (x2, xy, y2) ⊆ C[x, y]/(xy(x − y)). The elements x, y are
linearly independent in m/m2: if ax + by ∈ m2 for some a, b ∈ C then
ax + by is contained in the ideal (x2, xy, y2) as an element of C[x, y],
meaning a = b = 0. Therefore, dim(m/m2) = 2.

Now consider the maximal ideal of functions of Y vanishing at (0, 0, 0)

m = (x, y, z) ⊆ C[x, y, z]/(xy, yz, xz).



Then m2 = (x2, y2, z2) ⊆ C[x, y, z]/(xy, yz, xz). The elements x, y, z are
linearly independent in m/m2: if ax + by + cz ∈ m2 for some a, b, c ∈ C
then ax + by + cz is contained in the ideal (x, y, z)2 as an element of
C[x, y, z], meaning a = b = c = 0. Therefore, dim(m/m2) = 3.

3. (Algebraic Topology) Consider S2 × S2 with the product orientation. Let
u ∈ H2(S2;Z) ∼= Z be the positive generator, and set

x := π∗1u, y := π∗2u ∈ H2(S2 × S2;Z),

where πi : S
2 × S2 → S2 denotes the projection to the i-th factor. Suppose

f : S2 × S2 → S2 × S2 is a continuous map of degree 1 with no fixed points.
Prove that

f∗x = −x, f∗y = −y

in H2(S2 × S2;Z).
Solution. By Künneth formula, the cohomology ring of S2 × S2 is

H∗(S2 × S2;Z) ∼= Z[x]/(x2)⊗ Z[y]/(y2).

In particular, its cohomology groups are

H0(S2×S2;Z) ∼= Z⟨1⟩, H2(S2×S2;Z) ∼= Z⟨x⟩⊕Z⟨y⟩, H4(S2×S2;Z) ∼= Z⟨xy⟩,

and zero otherwise. Write

f∗x = ax+ by, f∗y = cx+ dy, a, b, c, d ∈ Z.

Then,

0 = f∗(x2) = (ax+ by)(ax+ by) = 2abxy,

0 = f∗(y2) = (cx+ dy)(cx+ dy) = 2cdxy,

so
ab = 0, cd = 0. (1)

Moreover,
f∗(xy) = (ax+ by)(cx+ dy) = (ad+ bc)xy,

so from the degree-1 assumption,

ad+ bc = 1. (2)

It follows from (1) and (2) that, either(
a b
c d

)
=

(
±1 0
0 ±1

)
or

(
0 ±1
±1 0

)
.



Finally, the Lefschetz number of f is

L(f) =
∑
k≥0

(−1)kTr(f∗|Hk(S2×S2;Q))

= 1 + (a+ d) + (ad+ bc) = 2 + a+ d,

so from the fixed-point-free assumption,

a+ d = −2,

meaning (
a b
c d

)
=

(
−1 0
0 −1

)
,

as desired.

4. (Complex Analysis) Let D := {z ∈ C | |z| < 1} be the unit disk. Suppose
f : D → D is a holomorphic function with two distinct fixed points a ̸= b ∈ D.
Prove that f(z) = z for all z ∈ D.
Solution. Let

ϕa : D → D

z 7→ z − a

1− āz

be the standard biholomorphic automorphism of D sending a to 0, with inverse
ϕ−1
a : w 7→ w+a

1+āw . Define

f0 := ϕa ◦ f ◦ ϕ−1
a .

Then f0(0) = 0 and f0(ϕa(b)) = ϕa(b) ̸= 0.

Recall that Schwarz lemma states that any holomorphic map g : D → D with
g(0) = 0 must satisfy

|g(z)| ≤ |z| for all z ∈ D,

and moreover, if the equality holds at some nonzero point, then g must be a
rotation g(z) = eiθz, for some θ. It follows that f0 is the identity map, and so
is f .

5. (Differential Geometry) Consider the disk D2 = {(x, y) ∈ R2|x2+ y2 < 1}
with the metric

g =
1

1− (x2 + y2)
(dx⊗ dx+ dy ⊗ dy) .

