QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday September 2, 2025 (Day 1)

- 1. (Algebra) Prove that every group of size 45 is abelian.
- **2.** (Algebraic Geometry) Let $X \subset \mathbb{A}^3_{\mathbb{C}}$ be a subvariety defined by the equation $xy = z^2$.
 - (a) Show that X is not smooth, compute the dimension of the Zariski tangent space at $(0,0,0) \in X$.
 - (b) Consider the blow up $Y := Bl_{(0,0,0)} X$ at the point (0,0,0). Show that Y is smooth.
- **3.** (Algebraic Topology) Show that $S^2 \vee S^4$ and \mathbb{CP}^2 are not homotopy equivalent.
- 4. (Complex Analysis) Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx.$$

- 5. (Differential Geometry) Let G be the Lie group SU(N).
 - (a) Show that a left-invariant one-form on G is never closed, unless it is zero.
 - (b) In the case N=2, show that every left-invariant two-form on G is closed.
- **6.** (Real Analysis) Let H and K be two Hilbert spaces. A set Q of bounded linear transformations $H \to K$ is weakly bounded if for every $f \in H$ and $g \in K$, there exists a scalar α such that $|\langle Af, g \rangle| \leq \alpha$ for all $A \in Q$.

Prove that every weakly bounded set of bounded linear transformations between Hilbert spaces is bounded.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday September 3, 2025 (Day 2)

- 1. (Algebra) Let $G \cong S_4$ be the group of rotational symmetries of the cube in \mathbb{R}^3 , and let V be its (complexified) geometric 3-dimensional irreducible representation. Let π be the complex representation of G arising from the permutation representation on the set of 4-element subsets of the 8 vertices. Write down the characters of the two representations π and V. What is the multiplicity of the irreducible representation V in π ?
- **2.** (Algebraic Geometry) By considering divisors in the canonical class, or otherwise, show that every smooth, complex projective curve C of genus 2 admits a regular map $C \to \mathbb{CP}^1$ of degree 2.
- **3.** (Algebraic Topology) Let $T = \mathbb{R}^2/\mathbb{Z}^2$ be a torus. For any homeomorphism $\varphi: T \to T$, consider the mapping torus M_{φ} , which is defined to be the quotient of $T \times [0,1]$ obtained by identifying each point (x,1) with $(\varphi(x),0)$. Compute $\pi_n(M_{\varphi})$ for all $n \geq 2$.
- 4. (Complex Analysis) Find a conformal map from the region

$$\Omega = \{z : |z - 1| > 1 \text{ and } |z - 2| < 2\} \subset \mathbb{C}$$

onto the upper half-plane $\mathbb{H} = \{z : \Im(z) > 0\}.$

- 5. (Differential Geometry) Let $V_k(\mathbb{R}^n) = \{A \in M_{n \times k}(\mathbb{R}) \mid A^\top A = I_k\}.$
 - (a) Show that $V_k(\mathbb{R}^n)$ is a smooth submanifold of $M_{n\times k}(\mathbb{R})$ and compute its dimension.
 - (b) Show that $T_A V_k(\mathbb{R}^n) = \{ X \in M_{n \times k}(\mathbb{R}) \mid A^\top X + X^\top A = 0 \}.$
 - (c) Using the inner product $\langle X, Y \rangle := \operatorname{tr} (X^{\top}Y)$ in $M_{n \times k}(\mathbb{R})$ or otherwise, construct a Riemannian metric on $V_k(\mathbb{R}^n)$ which is invariant under the natural (left) action of O(n) on $V_k(\mathbb{R}^n)$. Verify the invariance.
- **6.** (Real Analysis) Let Ω be an open subset of \mathbb{R}^d and a < b be real numbers. For any positive integer n let $f_n(x,y)$ be a complex-valued measurable function on $\Omega \times (a,b)$. Let a < c < b. Assume that for each positive integer n the following three conditions are satisfied.

- (i) For each n and for almost all $x \in \Omega$ the function $f_n(x, y)$ as a function of y is absolutely continuous in y for $y \in (a, b)$.
- (ii) The function $\frac{\partial}{\partial y} f_n(x,y)$ is measurable on $\Omega \times (a,b)$ for each n and the function

$$\sum_{n=1}^{\infty} \left| \frac{\partial}{\partial y} f_n(x, y) \right|$$

is integrable on $\Omega \times (a, b)$.

(iii) The function $f_n(x,c)$ is measurable on Ω for each n and the function $\sum_{n=1}^{\infty} |f_n(x,c)|$ is integrable on Ω .

