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CHAPTER 1

Introduction

1. Historical Context and Motivation

The mid-19th century found number theorists tackling the mystery left by Fermat’s
marvelously offhand marginalia and developing the field of algebraic number theory. Of
great importance to this theory was the ideal class group, since its structure indicates how
far the ring of integers of a number field is from being a unique factorization domain, which
occurs if and only if the ideal class group is trivial. As Gabriel “Fool’s Gold” Lamé observed
in 1847, Fermat’s Last Theorem would be easily proven if the pth cyclotomic fields Q(ζp) had
class number 1 for odd primes p. However, sadly for Lamé, Ernst Kummer had shown three
years earlier that this is in fact false for most p, with p = 23 being the famous first example.
Though Kummer was able to eventually prove Fermat’s Last Theorem for regular primes
(primes p that do not divide the class number of Q(ζp)) by using the unique factorization of
ideals of Z(ζp), a general proof remained elusive.

While the failure of unique factorization in rings of integers is nonideal, it is reasonable to
ask whether or not any number field K that does not have class number 1 can be embedded
in a finite field extension L with class number 1. Though Kummer didn’t have the tools
to answer this embeddability question, his work laid the foundation for the 20th century
development of class field theory, which sought to classify abelian extensions of arbitrary
number fields. Earlier, the Kronecker-Weber theorem had shown that every finite abelian
extension of Q is a subfield of a cyclotomic field. However, this idea was not generalizable
to algebraic number fields in general, necessitating the development of techniques specific to
class field theory.

Of particular interest is the Hilbert class field, defined as the maximal unramified abelian
extension of a number field, though this definition came about after Hilbert’s initial conjec-
ture. In 1902 Hilbert conjectured that for any number field K, there exists a unique finite
extension HK of K such that the principal prime ideals of OK split completely in HK/K.
The existence and unicity of such an object was proved by Philipp Furtwängler, who proved
various other properties, including completeness, i.e. the Hilbert class field is the maximal
unramified abelian extension of K, giving us the definition we now use.

Note that the Hilbert class field HK is Galois, since primes of a number field K are
unramified in an extension L if and only if they are unramified in the normal closure of
L. Therefore, by the maximality of HK , it is a normal extension of K. Artin’s reciprocity
theorem of class field theory gives a canonical isomorphism Gal(HK/K) ∼= CK , where CK
denotes the ideal class group of K, and [HK : K] = hK , the class number of K. This
isomorphism reduces the following theorem to a group-theoretic statement that was proved
by Furtwängler.

1



2 1. INTRODUCTION

Theorem 1 (Principal Ideal Theorem, 1930). Every fractional ideal a of a number field
K becomes principal (or capitulates) in the Hilbert class field HK, i.e. for every ideal a of
the ring of integers OK, aOHK

is principal in OHK
.

This theorem is closely related to the class field tower problem, first proposed in 1925
by Furtwängler. A class field tower is formed by iteratively taking Hilbert class fields of a
number field:

K = HK0 ⊆ HK1 ⊆ . . . ,

where HKi+1
is the Hilbert class field of HKi

. The class field tower problem asks whether the
tower stabilizes within a finite number of steps. If so, then for some large n, HKn would be
a finite extension of K and a principal ideal domain, so would have class number 1. In fact,
the converse is also true. If L is a finite field extension of K such that hL = 1, then for each
i, HKi

⊂ HLi
= L, so the class field tower over K must be finite. Thus, the class field tower

problem is in fact equivalent to the embeddability problem.
For nearly 40 years, no counterexamples emerged, leading many to suppose that class

field towers always terminated. It wasn’t until 1964 that Evgeny Golod and Igor Shafarevich
provided a definitive answer in the negative, producing counterexamples by using a group-
theoretic statement. It is as follows.

Theorem 2 (Golod and Shafarevich, 19641). For a finite p-group G, r > d2/4, where
d = dimFp H

1(G,Fp) and r = dimFp H
2(G,Fp).

2. Infinite p-Class Field Towers

To answer the class field tower problem in the negative, we may consider p-class field
towers instead, which are related to the embeddability of arbitrary number fields in finite
field extensions with class number prime to p. A Hilbert p-class field Hp

K of number field K
is simply defined as the maximal unramified abelian p-extension of K, where a p-extension
refers to one whose Galois group is a p-group. The Hilbert p-class field tower over K is
similarly defined. We also have an isomorphism between Gal(Hp

K/K) and the p-part CK ,
denoted by Cp

K . We also denote the p-rank of CK be dpCK = dimFp CK/pCK (more generally
we can take the p-rank of any abelian group A). Thus, as before, a number field K an be
embedded into a finite field extension with class number prime to p if and only if the Hilbert
p-class field tower terminates.

If any p-class field tower over K is infinite, then the class field tower is also infinite. Thus,
to provide their negative result to the class field tower, Golod and Shafarevich needed only
to verify that infinite p-class field towers exist. For any number field K, consider the union⋃
Hp
Ki

of the elements in the p-class tower, which we shall denote as Hp
K∞

. Note that if the
tower terminates, Hp

K∞
must be a finite field extension, i.e. Gal(Hp

K∞
/K) is a finite p-group.

Remark 1. It is important to note that while the existence of an infinite p-class tower for
a number fieldK implies that the class field tower ofK does not terminate, the converse is not
necessarily true [Sch86, McL08]. For example, the class field tower of Q(

√
−239,

√
4049)

is infinite, while all the p-class field towers are finite.

The first examples of number fields with infinite p-class field towers came from the 2-
class field towers of quadratic imaginary number fields fields. One year prior to proving

1The original version of this inequality was r > (d− 1)2/4, and Vinberg and Gaschütz (1967) provided
a refinement.
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the Golod-Shafarevich inequality with Golod, Shafarevich proved a bound on the difference
between relation and generator ranks of G = Gal(Hp

K∞
/K) for K a quadratic imaginary

number field.

Theorem 3 (Shafarevich, 19632). Let G = Gal(Hp
K∞

/K) for a quadratic imaginary
number field K. If G is finitely generated as a pro-p group, then

r − d ≤ 1.

For p 6= 2, then r = d.

This inequality, along with r > d2/4 give us a contradiction for d ≥ 5 if we assume all
such G are finite p-groups. Thus, there must be infinite 2-class field towers, showing that
not all number fields K have a finite field extension of class number 1.

The results of 2-genus theory for quadratic imaginary fields gives us a way to construct
a number field with infinite 2-class field tower.

