

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday January 20, 2026 (Day 1)

1. (Algebra) In this question, \mathfrak{g} is a non-zero, finite-dimensional Lie algebra over \mathbb{C} .

- (a) Define the Killing form on \mathfrak{g} .
- (b) Characterize semisimplicity for \mathfrak{g} in terms of the Killing form.
- (c) The Lie algebra \mathfrak{g} is *nilpotent* if its lower central series terminates at $\{0\}$. Show that the Killing form of a nilpotent Lie algebra is zero.
- (d) Exhibit a 2-dimensional \mathfrak{g} that is neither semisimple nor nilpotent.

Solution.

- (a) The Killing form is the symmetric bilinear form $(a, b) = \text{tr}(\text{ad}(a)\text{ad}(b))$.
- (b) The Lie algebra is semisimple if and only if the Killing form is non-degenerate.
- (c) In a nilpotent Lie algebra, the subalgebra $[\mathfrak{g}, [\mathfrak{g}, \dots [\mathfrak{g}, \mathfrak{g}] \dots]]$ is eventually zero. In particular $[x, [y, [x, [y, \dots, [x, [y, z]] \dots]]]$ is zero for all x and y and z eventually; which is to say that $(\text{ad}(x)\text{ad}(y))^n z$ is eventually zero. That is (since \mathfrak{g} is finite-dimensional), $\text{ad}(x)\text{ad}(y)$ is nilpotent. Its trace is therefore zero.
- (d) The Lie algebra of traceless upper-triangular 2-by-2 matrices has a Killing form of rank 1. (Its kernel is the 1-dimensional subalgebra of diagonal, traceless matrices.)

2. (Algebraic Geometry) Let $\Lambda \subseteq \mathbb{P}^6$ be a fixed 3-plane and let $\mathbb{G}(4, 6)$ be the Grassmannian of 4-planes in \mathbb{P}^6 . Let

$$\Sigma = \{ \Gamma : \dim(\Gamma \cap \Lambda) \geq 2 \} \subseteq \mathbb{G}(4, 6).$$

Show that Σ is irreducible and compute the dimension of Σ .

Solution. Consider the incidence variety

$$\Phi = \{(A, B) : A \subseteq B\} \subseteq \mathbb{G}(2, 3) \times \mathbb{G}(4, 6)$$

where we have identified $\mathbb{G}(2, 3)$ with the Grassmannian of 2-planes in $\Lambda \cong \mathbb{P}^3$ contained in \mathbb{P}^6 . The projection $\pi_1 : \Phi \rightarrow \mathbb{G}(2, 3)$ is surjective. The fiber $\pi_1^{-1}(A)$ over any $A \in \mathbb{G}(2, 3)$ is the set of 5-dimensional subspaces of a 7-dimensional vector space V containing a 3-dimensional subspace A , or the set

of 2-dimensional subspaces of the 4-dimensional vector space V/A . In other words, π_1 has fibers $\mathbb{G}(1, 3)$ of dimension 4. Because $\mathbb{G}(2, 3)$ has dimension 3,

$$\dim(\Phi) = 3 + 4 = 7.$$

Moreover, Φ is irreducible because $\mathbb{G}(2, 3)$ is irreducible, and all fibers of π_1 are irreducible of the same dimension.

The second projection $\pi_2 : \Phi \rightarrow \mathbb{G}(4, 6)$ has image equal to Σ . There exist $B \in \Sigma \subseteq \mathbb{G}(4, 6)$ with $\dim(B \cap \Lambda) = 2$, and the fiber $\pi_2^{-1}(B)$ consists of a single point $(B \cap \Lambda, B) \in \mathbb{G}(2, 3) \times \mathbb{G}(4, 6)$ for any such B . By upper-semicontinuity of fiber dimension, π_2 is generally one-to-one onto Σ , and

$$\dim(\Sigma) = \dim(\Phi) = 7.$$

Finally, Σ is irreducible because it is the image of an irreducible projective variety Φ .

3. (Algebraic Topology) Let $F_2 = \langle a, b \rangle$ denote the free group on two letters a, b . Consider the homomorphism $f : F_2 \rightarrow \mathbb{Z}/2\mathbb{Z}$ defined by $f(a) = f(b) = 1$.

- (a) Draw the cover of $S^1 \vee S^1$ corresponding to the subgroup $\ker(f)$ of $\pi_1(S^1 \vee S^1) \cong F_2$.
- (b) There is a group isomorphism $\ker(f) \cong F_r$ for some $r \geq 1$, where F_r denotes the free group on r letters. Determine r .

Solution.

- (a) The subgroup $\ker(f)$ has generators

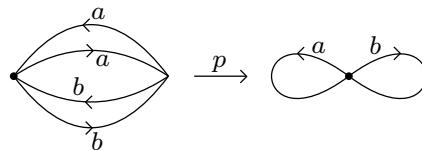
$$\ker(f) = \langle a^2, b^2, ab \rangle.$$

To see this, first observe that $\ker(f)$ is the subgroup of elements of even word length, so it suffices to show that any word w of even length in F_2 is contained in $\langle a^2, b^2, ab \rangle$. First, if w has length 2 then w is one of

$$a^2, \quad b^2, \quad ab, \quad ba = b^2(ab)^{-1}a^2, \quad a^{-1}b = a^{-2}(ab), \quad ab^{-1} = (ab)b^{-2},$$

or their inverses. Therefore, $\langle a^2, b^2, ab \rangle$ contains any word of length 2, and hence any word of even length.