Compute the Levi-Civita connection of the corresponding Riemann manifold.

Solution. Recall that ∇∂i∂j =
∑

k Γ
k
ij∂k, where

Γk
ij =

1

2
gkk(∂igkj + ∂jgki − ∂kgij) ,



as g is diagonal. We find

Γx
xx =

x

1− (x2 + y2)
, Γy

yy =
y

1− (x2 + y2)
,

Γy
xx =

−y
1− (x2 + y2)

, Γx
yy =

−x
1− (x2 + y2)

,

Γx
xy = Γx

yx =
y

1− (x2 + y2)
, Γy

xy = Γy
yx =

x

1− (x2 + y2)
.

6. (Real Analysis) Suppose that fj (j = 1, 2, . . .) and f are real functions on
[0, 1]. We say that fj → f in measure if and only if for any ε > 0 we have

lim
j→∞

µ {x ∈ [0, 1] : |fj(x)− f(x)| > ε } = 0,

where µ is the Lebesgue measure on [0, 1]. In this problems, all functions are
assumed to be in L1[0, 1].

(a) Suppose that fj → f in measure. Does it follow that

lim
j→∞

∫
|fj(x)− f(x)| dx = 0.

Prove it or give a counterexample.

(b) Suppose that fj → f in measure. Does it follow that fj(x) → f(x)
almost everywhere in [0, 1]? Prove it or give a counter example.

(c) Suppose that fj(x) → f(x) almost everywhere in [0, 1]. Does it follow
that fj → f in measure? Prove it or give a counter example.

Solution.

(a) No. For a counterexample, take f = 0 and take fj to be j times the
characteristic function of [0, 1/j]. Then fj − f is non-zero on a set of
measure 1/j while

∫
|fj − f | = 1.

(b) No. For n ≥ 0 and j = 2n+k with 0 ≤ k < 2n, let fj be the characteristic
function of the interval 2−n[k, k+1]. Let f = 0. Then |f−fj | is supported
in an interval of measure at most 2−n for j ≥ 2n, so fj converges to f in
measure. But fj does not converge almost everywhere to 0, because for
every x ∈ [0, 1], the value fj(x) is 1 infinitely often.

(c) Yes. For clarity, we can take f = 0 (subtracting the original f from
everthing) and we may assume fj(x) → 0 for all x by modifying the
functions on a null set. To show convergence in measure, fix any ϵ > 0.
Let Ej = {x : |fj(x)| > ϵ }, let

Sj =
⋃
k≥j

Ek,



and let sj be the characteristic function of Sj . Pointwise convergence
implies that, for all x, the value sj(x) is eventually 0. By the dominated
convergence theorem then,

∫
|sj | → 0. In other words, the measure of Sj

tends to zero as j → ∞, and a fortiori the same holds of the measure of
Ej . Since ϵ was arbitrary, it follows that fj → 0 in measure.
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1. (Algebra) Let k be a field. Let K/k be a finite separable extension, and
L/k be an arbitrary extension. Prove that the commutative k-algebra K⊗kL
splits as a finite product of finite separable extensions of L.

Hint. You may find it useful to apply the theorem of the primitive element.

Solution.

By the primitive element theory, there exists an irreducible separable polyno-
mial f ∈ k[x] such that K ∼= k[x]/f as fields. It is therefore enough to analyze
the structure of the commutative k-algebra K ⊗k L ∼= L[x]/f . In order to do
so, let

f(x) = f1(x) · · · · · fr(x)

be the factorization of f into monic irreducible polynomials in L[x]. As f is
separable, the polynomials f1, . . . , fr are pairwise relatively prime. It follows
from the Chinese remainder theorem that

L[x]/f ∼=
r∏

i=1

L[x]/fi

as commutative L-algebras. But L[x]/fi is a finite separable extensions of L
as fi is irreducible and separable. This concludes the proof.

2. (Algebraic Geometry) Let X = Bl0(A2) be the blow-up of A2 at the origin.

(a) Using local coordinates, identify the exceptional divisor E and show that
E ≃ P1.