Theorem 4. If K is a quadratic imaginary field in which t odd primes ramify, then
d = d2CK ≥ t− 1.

Thus, the field K = Q(
√
−3 · 5 · 7 · 11 · 13 · 17), in which 6 primes ramify, has an infinite

2-class field tower. The original counterexample given by Golod and Shafarevich in their
1964 paper is a number field in which 7 primes ramify, due to their slightly weaker original
inequality r > (d− 1)2/4.

Note that this concept is generally true. If “too many” primes ramify in a number field,
then it will have an infinite p-class field tower.

Theorem 5 (Brumer, 1965). If K is a number field of degree n over Q, and p is a rational
prime and t denotes the number of rational primes q such that p divides their ramification
indices, then

dpCK ≥ t− n2.

Further details will be given on the refinements made to Golod and Shafarevich’s criterion
for an infinite class field tower in Chapter 5.

2Iwasawa (1977) produced the more general inequality r − d ≤ c1 + c2, where c1 is the number of real
embeddings of K and c2 the number of complex embeddings.





CHAPTER 2

Preliminaries

1. Group Theory Reminders

Definition 1. For a prime p, G is a finite p-group if |G| = pn from some n ∈ N.

Definition 2. Let G be a group. The commutator of two elements x, y ∈ G is defined
as [x, y] = x−1y−1xy. The commutator subgroup of G, denoted by [G,G], is the set of all
commutators of G, {[x, y] : x, y ∈ G}.

True to its name, the commutator is a measure of commutativity, and taking the quotient
of G by the closure of [G,G] gives the abelianization of G, denoted by Gab. The abelianization
is very important later when we use group cohomology to describe the generators of pro-p
groups. Furthermore, the results of class field theory give usGab ∼= Cp

K forG = Gal(Hp
K∞

/K).
See the statement of Burnside’s Basis Theorem in Chapter 3 for more information.

2. Group Algebras/Rings

Definition 3. Let G be a (multiplicative) group and Λ a unitary commutative ring.
The group algebra of G over Λ, also known as the group ring, denoted by Λ[G], is defined to
be the free Λ-module on the basis G, i.e. the set of all finite of all linear combinations

α =
∑
g∈G

agg

with ag ∈ Λ and ag = 0 for all but finitely many g ∈ G. We define the sum(∑
g∈G

agg

)
+

(∑
g∈G

bgg

)
=
∑
g∈G

(ag + bg)g

and the product (∑
g∈G

agg

)(∑
g∈G

bgg

)
=
∑
g∈G

cgg

where cg =
∑

x∈G axbx−1g.

Definition 4. The group ring Λ[G] has an augmentation map ε : Λ[G]→ Λ given by∑
g∈G

agg 7→
∑
g∈G

ag.

The kernel I(G) of this map is known as the augmentation ideal of Λ[G].

Proposition 1. The set {g − 1 : g 6= 1, g ∈ G} is a Λ-basis for I(G).

5



6 2. PRELIMINARIES

Proof. For any g ∈ G, ε(g − 1) = 1− 1 = 0, so the set is in I(G). For any
∑

g∈G agg ∈
I(G), we have that

∑
g∈G ag = 0, so∑

g∈G

agg =
∑
g∈G

agg −
∑
g∈G

ag =
∑
g∈G

ag(g − 1),

so the set spans I(G).
Finally, suppose

0 =
∑
g∈G

ag(g − 1).

Then ∑
g∈G

ag =
∑
g∈G

agg,

so the right hand side must be a constant, which can only happen if all ag = 0 for g 6= 1.
Thus, {g − 1 : g 6= 1, g ∈ G} is independent and spans, so is therefore a basis. �

Group algebras are useful in studying group representations.

3. Group Cohomology

From group rings, we get the concept of G-modules, which are in fact Λ[G]-modules,
though we use the abbreviated terminology. A G-module M is acted on by a group G, and
any such G-module has a submodule of G-invariant elements, denoted MG = {m ∈ M :
∀g ∈ G : gm = m}. Furthermore, the collection of all G-modules forms a category, denoted
CG. The map that sends any module M to MG yields a functor from F : CG → Ab. The
cohomology groups of G with coefficients in M are the derived functors of F , i.e. they
measure how far the cochain complex is from being exact. Though this is the simplest way
to define cohomology groups, in the interest of avoiding category theory to keep this section
as self-contained as possible, we introduce an alternative, though long-winded, definition of
cohomology groups using cochains.

Definition 5. Let G be a group and M a G-module, and suppose n ≥ 0 is an integer.
Then the group of n-cochains, is Cn(G,M) = {f : Gn →M}, the group of continuous maps
of Gn to M . These groups give us a cochain complex

. . .→ Cn dn→ Cn+1 dn+1→ Cn+2 → . . .

with coboundary homomorphisms defined by

(dnf)(g1, . . . , gn+1) = g1 · f(g2, . . . , gn+1) +
n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1).

Note that dn+1 ◦ dn = 0.

Definition 6. Let G,M, n be as in the previous definition. Then the set of n-cocycles
of G with coefficients in M is defined Zn(G,M) = ker dn. The group of n-coboundaries
isBn(G,M) = im dn−1 for n ≥ 1, with B0(G,M) = 0.

With all of these definitions out of the way, we can finally define the nth cohomology
group of G with coefficients in M to be

Hn(G,M) = Zn(G,M)/Bn(G,M).
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As an example, the 0th cohomology group of the G-module M , denoted H0(G,M) =
{m ∈ M : mσ = m ∀σ ∈ G}. That is to say, H0(G,M) is the submodule of M containing
all G-invariant elements. The 1st cohomology group H1(G,M) represents the set of crossed
homomorphisms (f : G → M such that ∀a, b ∈ G : f(ab) = f(a) + af(b) modulo the
homomorphisms f : G → M such that f(a) = am − m for some m ∈ M . Interpretations
exist for cohomology groups of higher dimensions, though we omit them here.

Remark 2. If the action ofG onM is trivial, then we have thatH0(G,M) = H1(G,M) =
Hom(G,M).