Consider the following cover $p : X \rightarrow S^1 \vee S^1$



Contracting one of the edges of X shows that X is homotopy equivalent to a wedge of three circles and that three generators of $\pi_1(X) \cong F_3$ have images a^2 , ab , and b^2 . Therefore, $p_*(\pi_1(X)) = \ker(f)$.

(b) Let $p : X \rightarrow S^1 \vee S^1$ be the cover corresponding to $\ker(f)$. The solution to part (a) shows that X is homotopy equivalent to $S^1 \vee S^1 \vee S^1$, and so $\pi_1(X) \cong F_3$. Recall that $p_* : \pi_1(X) \rightarrow \pi_1(S^1 \vee S^1)$ is injective and has image $\ker(f)$ by construction, and hence

$$\ker(f) \cong F_3.$$

4. (Complex Analysis) Prove that

$$\sum_{n \geq 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$

by applying the residue theorem to the meromorphic function

$$f(z) = \frac{\pi \cot(\pi z)}{z^2}$$

integrated over the boundary of the rectangle R_N with vertices $\pm(N + \frac{1}{2}) \pm i(N + \frac{1}{2})$, and letting $N \rightarrow \infty$.

Solution. The function $\pi \cot(\pi z)$ has simple poles at all integers $n \in \mathbb{Z}$ with residue 1, so for any non-zero integer n ,

$$\text{Res}_{z=n} \frac{\pi \cot(\pi z)}{z^2} = \frac{1}{n^2}.$$

At $z = 0$,

$$\frac{\pi \cot(\pi z)}{z^2} = z^{-3} - \frac{\pi^2}{3} z^{-1} + O(z),$$

so

$$\text{Res}_{z=0} \frac{\pi \cot(\pi z)}{z^2} = -\frac{\pi^2}{3}.$$

Therefore, applying the residue theorem, we have

$$\frac{1}{2\pi i} \int_{\partial R_N} f(z) dz = \sum_{n=-N}^N \text{Res}_{z=n} f(z) = -\frac{\pi^2}{3} + 2 \left(\sum_{n=1}^N \frac{1}{n^2} \right),$$

and thus it suffices to show that

$$\lim_{N \rightarrow \infty} \int_{\partial R_N} f(z) dz = 0$$

to conclude the proof.

For this, observe that there is a uniform upper bound C of $|\pi \cot(\pi z)|$ on ∂R_N , independent of N . For instance, we can take

$$C = \pi \frac{1 + e^{-\pi}}{1 - e^{-\pi}},$$

since

- on the vertical sides,

$$\left| \pi \cot \left(\pi \left(\pm \left(N + \frac{1}{2} \right) + it \right) \right) \right| = |\pi \cot(\frac{\pi}{2} + i\pi t)| = |\pi \tanh(\pi t)| \leq \pi,$$

- and on the horizontal sides,

$$\left| \pi \cot \left(\pi \left(t \pm i \left(N + \frac{1}{2} \right) \right) \right) \right| = \pi \left| \frac{e^{2\pi i(t \pm i(N + \frac{1}{2}))} + 1}{e^{2\pi i(t \pm i(N + \frac{1}{2}))} - 1} \right| \leq \pi \frac{1 + e^{-\pi(2N+1)}}{1 - e^{-\pi(2N+1)}} \leq \pi \frac{1 + e^{-\pi}}{1 - e^{-\pi}}.$$

Hence, since the perimeter of ∂R_N is $8(N + \frac{1}{2})$,

$$\left| \int_{\partial R_N} f(z) dz \right| \leq \int_{\partial R_N} |f(z)| \leq \frac{C}{(N + \frac{1}{2})^2} \cdot 8(N + \frac{1}{2}) = \frac{8C}{N + \frac{1}{2}} \xrightarrow{N \rightarrow \infty} 0.$$

5. (Differential Geometry) Prove that

$$M := \{x_1^2 + x_2^2 - x_3^2 - x_4^4 = 0\} \cap \{x_1^2 + x_2^2 + x_3^2 + x_4^4 = 4\}$$

is a 2-dimensional submanifold of \mathbb{R}^4 . Compute the tangent space of M at the point $(1, 1, -1, -1)$.

Solution. Let $F : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ be the smooth function given by

$$F(x_1, x_2, x_3, x_4) = (x_1^2 + x_2^2 - x_3^2 - x_4^4, x_1^2 + x_2^2 + x_3^2 + x_4^4 - 4).$$

Observe that $M = F^{-1}(0)$, so that it will be enough to show that 0 is a regular value of F . We have

$$\nabla F(x_1, x_2, x_3, x_4) = \begin{bmatrix} 2x_1 & 2x_2 & -2x_3 & -4x_4^3 \\ 2x_1 & 2x_2 & 2x_3 & 4x_4^3 \end{bmatrix}.$$

But, if $(x_1, x_2, x_3, x_4) \in M$, then $x_1^2 + x_2^2 = 2$ so that at most one of x_1 and x_2 vanishes. Likewise, we have $x_3^2 + x_4^4 = 2$, so that at most one of x_3 and x_4 vanishes. It follows that the above matrix has full rank on every point of M , which proves the first part.

