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1 Introduction

xkcd.com/410

Discrete Morse theory is a tool for determining equivalences between topological spaces arising
from discrete mathematical structures. The mathematical objects we will consider are those that
can be built from points, lines, triangles, tetrahedrons, and their higher-dimensional analogs; these
can represent structures such as vector spaces and their subspaces, sets and their subsets, graphs
comprising vertices and edges, and many others. Our notion of equivalence captures the idea of
transforming one space into another by bending, shrinking, or expanding; but without tearing,
creating holes, or filling holes. This theory was developed by Robin Forman in the 1990s as a
combinatorial analog to Morse theory, developed by Marston Morse in the 1920s. The original
theory deals with analyzing such equivalences for general topological spaces, while discrete Morse
theory provides similar methods of analysis for topological spaces endowed with additional, discrete
structure. For these structures, applications of the discrete theory are often more natural, as well
as simpler and more straightforward to apply.

Discrete Morse theory has applications throughout many fields of pure and applied mathematics.
Within pure mathematics, for example, the theory has been widely applied to problems in geometry
[Gr11], topology [Be10a], and knot theory [Va93]; and within computer science, the theory has been
used to evaluate data compression algorithms [Le04] and to bound the complexity of algorithms that
determine whether graphs have certain properties – for example, whether all components of a graph
are connected [Fo00]. If we wish to know whether a given property holds for a certain topological
space, our question can often be reduced to the question of whether the space is equivalent to
another space for which the property holds. For example, as we will see in Section 6 (as based
on [Fo00]), whether a simple algorithm exists for determining if a graph is connected depends on
whether the structure that represents the space of not-connected graphs can be shrunken to a
point. Alas, it cannot, so any algorithm for testing graph connectedness must, at least in some
cases, conduct an exhaustive search. This result has real-world implications: for example, it means
that if we want to test a communications system – say, immediately after a disaster – to determine
whether it is still connected, there is no guaranteed way of finding the answer without testing every
component individually.

This thesis is an exposition of discrete Morse theory, with new applications of the theory to
standard topological examples. Our presentation of the theory combines elements from the ex-
positions of Forman in [Fo02] and [Fo04] and Jonsson in [Jo08], and also emphasizes standard
results from graph theory upon which discrete Morse theory relies. We also briefly survey the
literature on Morse’s original Morse theory and the parallels that have been drawn between the
continuous and discrete theories. We then analyze some of the standard examples of structures
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within topology using discrete Morse theory. Although these structures are already well under-
stood, these proofs are new: we demonstrate how discrete Morse theory can be applied to produce
the standard results, and how the intuition behind the theory can be leveraged to understand these
results. We note the similarities of our technique in these examples to other applications of discrete
Morse theory throughout the literature, and highlight commonalities that suggest a more general
approach to applying discrete Morse theory to structures with analogous symmetries. We also
present an application originally by Forman [Fo00], of discrete Morse theory to a generalization of
the abovementioned problem in graph theory.

In our next section, we will define and discuss the structures that we will examine. The third
section develops the theory itself, introducing the relevant ideas, exploring the mechanics of the
theory, and demonstrating a few simple examples. Our fourth section links the ideas we have been
developing to Morse’s original theory and discusses the parallels between the two theories. The
fifth section apply discrete Morse theory to standard topological examples, and the sixth section
discusses the application mentioned above.
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2 Topological basics

xkcd.com/1029

The situation we examine in this thesis is as follows: we have a topological space, endowed
with the structure of a simplicial complex X, and we desire a simpler decomposition of this space
requiring fewer cells. Often, this simplified decomposition is a standard form that is more easily
recognizable. We accomplish this goal by collapsing our original structure as dictated by a discrete
Morse function f : X → R. Our final structure is usually no longer a simplicial complex, but a
more general form called a cell complex. Discrete Morse theory in fact applies not only to simplicial
complexes but to more general regular cell complexes, but for simplicity we restrict our attention
in this paper to simplicial complexes.