CHAPTER 3

Pro-p Groups

1. Basic Definitions

Before we can discuss the Golod-Shafarevich theorem in much detail, we must first in-
troduce pro-p groups, which were well-studied in the theory of p-adic analytic groups, par-
ticularly by Michel Lazard. Pro-p groups are a type of profinite group, which we can define
in topological terms as follows:

Definition 7. A profinite group is a compact, Hausdorff, totally disconnected topolog-
ical group (a group G with a topology τ such that multiplication and taking inverses are
continuous functions in the product topology and τ , respectively). Equivalently, a compact
Haudorff topologically group is profinite if its open subgroups form a base for the neighbor-
hoods of the identity, i.e. every open set containing the identity contains an open subgroup.

Note that the open subgroups of profinite groups are also closed due to compactness, so all
open subgroups are also normal, and every closed subgroup of a profinite group is profinite.
While the topological definition is concise, in our discussion, an equivalent algebraic definition
is often more useful. Before introducing this alternate definition, we introduce the notion of
inverse limits.

Definition 8. A directed partially ordered set is a poset (I,≤) such that for every
i, j ∈ I, there exists a k ∈ I with k ≥ i, j. An inverse system, also called a projective system,
over I is a family of groups (Ai)i∈I with a family of homomorphisms fi,j : Ai → Aj for all
i ≥ j such that fi,i is the identity on Ai and fij ◦ fjk = fik for all i ≥ j ≥ k. The inverse
limit, also called projective limit, of the inverse system ((Ai)i∈I , (fij)i≥j∈I), is the subgroup
of the direct product of the Ai’s defined as follows:

lim←−
i∈I

Ai = {~a ∈
∏
i∈I

Ai | aj = fij(ai), ∀i ≥ j ∈ I}.

Proposition 2. If G is a profinite group, then G is (topologically) isomorphic to lim←−(G/N),
where N ranges over the open normal subgroups of G. Furthermore, the inverse limit of an
inverse system of discrete finite group is profinite. Thus, the topological definition and the
definition of a profinite group as the inverse limit of an inverse system of finite groups are
equivalent.

We omit the proof of this proposition, but it can be found in chapter 1 of [Dix99].

1.1. Examples of Pro-p Groups. Galois groups of algebraic field extension are a
natural example of profinite groups, since the Galois group Gal(L/K) for a Galois extension
L/K is, by construction, the inverse limit of Gal(Li/K) for all finite intermediary Galois
extensions Li/K. In fact, William Waterhouse (1974) proved that all profinite groups are
the Galois groups of some field extension. The connection between profinite groups and class
field theory is stated concisely by Waterhouse’s title: “Profinite groups are Galois groups.”

9



10 3. PRO-p GROUPS

Another example of profinite groups is the profinite completion of an arbitrary group.

Definition 9. Let G be an arbitrary topological group and N the family of normal
subgroups N C G of finite index in G that are closed under finite intersection and ordered
by reverse inclusion. Then the profinite completion of G, denoted Ĝ, is the inverse limit
lim←−(G/N)N∈N.

The profinite completion of G gives us a natural homomorphism

ι : G→ Ĝ, g 7→
∏
N∈N

gN.

The image of G under ι is dense in Ĝ and the kernel of ι is
⋂
N∈NN . Thus, ι is an injection

if and only if G is residually finite, i.e. the intersection
⋂
N = 1. If p is a prime and Np

consists of normal subgroups of p-power index, then lim←−(G/N)N∈Np is known as the pro-p

completion of G, often denoted as Ĝp, which leads us to our definition of pro-p groups.

Definition 10. For a fixed prime p, a pro-p group is a profinite group that is the
projective limit of finite p-groups (groups in which the order every element is a power of p),
or every open normal subgroup has index equal to some power of p. A finite group is pro-p
if and only if its order is a power of p.

The most commonly cited example of pro-p groups are the p-adic integers Zp = lim←−Z/pnZ
(the pro-p completion of the ring Z) under the addition operation, and indeed the p-adic
integers are the historical motivation for studying pro-p groups.

2. Presentations of Pro-p Groups

Because the Golod-Shafarevich theorem is really a group-theoretic statement regarding
the minimal presentation of finite p-groups, it is necessary to include a discussion here about
the presentations of pro-p groups. First, we will need to introduce the notion of generators
of profinite/pro-p groups. Please note that in the following section, we use “almost all” to
mean all except finitely many, and p to refer to a fixed prime. Here we provide a general
definition of generating systems, but with respect to the Golod-Shafarevich theorem, we are
primarily interested in finitely generated pro-p groups.

Definition 11. Let G be a profinite group and N ⊂ G be a closed normal subgroup
of G. Let I be an index set and E = {si : i ∈ I} be a convergent subset of N , i.e. every
open subgroup of N contains almost all elements of E. Then the si generate N if N is the
smallest closed normal subgroup of G containing E. Equivalently, the si generate N (as a
normal subgroup of G) if the subgroup generated (algebraically) by conjugates of the si is
dense in N , i.e. for every open normal subgroup H CG, EH/H generates NH/H.

Taking G to be a normal subgroup of itself, we have a definition for the generators of a
pro-p group.

Definition 12. Let G be a profinite group, and let E = {si : i ∈ I} be a convergent
subset of G. Then E is a system of generators for G if G is the smallest closed subgroup
containing E. We call E minimal if no proper subset of E generates G. The cardinality of
a minimal system of generators is known as the generator rank of G, denoted by d(G) or d.
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Note that the concept of generators of a profinite group is basically same as that of
standard group theory, though with a topological twist. Thus, it may not come as unexpected
that free groups also have their analogue in free pro-p groups, which are constructed as the
pro-p completions of the standard free groups.

Definition 13. Let I be an index set and FI be the (ordinary) free group on the
generators {si | i ∈ I}, and let U be the set of normal subgroups N C FI of p-power index
containing almost all of the generators. Then the inverse limit

F (I) = lim←−(FI/N)N∈U

is called the free pro-p group with system of generators {si | i ∈ I}.

Definition 14. Suppose that E is a system of generators the pro-p group G. Let F
be the free pro-p group on the system of generators E. Then, as with the presentation of
ordinary groups, we have an exact sequence

1→ R→ F → G→ 1,

which is called a presentation of G by F , often denoted by 〈E;R〉.

Definition 15. Let R,F,G,E be as above. A set S ⊆ R is a system of relations with
respect to E if S is a system of generators for R as a normal subgroup of F . A system of
relations S is minimal if no proper subset of S generates R. The cardinality of S is known
as the relation rank of G, denoted r(G) or r.