The tangent space of the submanifold M at the point $p = (1, 1, -1, -1)$ is the kernel of the linear map

$$\nabla F(1, 1, -1, -1) = \begin{bmatrix} 2 & 2 & 2 & 4 \\ 2 & 2 & -2 & -4 \end{bmatrix},$$

which is spanned by the two vectors

$$\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 0 \\ 2 \\ -1 \end{bmatrix} \in T_p \mathbb{R}^4 \cong \mathbb{R}^4.$$

6. (Real Analysis) Let $n \geq 3$ be an integer and ω be the volume of the unit sphere in \mathbb{R}^n . Let

$$K(x) = \frac{-1}{(n-2)\omega} \frac{1}{|x|^{n-2}}.$$

Let δ_0 be the Dirac delta in \mathbb{R}^n which means that the value of δ_0 at a C^∞ function f with compact support on \mathbb{R}^N is equal to $f(0)$. Let

$$\Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

the Laplacian on \mathbb{R}^n with coordinates x_1, \dots, x_n . Prove the identity

$$\Delta K = \delta_0$$

as distributions on \mathbb{R}^n . In other words, for any C^∞ function f on \mathbb{R}^n with compact support the identity

$$\int_{\mathbb{R}^n} K(x)(\Delta f)(x) = f(0)$$

holds.

Solution. First, straightforwardly verify that

$$\Delta \frac{1}{|x|^{n-2}} \equiv 0$$

on $\mathbb{R}^n - \{0\}$ as follows. From

$$\frac{\partial}{\partial x_j} \frac{1}{|x|^{n-2}} = \frac{\partial}{\partial x_j} \frac{1}{(|x|^2)^{\frac{n-2}{2}}} = -\frac{n-1}{2} \frac{2x_j}{(|x|^2)^{\frac{n}{2}}}$$

and

$$\frac{\partial^2}{\partial x_j^2} \frac{1}{|x|^{n-2}} = -\frac{n-1}{2} \frac{2}{(|x|^2)^{\frac{n}{2}}} + \frac{(n-1)n}{4} \frac{(2x_j)^2}{(|x|^2)^{\frac{n+2}{2}}}$$

on $\mathbb{R}^n - \{0\}$ it follows that

$$\sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} \frac{1}{|x|^{n-2}} = -\frac{(n-1)n}{(|x|^2)^{\frac{n}{2}}} + \frac{(n-1)n}{(|x|^2)^{\frac{n}{2}}} = 0$$

on $\mathbb{R}^n - \{0\}$. For $\eta > 0$ let $B(\eta)$ be the closed ball of radius η in \mathbb{R}^n centered at the origin. Apply the divergence theorem to

$$\operatorname{div}(f \operatorname{grad} K) - \operatorname{div}(K \operatorname{grad} f) = (f \Delta K) - (K \Delta f) = -(K \Delta f)$$

on $\mathbb{R}^n - B(\eta)$, where div is the divergence operator and grad is the gradient operator. Let $\vec{\nu}$ be the unit outward-pointing normal vector of the boundary $\partial B(\eta)$ of $B(\eta)$. Then

$$\int_{\partial B(\eta)} f(\operatorname{grad} K) \cdot \vec{\nu} - \int_{\partial B(\eta)} K(\operatorname{grad} f) \cdot \vec{\nu} = - \int_{\mathbb{R}^n - B(\eta)} K \Delta f.$$

Since $K = O\left(\frac{1}{|z|^{n-2}}\right)$ and the volume of $\partial B(\eta)$ is $0(\eta^{n-1})$ and f is C^∞ , as $\eta \rightarrow 0$ the term

$$\int_{\partial B(\eta)} K(\operatorname{grad} f) \cdot \vec{\nu}$$

goes to zero. Since

$$(\operatorname{grad} K) \cdot \vec{\nu} = \frac{-1}{\omega \eta^{n-1}} + (\text{lower order terms})$$

and the volume of $\partial B(\eta)$ is $\omega \eta^{n-1}$, it follows that as $\eta \rightarrow 0$ the term

$$\int_{\partial B(\eta)} f(\operatorname{grad} K) \cdot \vec{\nu}$$

approaches $-f(0)$. This finishes the proof that

$$f(0) = \int_{\mathbb{R}^n} K \Delta f.$$

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday January 21, 2026 (Day 2)

1. (Algebra) Let G be a non-abelian group of order 12. Show that G has either 4 or 6 irreducible complex representations, and show that both of these possibilities do occur.

Solution. The order of G is the sum of the squares of the dimensions of the irreducible representations; and the number of 1-dimensional representations is the order of the abelianization $G/[G, G]$, which must divide $|G|$. Going systematically we find that the only ways to write 12 as a sum of squares with the constraint that the number of 1's divides 12 are the following:

$$\begin{aligned} 12 &= 1^2 + \cdots + 1^2, \quad (12 \text{ times}), \\ 12 &= 3^2 + 1^2 + 1^2 + 1^2 \\ 12 &= 2^2 + 2^2 + 1^2 + 1^2 + 1^2. \end{aligned}$$

In the first case, G is abelian. So for non-abelian G , only the last two possibilities are feasible, and there are either 4 or 6 irreducible representations, whose dimensions are either $(3, 1, 1, 1)$ or $(2, 2, 1, 1, 1)$ respectively.