(b) Show that the strict transform of the curve C = {(x, y) ∈ A2 | y2 = x3}
is smooth.

Solution.

(a) We have

X ⊂ A2 × P1, X = {((x, y), [s : t]) |xt = ys}.

It follows that the fiber over (0, 0) ∈ A2 is P1.

(b) The strict transform C̃ ⊂ X is the closure of π−1(C \ {0}), where
π : Bl0(A2) → A2 is the natural morphism.



Let us cover X by two open charts and verify that the intersection of C̃
with both of them is smooth. We have

X = Us ∪ Ut,

where Us consists of ((x, y), [s : t]) ∈ X such that s ̸= 0 and Ut consists
of ((x, y), [s : t]) ∈ X such that t ̸= 0.

On Us we have y = xt
s and setting v := t

s we get y = xv. Now C is
given by the equation f = y2 − x3 = 0. Substituting y = xv we see that
f becomes x2v2 − x3 = x2(v2 − x), so the strict transform of C being
intersected with Us is given (in coordinates (x, y, v)) by the equation
v2 − x = 0 so is indeed smooth.

On Ut we have x = y s
t so x = yu, where u = s

t . Substituting x = yu in
the equation defining f we obtain y2− y3u3, so the strict transform of C
being intersected with Ut is given by the equation 1− yu3 = 0 and also
defines a smooth variety.

3. (Algebraic Topology) Let n ≥ 1. Compute the homotopy groups πk(CPn),
for each 1 ≤ k ≤ 2n.

Solution. Using the Serre fibration

S1 ↪→ S2n+1 → CPn,

we get a long exact sequence in homotopy groups

· · · → πk(S
2n+1) → πk(CPn) → πk−1(S

1) → πk−1(S
2n+1) → · · · .

Since k < 2n+1, the portion of the long exact sequence shown above becomes

0 → πk(CPn) → πk−1(S
1) → 0,

and thus

πk(CPn) ∼= πk−1(S
1) ∼=

{
Z if k = 2,

0 if k = 1 or 3 ≤ k ≤ 2n.

4. (Complex Analysis) Suppose f is a doubly-periodic meromorphic function
on C with periods ω1, ω2 which are R-linearly independent. Let a ∈ C such
that the sides of the parallelogram Ω with vertices a, a+ω1, a+ω2, a+ω1+ω2

do not contain any zeroes or poles of f . Let b1, · · · , bp (respectively a1, · · · , aq)
be the zeroes (respectively the poles) of f with multiplicities k1, · · · , kp (re-
spectively ℓ1, · · · , ℓq) inside Ω. By considering the residues of the function

1

2πi

wf ′(w)

f(w)
dw



or otherwise, prove that  p∑
µ=1

kµbµ

−

(
q∑

ν=1

ℓνcν

)

belongs to Zω1 + Zω2. In other words, in a fundamental parallelogram the
sum of the coordinates of the zeroes of an elliptic function equals the sum of
the coordinates of its poles modulo a period.

Solution. It follows from the computation of residues that the integral of

1

2πi

wf ′(w)

f(w)
dw

over the boundary ∂Ω of the fundamental parallelogram Ω is equal to p∑
µ=1

kµbµ

−

(
q∑

ν=1

ℓνcν

)
.

We compute the boundary integral over ∂Ω by integrating over the two pairs
of opposite sides of Ω. The sum of the integrals over the opposite sides [a +
ω1, a+ ω1 + ω2] and [a, a+ ω2] is

1

2πi

∫
[a+ω1,a+ω1+ω2]

wf ′(w)

f(w)
dw− 1

2πi

∫
[a,a+ω2]

wf ′(w)

f(w)
dw

= ω1
1

2πi

∫
[a,a+ω2]

f ′(w)

f(w)
dw.

(3)

Note that
1

2πi

∫
[a,a+ω2]

f ′(w)

f(w)
dw (4)

equals 1/2πi times the difference of the value of log f(w) at a + ω2 and at a
when w runs along [a, a+ω2]. Since f(w) has the same value at a as at a+ω2,
the difference of the value of log f(w) at a + ω2 and at a when z runs along
[a, a+ω2] must be 2πi times an integer. Therefore (4) is an integer and (3) is
a period of f . Likewise

1

2πi

∫
[a,a+ω1]

wf ′(w)

f(w)
dw − 1

2πi

∫
[a+ω2,a+ω1+ω2]

wf ′(w)

f(w)
dw

is also a period of f .