3. Cohomological Interpretation of Generators and Relations

3.1. Computing d(G). While the definitions of generators provided above are useful
in giving the algebraic intuition behind systems of generators and systems of relations, they
don’t give us an easy way to calculate r(G) and d(G), which is why we would like to interpret
generators and relations in terms of the cohomology groups of pro-p groups, allowing to use
the tools like short exact sequences to simplify our calculations.

This is motivated by Pontryagin duality, which states that the category of discrete torsion
abelian groups is dual to the category of profinite abelian groups, i.e. if G is a discrete torsion
abelian group or profinite abelian group, its dual G∗ = Hom(G,Q/Z). In the context of pro-
p groups, Pontryagin duality gives us a correspondence between abelian pro-p groups and
discrete abelian p-primary torsion groups.

Note: From now on, we abbreviate Hn(G,Fp) as Hn(G). We are particularly interested
in cohomology groups as vector spaces over Fp, as any pro-p group G always acts trivially on
Fp, because every automorphism of the abelian group Fp has order coprime to p (by Fermat’s
Little Theorem). Therefore, H1(G) = Hom(G,Fp), suggesting that Pontryagin duality may
be useful in elucidating the structure of H1(G).

Definition 16. The Frattini subgroup Φ(G) of a group G is the intersection of all
maximal closed subgroups of G.

Remark 3. If G is a finite p-group, then Φ(G) = Gp[G,G], i.e. the closure of the set of
products of pth powers and commutators in G.

Thus, taking the quotient by Φ(G) should abelianize G, in addition to killing all pth
powers, which makes G/Φ(G) the largest profinite abelian quotient of exponent p of G.
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Furthermore, G/Φ(G) is a vector space over Fp. Taking the Pontryagin dual of G/Φ(G), we
get

(G/Φ(G))∗ = Hom(G/Φ(G),Q/Z) = Hom(G,Fp) = H1(G).

This result, combined with the Burnside’s Basis Theorem gives us a new way to interpret
generator and relation rank.

Theorem 6 (Burnside’s Basis Theorem). Let G be a pro-p group and let E = {si : i ∈ I}
be a convergent subset of G. Then E is a system of generators of G if and only if the subset
E of residue classes modulo Φ(G) generates G/Φ(G).

Considering G, G/Φ(G) and (G/Φ(G))∗ = H1(G) as vector spaces over Fp, and noting
that taking the dual doesn’t change dimension, we have

d(G) = dimFp(G/Φ(G)) = dimFp(G/Φ(G))∗ = dimFp H
1(G),

giving us a cohomological interpretation of the generator rank of a pro-p group.

3.2. Computing r(G). To provide a cohomological interpretation of the relation rank,
we note that the relation rank of G is dimFp H

1(R), as given above, and that the presentation
of G by the free pro-p group F gives the isomorphism G ∼= F/R, with R a normal subgroup of
F , which allows us to apply the Hochschild-Serre spectral sequence1. This spectral sequence
induces an exact sequence known as an inflation-restriction exact sequence. Here, we gloss
through the details and simply give the sequence:

0→ H1(G,FRp )→ H1(F,Fp)→ H1(R,Fp)G → H2(G,FRp )→ H2(F,Fp).

Since F is free, the cohomological dimension2 of F is ≤ 1, which implies that H2(F ) = 0,
which allows us to sum dimensions (Hilbert’s Syzygy Theorem), noting that FRp = Fp, which
gives us

dimFp H
1(G)− dimFp H

1(F ) + dimFp H
1(R)G − dimFp H

2(G) = 0,

and since dimFp H
1(G) = dimFp H

1(F ),

dimFp H
1(R)G = dimFp H

2(G).

We note that the action of any element g ∈ G on any f ∈ H1(R) is given by (g · f)(r) =
g · f(g−1rg), where g ∈ F is a representative of the residue class g. Thus, the set of G-
invariants of H1(R) is {f : R → Fp | f(r) = f(g−1rg) ∀r ∈ R}. Thus, the Fp-dimension of
H1(R)G counts the number of conjugacy classes of generators of R. However, the definition
of a system of generators of R as a normal subgroup of F states that R is the smallest
normal subgroup containing the generators of R, i.e. the system of relations for G, so we
have dimFp H

1(R) = dimFp H
1(R)G. Together with our previous result, this gives us the

following proposition.

Proposition 3. For a pro-p group G,

d(G) = dimFp H
1(G,Fp) and r(G) = dimFp H

2(G,Fp).

1Let G be a group, N be a normal subgroup, and A a G-module. Then there is a spectral sequence of
cohomological type: Hp(G/N,Hq(N,A))⇒ Hp+q(G,A).

2The cohomological dimension of G, denoted by cd(G), is defined as the least integer n such that
Hk(G) = 0 for all k > n. A free group F has cd(F ) ≤ 1. For details, see any general text on pro-p groups,
such as [Ser02].
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4. Completed Group Algebras

The cohomological interpretation of generators and ranks gives us a great deal of infor-
mation about the presentation of a pro-p group. However, in order to prove the relationship
between generators and relations given by the Golod-Shafarevich inequality, we need to give
even more structure to pro-p groups. Specifically, we wish define an object with structure
similar to that of a polynomial ring, allowing us to treat it as a graded algebra.

In essence, the completed group algebra is the profinite completion of group rings of the
quotients of open normal subgroups. More precisely, let G be a pro-p group and let Λ be a
compact unitary commutative ring. Let N,N ′ be open normal subgroups of G with N ⊇ N ′.
We can thus extend the map G/N ′ → G/N to the homomorphism Λ[G/N ′] → Λ[G/N ] of
group rings. Note that if G is finite, then Λ[G] is a compact group algebra.

Definition 17. The completed group algebra Λ[[G]] of the pro-p group G is

lim←−(Λ[G/N ])N∈N,

where N is the set of all open normal subgroups of G.

There is an embedding G→ Λ[[G]] given by g 7→
∏

N∈N gN . Furthermore, Λ[G], viewed
as a subring of Λ[[G]] with the subspace topology is dense in Λ[[G]]. A key property of
completed group algebras (by Brumer) is as follows.

Theorem 7. If φ : G → G′ is a morphism of profinite groups with N = kerφ, we
have that the kernel of the induced morphism φ′ : Λ[[G]] → Λ[[G′]] is the closed ideal I(N)
generated by all h− 1 such that h ∈ N .