Consider now the group A_4 , which has order 12. It has four conjugacy classes, represented by the elements e , $(12)(34)$, (123) and (132) . This group therefore has four irreducible representations, because the number of irreducible representations is equal to the number of conjugacy classes. Alternatively, A_4 is the group of rotational symmetries of the regular tetrahedron, so it has an irreducible 3-dimensional representation, and therefore the representations must be $(3, 1, 1, 1)$ by the above classification. Alternatively again, the abelianization has order 3, so there must be exactly three 1-dimensional representations, again implying that it must be $(3, 1, 1, 1)$.

Consider next the group dihedral group D of order 12, presented as $\langle r, s \mid r^6 = s^2 = e, srs = r^{-1} \rangle$ (so that r is a rotation through $2\pi/6$ in the plane and s is a reflection, in the usual way). There are 6 conjugacy classes, represented by the elements e , r , r^2 , r^3 , s and rs . (As symmetries of the hexagon, the latter two are reflections in a line through vertices and a line through midpoints of edges, respectively.) The group therefore has 6 irreducible representations. Alternatively, the abelianization has order 4, implying that there are 4 abelian characters and we must be in the case $(2, 2, 1, 1, 1)$ by the classification.

2. (Algebraic Geometry)

(a) For each ring R below, determine whether R is the coordinate ring of an affine variety (not necessarily irreducible).

- $R = \mathbb{C}[x]/(x^3 - 2x^2 + x)$.
- $R = \mathbb{C}[x]/(x^3 - 1)$.

(b) Consider the following affine varieties

$$X = V(xy(x - y)) \subseteq \mathbb{A}_{\mathbb{C}}^2, \quad Y = V(xy, yz, xz) \subseteq \mathbb{A}_{\mathbb{C}}^3.$$

Are X and Y isomorphic varieties?

Solution.

(a) The ring $\mathbb{C}[x]/(x^3 - 2x^2 + x)$ is not the coordinate ring of any affine variety. Factor

$$x^3 - 2x^2 + x = x(x - 1)^2$$

and observe that $x(x(x - 1)^2) = (x^2 - x)^2$ is contained in the ideal $(x^3 - 2x^2 + x) \subseteq \mathbb{C}[x]$, while $x^2 - x$ is not. Therefore, $\mathbb{C}[x]/(x^3 - 2x^2 + x)$ has nilpotent elements, and so is not the coordinate ring of any affine variety.

For the ring $\mathbb{C}[x]/(x^3 - 1)$, consider the factorization

$$x^3 - 1 = (x - 1)(x - \zeta_3)(x - \zeta_3^2)$$

where $\zeta_3 = e^{\frac{2\pi i}{3}} \in \mathbb{C}$. Because $x^3 - 1$ is square-free, $\mathbb{C}[x]/(x^3 - 1)$ has no nilpotent elements; for example, there is a ring isomorphism

$$\mathbb{C}[x]/(x^3 - 1) \cong \mathbb{C}^3$$

by the Chinese remainder theorem. By the Nullstellensatz, $\mathbb{C}[x]/(x^3 - 1)$ is the coordinate ring of an affine variety. (In particular, it is the coordinate ring of the set of three points $\{1, \zeta_3, \zeta_3^2\}$ in $\mathbb{A}_{\mathbb{C}}^1$.)

(b) Although both X, Y are unions of three lines intersecting at one point, the varieties X and Y are not isomorphic. To see this, observe that both X and Y have unique singular points, at $(0, 0)$ and $(0, 0, 0)$ respectively. We will show that the Zariski tangent space $T_{(0,0)}X$ is 2-dimensional, while $T_{(0,0,0)}Y$ is 3-dimensional. (In fact, the latter computation shows that Y has no embedding into $\mathbb{A}_{\mathbb{C}}^2$ at all.)

Consider the maximal ideal of functions of X vanishing at $(0, 0)$

$$\mathfrak{m} = (x, y) \subseteq \mathbb{C}[x, y]/(xy(x - y)).$$

Then $\mathfrak{m}^2 = (x^2, xy, y^2) \subseteq \mathbb{C}[x, y]/(xy(x - y))$. The elements x, y are linearly independent in $\mathfrak{m}/\mathfrak{m}^2$: if $ax + by \in \mathfrak{m}^2$ for some $a, b \in \mathbb{C}$ then $ax + by$ is contained in the ideal (x^2, xy, y^2) as an element of $\mathbb{C}[x, y]$, meaning $a = b = 0$. Therefore, $\dim(\mathfrak{m}/\mathfrak{m}^2) = 2$.