Prove that the function

$$y \mapsto \int_{x \in \Omega} \sum_{n=1}^{\infty} f_n(x, y) dx$$

is a well-defined function for almost all points y of (a,b) and that

$$\frac{d}{dy} \int_{x \in \Omega} \sum_{n=1}^{\infty} f_n(x, y) dx = \sum_{n=1}^{\infty} \int_{x \in \Omega} \left(\frac{\partial}{\partial y} f_n(x, y) \right) dx$$

for almost all $y \in (a, b)$.

Hint: Use Fubini's theorem to exchange the order of integration and use convergence theorems for integrals of sequences of functions to exchange the order of summation and integration.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday September 4, 2025 (Day 3)

- **1.** (Algebra) Let $K \subset \mathbb{C}$ be the field generated over \mathbb{Q} by the 12th root of unity $\alpha = e^{2\pi i/12}$.
 - (a) Describe the structure of the Galois group of this extension and its action on K.
 - (b) Find the minimal polynomial of α over \mathbb{Q} .
 - (c) Describe the intermediate fields, contained strictly between \mathbb{Q} and K. Express each one as $\mathbb{Q}(\sqrt{d})$ for an explicit $d \in \mathbb{Z}$.
- **2.** (Algebraic Geometry) Let x, y denote coordinates of the affine plane \mathbb{A}^2 over \mathbb{C} . Consider the following affine plane curves C_i over \mathbb{C} :

$$C_1 = V(xy - 1)$$

$$C_2 = V(xy)$$

$$C_3 = V(y - x^2)$$

$$C_4 = V(x^2 + y^2)$$

$$C_5 = V(x^2 - x)$$

- (a) For each $1 \leq i, j \leq 5$, determine whether the curves C_i and C_j are isomorphic.
- (b) Consider the curve

$$C_6 = V(y^2 - x^3).$$

Show that there exists a regular map $C_3 \to C_6$ which is bijective on points but that the curves C_3 and C_6 are not isomorphic.

- 3. (Algebraic Topology) Let Σ_g denote a closed, oriented surface of genus g. Prove that there is a covering map $\Sigma_g \to \Sigma_h$ if and only if g-1 is a positive integer multiple of h-1.
- 4. (Complex Analysis) Let

$$f(z) = z^8 - 2z^2 + 18z - 3 + e^z.$$

Use Rouché's theorem to find, with multiplicities counted,

- (a) the number of roots of f(z) in |z| < 1,
- (b) the number of roots of f(z) in |z| < 2.

Hint: Use $|e^z| \leq 9$ on $|z| \leq 2$. In both parts, write f(z) as the sum of a monomial-term and the rest of its terms.

5. (Differential Geometry) Let S^2 be the unit sphere in \mathbb{R}^3 , so that TS^2 is regarded as a subbundle of the trivial bundle \mathbb{R}^3 on S^2 . The rotation of S^2 about the z-axis is generated by the vector field V on S^2 given by

$$V(x, y, z) = (-y, x, 0).$$

- (a) Compute the covariant derivative $\nabla_V V$ on S^2 .
- (b) From the calculation in the previous part, which non-trivial integral curves of V are geodesics on S^2 ? Give a geometric interpretation of your answer.
- **6.** (Real Analysis) Denote by $S(\mathbb{R})$ the *Schwarz space* on \mathbb{R} consisting of all complex-valued C^{∞} functions f(x) on \mathbb{R} such that

$$\sup_{x\in\mathbb{R}}|x|^k\left|\frac{d^\ell f}{dx^\ell}(x)\right|<\infty\quad\text{for all }k,\ell\in\mathbb{N}\cup\{0\}.$$

Suppose $\psi(x)$ is a function in $\mathcal{S}(\mathbb{R})$ with

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1. \tag{1}$$

Denote by $\hat{\psi}(\xi)$ the Fourier transform of $\psi(x)$ defined by

$$\hat{\psi}(\xi) = \int_{-\infty}^{\infty} \psi(x)e^{-2\pi i x \xi} dx.$$

Prove the following Fourier-transform version of the $Heisenberg\ uncertainty\ principle$

$$\left(\int_{-\infty}^{\infty} x^2 |\psi(x)|^2 dx\right) \left(\int_{-\infty}^{\infty} \xi^2 |\hat{\psi}(\xi)|^2 d\xi\right) \geq \frac{1}{16\pi^2}.$$

Hint: Write the integrand in equation (1) as $1 \cdot |\psi(x)|^2$ and integrate by parts. Use the Plancherel formula which equates the L^2 norm of an element of $\mathcal{S}(\mathbb{R})$ to the L^2 norm of its Fourier transform. Apply it to the derivative of an element of $\mathcal{S}(\mathbb{R})$.