We omit the details of the proof here, since they can be found in Theorem 7.3 (iii)

[Koc02]. As a sketch, we have that I(N) ⊆ kerφ, so φ induces a morphism φ̂ : Λ[[G]]/I(N)→
Λ[[G′]]. To prove reverse inclusion, we restrict the morphism φ̂ to G (a subspace, using the
embedding given above), which gives us an isomorphism {G + I(N)}/I(N) → G′. Lifting

the inverse map G′ → {G+ I(N)}/I(N) gives us an inverse to φ̂, so I(N) = kerφ.
This theorem is very useful in the proof of Golod-Shafarevich, since a minimal presen-

tation of a pro-p group G gives us an epimorphism F → G of pro-p groups with kernel R.
This allows us to apply what we know about free pro-p groups to more general pro-p groups.
More specifically, free pro-p groups are easier to work with because their completed group
algebras have the structure of a polynomial ring, as given by the Magnus algebra and related
Magnus embedding.

Definition 18. Let Λ be a ring with identity and letm be a positive integer. The Magnus
algebra Λ(m) in the variables x1, . . . , xm over Λ is the algebra of formal noncommutative
(associative) power series in the xi with coefficients in Λ.

Theorem 8. If F is a free pro-p group with system of generators s1, . . . , sm, then the
completed group ring Λ[[F ]] is isomorphic to the ring Λ(m) by linearly extending the homo-
morphism ψ(s1) = 1 + xi.

Again, we omit the details of the proof, since they are clearly presented in Theorem 7.16 of
[Koc02]. Essentially, we establish that the powers of the augmentation ideal {In(G) : n ∈ N}
form a basis of neighborhoods at 0 ∈ Λ[[G]]. Recall that the augmentation ideal I(G) is the
kernel of the augmentation map Λ[G]→ Λ. In the context of completed group algebras, we
use I(G) ⊂ Λ[[G]] to refer to the closure of the augmentation ideal I(G) ⊂ Λ[G] in Λ[[G]].
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The topology on the Magnus algebra Λ(m) has a basis of open neighborhoods of 0 given by
{Dn : n ∈ N}, where Dn is the ideal of homogenous power series of Λ(m) with degree n. We
can use this topology to get an inverse map to φ, giving us an isomorphism Λ[[F ]]→ Λ(m).

From this point, we can identify Λ[[F ]] with Λ(m), which we will often write as Λ(x1, . . . , xm)
to explicitly reference the generators of Λ(m). In the proof of the Golod-Shafarevich theorem,
we will consider the specific case Λ = Fp.

5. Filtrations

Definition 19. Let G be a finitely generated pro-p group, and let Fp[G] be its group
ring over Fp with augmentation ideal I(G) = (g−1)Fp[G] (recall Proposition 1). For n ∈ Z+,
let the ideal In(G) in Fp[[G]] denote the closure of the nth power of I(G) in Fp[[G]]. Then
define Gn, the nth modular dimension subgroup of G as

Gn = {g : g − 1 ∈ In(G)}.
The descending chain of dimension subgroups

G = G1 ⊇ G2 ⊇ . . .

forms what is called the Zassenhaus filtration of G.

Such a filtration allows us to divide the relations of any pro-p group into levels.

Definition 20. Let G be a pro-p group with minimal presentation 1→ R→ F → G→
1. The level of any r ∈ R is given by the largest integer m such that r ∈ Fm \ Fm+1, where
{Fm : m ∈ N} is the Zassenhaus filtration of F .

Zassenhaus filtrations can be generalized by filtrations induced by Lazard valuations,
which are functions on monomials of a Magnus algebra. Note that if F is a free pro-p group
with d generators, each element of Fp[[F ]] = Fp(d) can be uniquely represented as a linear
combination

∑
K λKMK , where λK ∈ Fp and MK is a monomial of the variables x1, . . . , xd.

This allows us to define the Lazard valuation (essentially a modified degree/“logarithm”
function) on Fp(d).

Definition 21. Let F be a d-generated free pro-p group, and let τ1, . . . , τd ∈ Z+.
The Lazard valuation of type (τ1, . . . , τd) on Fp(x1, . . . , xd), is an additive function v :
Fp(x1, . . . , xd)→ Z ∪ {∞}, where v(xi) = τi and the valuation on monomials is determined
additively:

v(xi1xi2 . . . xid) = τi1 + τi2 + . . .+ τid ,

v(1) = 0, v(0) =∞.
The valuation on an element

∑
K λKMK is defined as

v

(∑
K

λKMK

)
= min{v(MK) : λK 6= 0}.

Remark 4. Extending the definition above gives us, for all a, b ∈ Fp(x1, . . . , xd), the
properties

v(ab) = v(a) + v(b),

v(a+ b) ≥ min{v(a), v(b)}.
Definition 22. We call

∑
K λKMK homogenous of degree m if λK = 0 for all v(MK) 6=

m.
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If G is a pro-p group with a minimal presentation 1 → R → F
φ→ G → 1, then the

Lazard valuation on F induces a Lazard valuation on G. For any β ∈ Fp[[G]], define

v(β) = max{v(α) | α ∈ Fp[[F ]], φ(α) = β}.
With a given Lazard valuation v on a pro-p group G, we can define a filtration

Gv
n = {g ∈ G : v(g − 1) ≥ n},

defining the level of any element in G to be the greatest n such that g ∈ Gv
n.

The Zassenhaus filtration is then the induced filtration given by the Lazard valuation of
type (1, . . . , 1), where the valuation is analogous to taking the degree of a power series.





CHAPTER 4

Golod-Shafarevich Theorem

Now that we have introduced the major preliminary background concepts necessary for
understanding the proof of the Golod-Shafarevich theorem, we can finally complete the
proof. While all the proofs of Golod-Shafarevich in the literature are similar in concept,
there are slight distinctions. For example, [Ser02] proves the weaker r > d2/4 bound in a
more general setting (finite-dimensional algebras) using Tor functors. The proofs of [Roq67]
and [Koc78] are similar, with Roquette’s proof being a dual of Koch’s. Here, we present
the proof of [Koc78], with the corrections made by [McL08]. Koch provided a revision of
his 1978 proof in [Koc02], though it is perhaps it is a little less elegant and intuitive than
McLeman’s revision, so we merely note it here as a potential reference for curious readers.

1. Setup and Outline

Let G be a finitely-generated pro-p group with minimal presentation

1→ R→ F
φ→ G→ 1.

The map φ : F → G induces a map Fp[[F ]] → Fp[[G]], which we also denote as φ. For
brevity’s sake, let

A = Fp[[F ]] and B = Fp[[G]].