Now consider the maximal ideal of functions of Y vanishing at $(0, 0, 0)$

$$\mathfrak{m} = (x, y, z) \subseteq \mathbb{C}[x, y, z]/(xy, yz, xz).$$

Then $\mathfrak{m}^2 = (x^2, y^2, z^2) \subseteq \mathbb{C}[x, y, z]/(xy, yz, xz)$. The elements x, y, z are linearly independent in $\mathfrak{m}/\mathfrak{m}^2$: if $ax + by + cz \in \mathfrak{m}^2$ for some $a, b, c \in \mathbb{C}$ then $ax + by + cz$ is contained in the ideal $(x, y, z)^2$ as an element of $\mathbb{C}[x, y, z]$, meaning $a = b = c = 0$. Therefore, $\dim(\mathfrak{m}/\mathfrak{m}^2) = 3$.

3. (Algebraic Topology) Consider $S^2 \times S^2$ with the product orientation. Let $u \in H^2(S^2; \mathbb{Z}) \cong \mathbb{Z}$ be the positive generator, and set

$$x := \pi_1^* u, \quad y := \pi_2^* u \in H^2(S^2 \times S^2; \mathbb{Z}),$$

where $\pi_i : S^2 \times S^2 \rightarrow S^2$ denotes the projection to the i -th factor. Suppose $f : S^2 \times S^2 \rightarrow S^2 \times S^2$ is a continuous map of degree 1 with no fixed points. Prove that

$$f^* x = -x, \quad f^* y = -y$$

in $H^2(S^2 \times S^2; \mathbb{Z})$.

Solution. By Künneth formula, the cohomology ring of $S^2 \times S^2$ is

$$H^*(S^2 \times S^2; \mathbb{Z}) \cong \mathbb{Z}[x]/(x^2) \otimes \mathbb{Z}[y]/(y^2).$$

In particular, its cohomology groups are

$$H^0(S^2 \times S^2; \mathbb{Z}) \cong \mathbb{Z}\langle 1 \rangle, \quad H^2(S^2 \times S^2; \mathbb{Z}) \cong \mathbb{Z}\langle x \rangle \oplus \mathbb{Z}\langle y \rangle, \quad H^4(S^2 \times S^2; \mathbb{Z}) \cong \mathbb{Z}\langle xy \rangle,$$

and zero otherwise. Write

$$f^* x = ax + by, \quad f^* y = cx + dy, \quad a, b, c, d \in \mathbb{Z}.$$

Then,

$$\begin{aligned} 0 &= f^*(x^2) = (ax + by)(ax + by) = 2abxy, \\ 0 &= f^*(y^2) = (cx + dy)(cx + dy) = 2cdxy, \end{aligned}$$

so

$$ab = 0, \quad cd = 0. \tag{1}$$

Moreover,

$$f^*(xy) = (ax + by)(cx + dy) = (ad + bc)xy,$$

so from the degree-1 assumption,

$$ad + bc = 1. \tag{2}$$

It follows from (1) and (2) that, either

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{pmatrix}.$$

Finally, the Lefschetz number of f is

$$\begin{aligned} L(f) &= \sum_{k \geq 0} (-1)^k \text{Tr}(f^*|_{H^k(S^2 \times S^2; \mathbb{Q})}) \\ &= 1 + (a + d) + (ad + bc) = 2 + a + d, \end{aligned}$$

so from the fixed-point-free assumption,

$$a + d = -2,$$

meaning

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

as desired.

4. (Complex Analysis) Let $\mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disk. Suppose $f : \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic function with two distinct fixed points $a \neq b \in \mathbb{D}$. Prove that $f(z) = z$ for all $z \in \mathbb{D}$.

Solution. Let

$$\begin{aligned} \phi_a : \mathbb{D} &\rightarrow \mathbb{D} \\ z &\mapsto \frac{z - a}{1 - \bar{a}z} \end{aligned}$$

be the standard biholomorphic automorphism of \mathbb{D} sending a to 0, with inverse $\phi_a^{-1} : w \mapsto \frac{w+a}{1+\bar{a}w}$. Define

$$f_0 := \phi_a \circ f \circ \phi_a^{-1}.$$

Then $f_0(0) = 0$ and $f_0(\phi_a(b)) = \phi_a(b) \neq 0$.

Recall that Schwarz lemma states that any holomorphic map $g : \mathbb{D} \rightarrow \mathbb{D}$ with $g(0) = 0$ must satisfy

$$|g(z)| \leq |z| \quad \text{for all } z \in \mathbb{D},$$

and moreover, if the equality holds at some nonzero point, then g must be a rotation $g(z) = e^{i\theta}z$, for some θ . It follows that f_0 is the identity map, and so is f .

5. (Differential Geometry) Consider the disk $D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with the metric

$$g = \frac{1}{1 - (x^2 + y^2)} (dx \otimes dx + dy \otimes dy).$$

Compute the Levi-Civita connection of the corresponding Riemann manifold.