5. (Differential Geometry)

(a) Compute Hk
dR(Rn \ {0}) for all k.



(b) Show that the (n− 1)-form

η =
1

||x||n
n∑

i=1

(−1)i−1xidx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

is closed on Rn \ {0} and
∫
Sn−1 η = Vol(Sn−1).

(c) Deduce that [η] generates Hn−1
dR (Rn \ {0}).

Solution.

(a) The space U := Rn \ {0} deformation retracts onto the unit sphere Sn−1

via the radial retraction

r : U → Sn−1, r(x) =
x

∥x∥
.

Hence U is homotopy equivalent to Sn−1, so de Rham cohomology agrees:

Hk
dR(U) ∼= Hk

dR(S
n−1).

Since

Hk
dR(S

n−1) ∼=


R k = 0,

R k = n− 1,

0 otherwise,

the same holds for U .

(b) Let Ω = dx1 ∧ · · · ∧ dxn be the standard volume form on Rn, and let

R =

n∑
i=1

xi
∂

∂xi

be the radial vector field. Then

ιRΩ =

n∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

so
η = ∥x∥−n ιRΩ.

Write r = ∥x∥. Then

dη = d(r−n) ∧ ιRΩ+ r−n d(ιRΩ).

By Cartan’s formula, d(ιRΩ) = LRΩ − ιR(dΩ) = LRΩ since dΩ = 0.
Moreover LRΩ = (divR)Ω = nΩ, so d(ιRΩ) = nΩ.

Next, d(r−n) = −nr−n−1dr. Since dr = r−1
∑n

i=1 xi dxi, we get

d(r−n) = −nr−n−2
n∑

i=1

xi dxi.



Let α =
∑n

i=1 xi dxi. It’s easy to see that

α ∧ ιRΩ = r2Ω.

Therefore

d(r−n) ∧ ιRΩ = −nr−n−2α ∧ ιRΩ = −nr−n−2 r2Ω = −nr−nΩ,

while
r−nd(ιRΩ) = r−n nΩ = nr−nΩ.

These cancel, hence dη = 0 on U .

On Sn−1 we have r = 1, so η|Sn−1 = ιRΩ|Sn−1 . Along the sphere, R
is the outward normal vector field, and contracting the ambient volume
form with the outward unit normal gives the induced oriented volume
form on the hypersurface. Hence η|Sn−1 is the standard volume form, so∫

Sn−1

η = Vol(Sn−1).

(c) We know Hn−1
dR (U) ∼= R, so it is one-dimensional. To show [η] ̸= 0, note

that if η = dβ on U , then by Stokes theorem∫
Sn−1

η =

∫
Sn−1

dβ =

∫
∂(Bn)

dβ =

∫
Bn

d(dβ) = 0,

contradicting
∫
Sn−1 η = Vol(Sn−1) ̸= 0. Hence [η] ̸= 0, and in a one-

dimensional vector space this means [η] is a generator.

6. (Real Analysis) Let f be a bounded real-valued function on X = [0, 1] ⊂ R,
and define a function ϕ : [1,∞) → R by

ϕ(p) = ∥f∥pLp(X).

Prove that ϕ is convex.

Solution. The exponential function is convex, so for any fixed a ≥ 0, the
function ψ(p) = ap is a convex function of p. This means that if we take any
p0, p1 ∈ [1,∞) and any t ∈ [0, 1], and set

p = (1− t)p0 + tp1,

then
|f(x)|p ≤ (1− t)|f(x)|p0 + t|f(x)|p1

for all x ∈ [0, 1]. (Take a = |f(x)| in the above.) Integrating this inequality
over [0, 1] gives

ϕ(p) ≤ (1− t)ϕ(p0) + tϕ(p1),

which says that ϕ is convex.