Let {s1, . . . , sd} be a lift of the generators of G to F , and let {ρ1, . . . , ρr} be a system of
relations for G, i.e. a system of generators for R. Then, using the results on Magnus algebras
from the previous chapter, we have that

A ∼= Fp(x1, . . . , xd),
with an isomorphism given by s1 7→ xi + 1. Then, since the kernel of φ : A→ B is given by
I(R), which is generated by ρ1 − 1, . . . , ρr − 1, we have, identifying A with Fp(x1, . . . , xd),

B ∼= A/I(R).

Denote the generators of the B by yi = φ(si)− 1 = φ(xi).
Let v be a Lazard valuation of type (τ1, . . . , τd) on A. We can suppose without loss of

generality that τi ≤ τi+1 for 1 ≤ i ≤ d−1 (if not, just reorder the variables xi. In addition, we
can suppose that the relations are ordered so that their levels are monotonically increasing.
The valuation v also induces a valuation on B (also denoted by v), giving us the filtration

In = {b ∈ B | v(b) ≥ n}
for n ∈ Z. For n ≤ 0, we define In = B. In addition, we also introduce the sequence

cn = dimFp B/In.

With this filtration, we can also count relations and generators by level, setting

rn = |{ρi | v(ρi − 1) = n}| and dn = |{xi | τi = n}|.
17
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Note that r0 = 1, since the valuation on any constant is 0.
The proof centers around the exact sequence

Br φ1→ Bd φ0→ B
ε→ Fp → 0,

and its restriction (fixing n) to the exact sequence

r⊕
i=1

In−v(ρi−1)
ψ1→

d⊕
i=1

In−τi
ψ0→ In → 0.

We begin by proving these sequences are exact. Then, after some diagram-chasing and
dimension counting, we will produce an inequality on the ri and di that eventually gives us
the Golod-Shafarevich inequality.

2. Proof

Consider the sequence

(2.1) Br φ1→ Bd φ0→ B
ε→ Fp → 0,

where ε is the augmentation map of B → Fp. Another way to conceptualize ε is to consider
B as A/I(R) so that ε is the evaluation map at (0, . . . , 0).

We define φ0

φ0(b1, . . . , bd) =
d∑
i=1

biyi.

To define φ1, we first note that each ρi − 1 has a unique representation in the ring of
(noncommutative) formal power series Fp(x1, . . . , xd):

ρi − 1 =
d∑
j=1

zijxj,

since we may collect the monomials based on their last free variable. Then we define

φ1(b1, . . . , br) =

(
r∑
i=1

biφ(zi1), . . . ,
r∑
i=1

biφ(zid)

)
.

Proposition 4. The sequence given in (2.1) is exact.

Proof. Since ε is surjective, then the sequence is exact at Fp. For exactness at B, we
note that the augmentation ideal of B is generated by the elements yi, so im(φ0) = ker(ε).



2. PROOF 19

Exactness at Bd is given by the fact that ker(φ) is generated by the ρi−1. More precisely,
let (b1, . . . , br) ∈ Br. Then

φ0(φ1(b1, . . . , br)) =
d∑
j=1

r∑
i=1

biφ(zij)yj

=
d∑
j=1

r∑
i=1

biφ(zijxj)

=
r∑
i=1

bi

d∑
j=1

φ(zijxj)

=
r∑
i=1

biφ(ρi − 1)

= 0.

Therefore, we have im(φ1) ⊆ ker(φ0). To show inclusion in the other direction, let b1, . . . , bd ∈
B such that

∑d
j=1 bjyj = 0. We lift the bj to aj ∈ A, so that

∑d
j=1 ajxj ∈ ker(φ), and since

ker(φ) is generated by the ρi − 1 =
∑d

j=1 zijxj, we have that

d∑
j=1

ajxj =
r∑
i=1

a′i

d∑
j=1

zijxj =
d∑
j=1

r∑
i=1

a′izijxj,

which gives us aj =
∑r

i=1 a
′
izij. Thus, we have that

φ1

(
φ(a′1), . . . , φ(a′r)

)
=

(
r∑
i=1

φ(a′izi1), . . . ,
r∑
i=1

φ(a′izid)

)
= (φ(a1), . . . , φ(ad))

= (b1, . . . , bd),

so (b1, . . . , bd) ∈ im(φ1). Thus, (2.1) is exact. �

For a fixed integer n, the restriction of (2.1) induces the sequence

(2.2)
r⊕
i=1

In−v(ρi−1)
ψ1→

d⊕
i=1

In−τi
ψ0→ In → 0,

where ψ1 and ψ0 denote the restriction of φ1 and φ0 respectively.
First we verify that

⊕r
i=1 In−v(ρi−1) is indeed sent to

⊕d
i=1 In−τi under the map φ1. Let

(h1, . . . , hr) ∈
⊕r

i=1 In−v(ρi−1), which gives us

(2.3) v(hi) ≥ n− v(ρi − 1).

Furthermore, since ρi − 1 =
∑d

j=1 zijxj, we have that

v(ρi − 1) = min{v(zij) + τj : 1 ≤ j ≤ d}.
This gives us

(2.4) v(zij) = v(φ(zij)) ≥ v(ρi − 1)− τj.
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Combining (2.3) and (2.4), we have

v(hj) + v(φ(zij) ≥ n− τj.
We have that the jth term φ1(h1, . . . , hr) is

v

(
r∑
i=1

hjφ(zij)

)
= min{v(hj) + v(φ(zij)} ≥ n− τj,

so φ(h1, . . . , hr) ∈
⊕d

i=1 In−τi , as desired.

Similarly, φ0 sends elements of
⊕d

i=1 In−τi to In. Now that we’ve verified that the restric-
tion under the maps is correct, we show that (2.2) is exact at In.

Proposition 5. The map ψ0 is surjective.

Proof. Let h ∈ In. Select a g ∈ A such that φ(g) = h and v(h) = v(g). Such a g exists,
since φ is surjective and v(h) = max{v(g) : φ(g) = h}. This g has a unique representation∑d

i=1 gixi. Denoting the homogeneous components of g with degree m by g(m), we have

g(m) =
d∑
i=1

g
(m−τi)
i xi.

Since g cannot have homogeneous components of less than degree n (since φ(g) ∈ In),
we have that v(gi) ≥ n − τi, which means that v(hi) ≥ n − τi, where hi = φ(gi), so

(h1, . . . , hd) ∈
⊕d

i=1 In−v(xi), and

ψ0(h1, . . . , hd) =
d∑
i=1

hiyi =
d∑
i=1

φ(gixi) = φ(g) = h.