Solution. Recall that $\nabla_{\partial_i} \partial_j = \sum_k \Gamma_{ij}^k \partial_k$, where

$$\Gamma_{ij}^k = \frac{1}{2} g^{kk} (\partial_i g_{kj} + \partial_j g_{ki} - \partial_k g_{ij}),$$

as g is diagonal. We find

$$\begin{aligned}\Gamma_{xx}^x &= \frac{x}{1 - (x^2 + y^2)}, & \Gamma_{yy}^y &= \frac{y}{1 - (x^2 + y^2)}, \\ \Gamma_{xx}^y &= \frac{-y}{1 - (x^2 + y^2)}, & \Gamma_{yy}^x &= \frac{-x}{1 - (x^2 + y^2)}, \\ \Gamma_{xy}^x &= \Gamma_{yx}^x = \frac{y}{1 - (x^2 + y^2)}, & \Gamma_{xy}^y &= \Gamma_{yx}^y = \frac{x}{1 - (x^2 + y^2)}.\end{aligned}$$

6. (Real Analysis) Suppose that f_j ($j = 1, 2, \dots$) and f are real functions on $[0, 1]$. We say that $f_j \rightarrow f$ in measure if and only if for any $\varepsilon > 0$ we have

$$\lim_{j \rightarrow \infty} \mu \{ x \in [0, 1] : |f_j(x) - f(x)| > \varepsilon \} = 0,$$

where μ is the Lebesgue measure on $[0, 1]$. In this problems, all functions are assumed to be in $L^1[0, 1]$.

(a) Suppose that $f_j \rightarrow f$ in measure. Does it follow that

$$\lim_{j \rightarrow \infty} \int |f_j(x) - f(x)| \, dx = 0.$$

Prove it or give a counterexample.

(b) Suppose that $f_j \rightarrow f$ in measure. Does it follow that $f_j(x) \rightarrow f(x)$ almost everywhere in $[0, 1]$? Prove it or give a counter example.

(c) Suppose that $f_j(x) \rightarrow f(x)$ almost everywhere in $[0, 1]$. Does it follow that $f_j \rightarrow f$ in measure? Prove it or give a counter example.

Solution.

(a) No. For a counterexample, take $f = 0$ and take f_j to be j times the characteristic function of $[0, 1/j]$. Then $f_j - f$ is non-zero on a set of measure $1/j$ while $\int |f_j - f| = 1$.

(b) No. For $n \geq 0$ and $j = 2^n + k$ with $0 \leq k < 2^n$, let f_j be the characteristic function of the interval $2^{-n}[k, k+1]$. Let $f = 0$. Then $|f - f_j|$ is supported in an interval of measure at most 2^{-n} for $j \geq 2^n$, so f_j converges to f in measure. But f_j does not converge almost everywhere to 0, because for every $x \in [0, 1]$, the value $f_j(x)$ is 1 infinitely often.

(c) Yes. For clarity, we can take $f = 0$ (subtracting the original f from everything) and we may assume $f_j(x) \rightarrow 0$ for all x by modifying the functions on a null set. To show convergence in measure, fix any $\varepsilon > 0$. Let $E_j = \{ x : |f_j(x)| > \varepsilon \}$, let

$$S_j = \bigcup_{k \geq j} E_k,$$

and let s_j be the characteristic function of S_j . Pointwise convergence implies that, for all x , the value $s_j(x)$ is eventually 0. By the dominated convergence theorem then, $\int |s_j| \rightarrow 0$. In other words, the measure of S_j tends to zero as $j \rightarrow \infty$, and *a fortiori* the same holds of the measure of E_j . Since ϵ was arbitrary, it follows that $f_j \rightarrow 0$ in measure.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday January 22, 2026 (Day 3)

1. (Algebra) Let k be a field. Let K/k be a finite separable extension, and L/k be an arbitrary extension. Prove that the commutative k -algebra $K \otimes_k L$ splits as a finite product of finite separable extensions of L .

Hint. You may find it useful to apply the theorem of the primitive element.

Solution.

By the primitive element theory, there exists an irreducible separable polynomial $f \in k[x]$ such that $K \cong k[x]/f$ as fields. It is therefore enough to analyze the structure of the commutative k -algebra $K \otimes_k L \cong L[x]/f$. In order to do so, let

$$f(x) = f_1(x) \cdots \cdots f_r(x)$$

be the factorization of f into monic irreducible polynomials in $L[x]$. As f is separable, the polynomials f_1, \dots, f_r are pairwise relatively prime. It follows from the Chinese remainder theorem that

$$L[x]/f \cong \prod_{i=1}^r L[x]/f_i$$

as commutative L -algebras. But $L[x]/f_i$ is a finite separable extensions of L as f_i is irreducible and separable. This concludes the proof.

2. (Algebraic Geometry) Let $X = \text{Bl}_0(\mathbb{A}^2)$ be the blow-up of \mathbb{A}^2 at the origin.

- (a) Using local coordinates, identify the exceptional divisor E and show that $E \simeq \mathbb{P}^1$.
- (b) Show that the strict transform of the curve $C = \{(x, y) \in \mathbb{A}^2 \mid y^2 = x^3\}$ is smooth.

Solution.

- (a) We have

$$X \subset \mathbb{A}^2 \times \mathbb{P}^1, \quad X = \{((x, y), [s : t]) \mid xt = ys\}.$$

It follows that the fiber over $(0, 0) \in \mathbb{A}^2$ is \mathbb{P}^1 .

- (b) The *strict transform* $\tilde{C} \subset X$ is the closure of $\pi^{-1}(C \setminus \{0\})$, where $\pi: \text{Bl}_0(\mathbb{A}^2) \rightarrow \mathbb{A}^2$ is the natural morphism.