�

Since (2.2) is exact in In and (2.1) is exact, then the factor sequence

r⊕
i=1

B/In−v(ρi−1) →
d⊕
i=1

B/In−τi → B/In → Fp → 0

is exact, which gives us
n∑
i=1

ricn−i −
n∑
i=1

dicn−i + cn ≥ 1.

Noting that r0 = 1, d0 = 0, c0 = 1, we can rewrite this as

(2.5)
n∑
i=0

(ri − di)cn−i ≥ 1.

With this, we make the following claim.

Proposition 6. Let G be a finite pro-p group, with di, ri defined as above. Then

φv(t) = 1 +
∞∑
n=1

(rn − dn)tn

converges, and is greater than 0 for 0 < t < 1.
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Proof. Multiplying each side of (2.5) by tn and summing for all n, we have that

∞∑
n=0

(
n∑
i=0

(ri − di)cn−i

)
tn ≥

∞∑
n=0

tn =
1

1− t
.

The Cauchy product of the two series gives us(
∞∑
n=0

(rn − dn)tn

)(
∞∑
n=0

cnt
n

)
=
∞∑
n=0

(
n∑
i=0

(ri − di)cn−i

)
tn.

Thus, we have that (
∞∑
n=0

(rn − dn)tn

)(
∞∑
n=0

cnt
n

)
≥ 1

1− t
.

We have that
∑∞

n=0 cnt
n is convergent for 0 < t < 1, since cn is bounded above if G is

finite1. Furthermore, since r is finite, we can assume without loss of generality that almost
all the rn = 0. Because almost all the dn and rn are 0 and

∑
cnt

n converges, the left hand
side is a polynomial in t and therefore converges.

Dividing both sides by
∑
cnt

n > 0, and noting that 1
1−t > 0, we get

∞ >
∞∑
n=0

(rn − dn)tn > 0.

Rewriting gives us

φv(t) = 1 +
∞∑
n=1

(rn − dn)tn > 0,

as desired. �

Note that for the Zassenhaus filtration, all the generators of a pro-p group are of level 1,
so d1 = d and di = 0 for i 6= 1. Thus, the previous proposition is frequently presented in the
literature as

∑∞
k=2 rkt

k−dt+1 > 0, which is sometimes known as the Zassenhaus polynomial
of G. Note that r1 = 0, because if a relation had level 1 (in the Zassenhaus filtration), then
it would be a generator of F and contradict the minimality of the presentation of G.

Corollary 1. Let G be a finite pro-p group with d(G) = d and r(G) = r, and let
1 → R → F → G → 1 be a minimal presentation of G with R ⊂ Fm, where {Fn} is the
Zassenhaus filtration of G. Then,

r >
dm

mm
(m− 1)m−1.

Proof. Since R ⊂ Fm, we have φv(t) = 1−dt+rtm. Suppose for the sake of contradiction
that

r ≤ dm

mm
(m− 1)m−1.

This gives us

m−1

√
d

mr
≥ m

d(m− 1)
.

1See Lemma 7.9 in [Koc02] for a proof of the fact that In(G) = 0 for sufficiently large n using the
composition series of In(G).
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Setting t = m−1

√
d
mr

gives

φv

(
m−1

√
d

mr

)
= 1− d · m−1

√
d

mr
+ r · d

mr
· m−1

√
d

mr

≤ 1− m

m− 1
+

1

m− 1
= 0,

which contradicts Proposition 6. �

For m = 2, Corollary 1 gives us the Golod-Shafarevich theorem in the form given by
Gaschütz and Vinberg’s refinement.

Theorem 9. If G is a nontrivial finite p-group, with d = d(G) denoting the generator
rank and r = r(G) denoting the relation rank, then r > d2/4.

Another statement of Vinberg/Gascütz’s refinement is as follows:

Theorem 10. Let K be a number field and p a rational prime. If K has a finite p-tower,
then

dpCK < 2 + 2
√

1 + dpO×K ,
where O×K is the unit group of the ring of integers of K.



CHAPTER 5

Further Work & Ramifications

The Golod-Shafarevich inequality provides a definitive answer to the original class field
tower problem by producing some number fields with infinite class field towers, but much
work remains to be done in understanding the structure of class field towers, particularly
since there does not exist a general method for computing class field towers. It is not even
known how to categorize towers by whether they terminate or not. Even in more specific
cases, such as 2-class towers of imaginary quadratic fields, a general method of classification
does not yet exist.

Furthermore, most of the work done on the subject since 1964 involve the use of Golod
and Shafarevich’s original condition, or a variation of it, which might lead one to speculate
whether producing an infinite p-class tower necessarily requires the application of Golod-
Shafarevich at some step (whether applying to the number field itself, or to an unramified
extension of the number field). Moreover, as far as we know currently, it seems “necessary” to
approach the general class field tower question through p-class field towers. While the results
of Schoof (1986) discussed in Chapter 1 produce number fields with infinite class towers but
have finite p-class towers for all p, these number fields “depend on a closely-related q-class
field tower being infinite for some prime q” [Wan16]. In addition to determining which
number fields have finite (p-)class field towers and which have infinite ones, work has been
done to determine the length of the tower if it is finite.

Definition 23. Let K be a number field and let G = Gal(Hp
K∞

/K) be its p-tower group.
Then the length of the p-tower, denoted by `p(K), is defined to be the minimal integer n
such that Hp

Kn
= Hp

Kn+1
. Alternatively, the minimal integer n such that Gal(Hp

Kn
/K) ∼= G.

If no such integer exists, then `p(K) =∞.

Beyond determining the possible tower lengths of various p-ranks of CK , much work has
been done to determine the group structure of Cp

K . In the following section, we denote the
group isomorphic to Z/m1Z⊕ . . .⊕ Z/mtZ by “ a group of type (m1, . . . ,mt).”

In this section, we introduce several of the lingering questions that remain after Golod-
Shafarevich’s result, and attempt to give a broad outline of the methodology of mathematical
work in this subject area.

1. Quadratic Imaginary Fields

While the Golod-Shafarevich inequality uses quadratic imaginary fields as a jumping off
point for a negative answer for the general class field tower question, many open questions
remain concerning the p-towers of quadratic imaginary fields. Generally, research in this
subject area is splits the question into two cases: odd primes and even primes.

1.1. Odd p. The work of Koch and Venkov gives further insight to classifying quadratic
imaginary number fields according to the length of their class towers.

23
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Theorem 11 (Koch-Venkov, 1975). Let G be a p-tower group over a quadratic imaginary
number field with a minimal presentation 1→ R→ F → G→ 1. Then, R ⊂ F3.

Though we have not introduced the notion of cup products in this thesis, they are useful
in the proof of this theorem. For details, see (3.9.13)(ii) and (10.10.10) in [NSW13]. Using
Corollary 1, we get r > 4d3/27, and by Theorem 3, we have that r = d for p 6= 2, so d ≥ 3
gives us a contradiction. As a result, we have the following corollary.

Corollary 2. Let p 6= 2 be prime, and let K be a quadratic imaginary number field
with dpCK ≥ 3. Then the p-class field tower of K is infinite, i.e. `p(K) =∞.

Examples include Q(
√
−3321607) for p = 3 and Q(

√
−22263549223) for p = 5.

Since dpCK = 0 implies that K = Hp
K1

, we have that the length of the tower is 0. If

dpCK = 1, then if G = Gal(Hp
K∞

/K), then Gab ∼= Cp
K has 1 generator, so is cyclic and

therefore abelian. Thus, Gab = G ∼= Cp
K
∼= Gal(Hp

K1
/K), so the length of the tower is 1.

This leaves only one final case, dpCK = 2. In fact, this case remains open, and Golod-
Shafarevich does not tell us about whether the p-towers terminate or not, though no examples
of infinite p-class towers have been found for K a quadratic imaginary number field and p 6= 2
have been found for dpCK have been found. Furthermore, it seemed from computations that
p-towers of finite length must be very short. Only recently were the first examples of 3-towers
of length 3 (e.g. K = Q(

√
−9748)) produced [BM15], and Bush and Mayer in fact produced

a criterion for an imaginary quadratic field K to have `3(K) = 3.

1.2. p = 2. As stated in Chapter 1, the theorem of Golod and Shafarevich implies for
quadratic imaginary number fields that if d2CK ≥ 5, then the tower does not terminate.
However, the inequality does not give us information on for number fields with d2CK ≤ 4.
Similar to the case with odd p, if d2CK = 0, then `2(K) = 0, and if d2CK = 1, then `2(K) = 1.
For d2CK = 2, 3 examples of finite and infinite 2-class field towers exist. Examples in the
case of d2CK include Q(

√
−2 · 5 · 31 · 89), which has an infinite 2-tower[Haj96], while the

tower of Q(
√
−2379) has length 3 [Bus03]. In addition to studying number fields whose

class groups have certain ranks, more specific cases have been studied, such as the case where
d2CK = 3 and CK ∼= (2, 2, 2).

Thus, it is the case where d2CK = 4 that remains mysterious. In 1978, Martinet con-
jectured that all 2-towers of number fields with 2-rank 4 are infinite. The problem remains
open; no finite 2-towers for quadratic imaginary fields are known, and current examples
of infinite 2-towers rely on some extension of Golod-Shafarevich in conjunction with genus
theory.

While Corollary 2 does not hold for p = 2, in 1996, Hajir improved the earlier theorem
of Koch.

Theorem 12 (Hajir, 1996). If K is an imaginary quadratic field and d4CK ≥ 3, i.e. CK

contains a subgroup of type (4, 4, 4), then `2(K) =∞.

Subsequent work on Martinet’s conjecture has focused on cases where CK has small 4-
rank, with the results dependent on properties of the discriminant dK of K. Genus theory
gives us that for K such that d2CK = 4, 5 prime discriminants divide dK , so we can divide
number fields into three cases: 1, 3, 5 negative prime discriminants divide dK . Positive
results to Martinet’s question have been achieved through casework on Rédei matrices. A
number field K has infinite 2-tower if:
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• d4CK = 2
– 5 negative prime discriminants divide dK [Ben02]
– 4 - dK [Ben15]
– 3 negative prime discriminants divide dK , and dK is congruent to 4 mod 8 in

certain cases [Ben02]
– 1 negative prime discriminant divides dK [Mou10]

• d4CK = 1
– 5 negative prime discriminants divide dK and dK not congruent to 4 mod 8

[Sue09]
– 1 negative prime discriminant divides dK [Mou10]

Mouhib’s 2010 improvement on Sueyoshi’s 2004 result was significant because it applied
generally to all 4-ranks.

Another branch of inquiry on the subject of 2-class towers of imaginary quadratic fields is
inspired by the root discriminant bounds established by Odlyzko (1976). The root discrimi-
nant, |dK |1/[K:Q], remains constant throughout the class field tower, so is a useful invariant to
study. A number field K will have infinite class field tower if its root discriminant is less than
the lower bound on the root discriminant, so successfully finding an infinite p-class tower
would improve this bound. Strategies to find infinite 2-class towers involve computation
using what is known as the O’Brien tree (also known as descendant trees in the literature),
constructed using the lower p-central series of G1. Extensive details on the methodology and
some computations can be found in [Bus03, Nov09].

2. Other Fields

While imaginary quadratic fields have been a focal point for the author’s review of liter-
ature, we wish to briefly mention that there are other results for different kinds of number
fields. For example, many of the results for imaginary quadratic fields have analogues for
real quadratic fields. In particular, an analogue for Theorem 12 for real quadratic number
fields was established by Maire.

Theorem 13. Let K be a real quadratic number field with d4CK ≥ 4. Then `2(K) =∞.

A similar result exists for cyclic cubic extensions of Q for p-towers with p ≥ 5. Finally, a
great deal of work has been done for the p-class field towers of cyclotomic fields Q(ζp). The
author recommends Franz Lemmermeyer’s comprehensive and detailed survey to interested
readers [Lem10].

Hopefully this brief sampling of the work that has been done since Golod-Shafarevich
gives a sense of how much remains to be learned about the structure of G.

3. Ramifications

Clearly, there remain many open questions regarding specifically the Galois groups of
unramified p-extensions of number fields, but the implications of this area of study extend
even further. Since a modification of the Golod-Shafarevich theorem holds for p-adic analytic
groups, and because we can currently only produce infinite class towers using the inequality,
there exists no method of producing potential counterexamples to the Fontaine-Mazur con-
jecture, as observed in [NSW13]. Lacking the background to say much more, we will leave
it at that.

1closely related to dimension subgroups, by the work of Lazard and Jennings
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