Let us cover X by two open charts and verify that the intersection of \tilde{C} with both of them is smooth. We have

$$X = U_s \cup U_t,$$

where U_s consists of $((x, y), [s : t]) \in X$ such that $s \neq 0$ and U_t consists of $((x, y), [s : t]) \in X$ such that $t \neq 0$.

On U_s we have $y = \frac{xt}{s}$ and setting $v := \frac{t}{s}$ we get $y = xv$. Now C is given by the equation $f = y^2 - x^3 = 0$. Substituting $y = xv$ we see that f becomes $x^2v^2 - x^3 = x^2(v^2 - x)$, so the strict transform of C being intersected with U_s is given (in coordinates (x, y, v)) by the equation $v^2 - x = 0$ so is indeed smooth.

On U_t we have $x = y\frac{s}{t}$ so $x = yu$, where $u = \frac{s}{t}$. Substituting $x = yu$ in the equation defining f we obtain $y^2 - y^3u^3$, so the strict transform of C being intersected with U_t is given by the equation $1 - yu^3 = 0$ and also defines a smooth variety.

3. (Algebraic Topology) Let $n \geq 1$. Compute the homotopy groups $\pi_k(\mathbb{CP}^n)$, for each $1 \leq k \leq 2n$.

Solution. Using the Serre fibration

$$S^1 \hookrightarrow S^{2n+1} \rightarrow \mathbb{CP}^n,$$

we get a long exact sequence in homotopy groups

$$\cdots \rightarrow \pi_k(S^{2n+1}) \rightarrow \pi_k(\mathbb{CP}^n) \rightarrow \pi_{k-1}(S^1) \rightarrow \pi_{k-1}(S^{2n+1}) \rightarrow \cdots.$$

Since $k < 2n+1$, the portion of the long exact sequence shown above becomes

$$0 \rightarrow \pi_k(\mathbb{CP}^n) \rightarrow \pi_{k-1}(S^1) \rightarrow 0,$$

and thus

$$\pi_k(\mathbb{CP}^n) \cong \pi_{k-1}(S^1) \cong \begin{cases} \mathbb{Z} & \text{if } k = 2, \\ 0 & \text{if } k = 1 \text{ or } 3 \leq k \leq 2n. \end{cases}$$

4. (Complex Analysis) Suppose f is a doubly-periodic meromorphic function on \mathbb{C} with periods ω_1, ω_2 which are \mathbb{R} -linearly independent. Let $a \in \mathbb{C}$ such that the sides of the parallelogram Ω with vertices $a, a + \omega_1, a + \omega_2, a + \omega_1 + \omega_2$ do not contain any zeroes or poles of f . Let b_1, \dots, b_p (respectively a_1, \dots, a_q) be the zeroes (respectively the poles) of f with multiplicities k_1, \dots, k_p (respectively ℓ_1, \dots, ℓ_q) inside Ω . By considering the residues of the function

$$\frac{1}{2\pi i} \frac{wf'(w)}{f(w)} dw$$

or otherwise, prove that

$$\left(\sum_{\mu=1}^p k_\mu b_\mu \right) - \left(\sum_{\nu=1}^q \ell_\nu c_\nu \right)$$

belongs to $\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. In other words, in a fundamental parallelogram the sum of the coordinates of the zeroes of an elliptic function equals the sum of the coordinates of its poles modulo a period.

Solution. It follows from the computation of residues that the integral of

$$\frac{1}{2\pi i} \frac{wf'(w)}{f(w)} dw$$

over the boundary $\partial\Omega$ of the fundamental parallelogram Ω is equal to

$$\left(\sum_{\mu=1}^p k_\mu b_\mu \right) - \left(\sum_{\nu=1}^q \ell_\nu c_\nu \right).$$

We compute the boundary integral over $\partial\Omega$ by integrating over the two pairs of opposite sides of Ω . The sum of the integrals over the opposite sides $[a + \omega_1, a + \omega_1 + \omega_2]$ and $[a, a + \omega_2]$ is

$$\begin{aligned} \frac{1}{2\pi i} \int_{[a+\omega_1, a+\omega_1+\omega_2]} \frac{wf'(w)}{f(w)} dw - \frac{1}{2\pi i} \int_{[a, a+\omega_2]} \frac{wf'(w)}{f(w)} dw \\ = \omega_1 \frac{1}{2\pi i} \int_{[a, a+\omega_2]} \frac{f'(w)}{f(w)} dw. \end{aligned} \tag{3}$$

Note that

$$\frac{1}{2\pi i} \int_{[a, a+\omega_2]} \frac{f'(w)}{f(w)} dw \tag{4}$$

equals $1/2\pi i$ times the difference of the value of $\log f(w)$ at $a + \omega_2$ and at a when w runs along $[a, a + \omega_2]$. Since $f(w)$ has the same value at a as at $a + \omega_2$, the difference of the value of $\log f(w)$ at $a + \omega_2$ and at a when w runs along $[a, a + \omega_2]$ must be $2\pi i$ times an integer. Therefore (4) is an integer and (3) is a period of f . Likewise

$$\frac{1}{2\pi i} \int_{[a, a+\omega_1]} \frac{wf'(w)}{f(w)} dw - \frac{1}{2\pi i} \int_{[a+\omega_2, a+\omega_1+\omega_2]} \frac{wf'(w)}{f(w)} dw$$

is also a period of f .

5. (Differential Geometry)

(a) Compute $H_{\text{dR}}^k(\mathbb{R}^n \setminus \{0\})$ for all k .

(b) Show that the $(n - 1)$ -form

$$\eta = \frac{1}{\|x\|^n} \sum_{i=1}^n (-1)^{i-1} x_i dx_1 \wedge \dots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \dots \wedge dx_n$$

is closed on $\mathbb{R}^n \setminus \{0\}$ and $\int_{S^{n-1}} \eta = \text{Vol}(S^{n-1})$.

(c) Deduce that $[\eta]$ generates $H_{\text{dR}}^{n-1}(\mathbb{R}^n \setminus \{0\})$.

Solution.

(a) The space $U := \mathbb{R}^n \setminus \{0\}$ deformation retracts onto the unit sphere S^{n-1} via the radial retraction

$$r : U \rightarrow S^{n-1}, \quad r(x) = \frac{x}{\|x\|}.$$

Hence U is homotopy equivalent to S^{n-1} , so de Rham cohomology agrees:

$$H_{\text{dR}}^k(U) \cong H_{\text{dR}}^k(S^{n-1}).$$

Since

$$H_{\text{dR}}^k(S^{n-1}) \cong \begin{cases} \mathbb{R} & k = 0, \\ \mathbb{R} & k = n - 1, \\ 0 & \text{otherwise,} \end{cases}$$

the same holds for U .

(b) Let $\Omega = dx_1 \wedge \dots \wedge dx_n$ be the standard volume form on \mathbb{R}^n , and let

$$R = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$$

be the radial vector field. Then

$$\iota_R \Omega = \sum_{i=1}^n (-1)^{i-1} x_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n,$$

so

$$\eta = \|x\|^{-n} \iota_R \Omega.$$

Write $r = \|x\|$. Then

$$d\eta = d(r^{-n}) \wedge \iota_R \Omega + r^{-n} d(\iota_R \Omega).$$

By Cartan's formula, $d(\iota_R \Omega) = \mathcal{L}_R \Omega - \iota_R(d\Omega) = \mathcal{L}_R \Omega$ since $d\Omega = 0$. Moreover $\mathcal{L}_R \Omega = (\text{div } R)\Omega = n\Omega$, so $d(\iota_R \Omega) = n\Omega$.

Next, $d(r^{-n}) = -nr^{-n-1} dr$. Since $dr = r^{-1} \sum_{i=1}^n x_i dx_i$, we get

$$d(r^{-n}) = -nr^{-n-2} \sum_{i=1}^n x_i dx_i.$$

Let $\alpha = \sum_{i=1}^n x_i dx_i$. It's easy to see that

$$\alpha \wedge \iota_R \Omega = r^2 \Omega.$$

Therefore

$$d(r^{-n}) \wedge \iota_R \Omega = -nr^{-n-2} \alpha \wedge \iota_R \Omega = -nr^{-n-2} r^2 \Omega = -nr^{-n} \Omega,$$

while

$$r^{-n} d(\iota_R \Omega) = r^{-n} n \Omega = nr^{-n} \Omega.$$

These cancel, hence $d\eta = 0$ on U .

On S^{n-1} we have $r = 1$, so $\eta|_{S^{n-1}} = \iota_R \Omega|_{S^{n-1}}$. Along the sphere, R is the outward normal vector field, and contracting the ambient volume form with the outward unit normal gives the induced oriented volume form on the hypersurface. Hence $\eta|_{S^{n-1}}$ is the standard volume form, so

$$\int_{S^{n-1}} \eta = \text{Vol}(S^{n-1}).$$

(c) We know $H_{\text{dR}}^{n-1}(U) \cong \mathbb{R}$, so it is one-dimensional. To show $[\eta] \neq 0$, note that if $\eta = d\beta$ on U , then by Stokes theorem

$$\int_{S^{n-1}} \eta = \int_{S^{n-1}} d\beta = \int_{\partial(B^n)} d\beta = \int_{B^n} d(d\beta) = 0,$$

contradicting $\int_{S^{n-1}} \eta = \text{Vol}(S^{n-1}) \neq 0$. Hence $[\eta] \neq 0$, and in a one-dimensional vector space this means $[\eta]$ is a generator.

6. (Real Analysis) Let f be a bounded real-valued function on $X = [0, 1] \subset \mathbb{R}$, and define a function $\phi : [1, \infty) \rightarrow \mathbb{R}$ by

$$\phi(p) = \|f\|_{L^p(X)}^p.$$

Prove that ϕ is convex.

Solution. The exponential function is convex, so for any fixed $a \geq 0$, the function $\psi(p) = a^p$ is a convex function of p . This means that if we take any $p_0, p_1 \in [1, \infty)$ and any $t \in [0, 1]$, and set

$$p = (1 - t)p_0 + tp_1,$$

then

$$|f(x)|^p \leq (1 - t)|f(x)|^{p_0} + t|f(x)|^{p_1}$$

for all $x \in [0, 1]$. (Take $a = |f(x)|$ in the above.) Integrating this inequality over $[0, 1]$ gives

$$\phi(p) \leq (1 - t)\phi(p_0) + t\phi(p_1),$$

which says that ϕ is convex.