Our main theorem will state that a simplicial complex X endowed with a discrete Morse function
f is homotopy equivalent to a cell complex consisting of just the critical simplices of f (as will be
defined below). In a number of special cases, this information is sufficient to entirely determine the
homotopy type of X. For example, this is true when a number of spheres of the same dimension
all intersect in a single point, as will happen often in our examples: as we will demonstrate later
in this section, any cell complex consisting of a single 0-cell and k d-cells is homotopy equivalent
to this structure.

However, in many cases attaching the cells in different ways gives rise to different homotopy
types. For example, although the torus and the Klein bottle can both be constructed from one
0-cell, two 1-cells, and one 2-cell, these spaces have different homotopy types, as we will show below.
With greater care, we can in fact determine the homotopy type rather than just the number of cells
of each dimension, by considering the series of collapses that the discrete Morse function induces.

Before proceeding further, we define some of the aforementioned terms more precisely and justify
the above statements.

Definition 2.1. An n-simplex is a closed convex polyhedron of dimension n created by joining
(n+ 1) vertices.

Definition 2.2. An n-cell is a closed region of dimension n, homeomorphic to an n-simplex, but
as opposed to a simplex may have any number of vertices.

Definition 2.3. Let X be a topological space and cd a cell of dimension d, with boundary ∂cd.
Let a : ∂cd → X be a continuous attaching map. We attach cd to X by taking the disjoint union
of X and cd and then identifying x ∈ ∂cd with a(x) ∈ X, for all x ∈ ∂cd. We denote the resulting
space by X ∪a cd.

There are many equivalent ways to define a simplicial complex; we follow Hatcher’s definition
in [Ha01]:
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Definition 2.4. A simplicial complex X is a complex built from simplices attached via identifica-
tion of their faces such that any simplex is uniquely determined by its vertices. We can describe X
as a collection of vertices X0 and sets Xn of n-simplices, i.e. (n + 1)-element subsets of X0, such
that for all k-element subsets σk ∈ Xk, every j-element subset σj ⊂ σk is an element of Xj , for all
j < k.

Similarly, a cell complex can be defined in various ways; we follow Forman’s definition in [Fo02]:

Definition 2.5. A (finite) cell complex X is a space for which there is a sequence

∅ ⊂ X0 ⊂ ... ⊂ Xn = X

such that for i = 1, ..., n, Xi = Xi−1∪cd for a cell of some dimension d. According to this definition,
we require that X0 be a 0-cell, since it is attached to the empty set.

We note that in the literature, Definition 2.5 is often given as the definition of a CW complex,
while cell complexes are defined similarly but without restrictions on the order in which cells are
attached. However, we follow Forman in referring to the above structure as a cell complex.

A cell complex that we will encounter often throughout this thesis is the wedge of spheres:

Definition 2.6. A wedge of k spheres of dimension d is a cell complex consisting of k d-cells along
with a single 0-cell α, such that all of the n-cells intersect at α and nowhere else. We write this
structure as

∨
k S

d.

And in fact, any cell complex built from this set of cells has the same homotopy type as a wedge
of spheres. Many of our examples will require this result, so we prove it here. First, we require the
following standard lemma from topology:

Lemma 2.7. Let X be a topological space and cd a d-cell, and a, a′ : ∂cd → X two continuous
maps. If a is homotopic to a′ then X ∪a cd is homotopy equivalent to X ∪a′ cd.

Proposition 2.8. A cell complex consisting of one 0-cell and k d-cells is homotopy equivalent to∨
k S

d.

Proof. We attach cells one at a time to create the complex. As noted above, we must begin by
attaching the 0-cell. For each step of our construction thereafter, our only choice is to attach a
d-cell. The first d-cell can only be attached by the constant map, so X1 is a d-sphere. At the next
step, any continuous map from the boundary of our new cell to X1 is homotopic to the constant
map, so our new structure X2 is a wedge of 2 d-spheres. Continuing inductively, if Xi is homotopy
equivalent to a wedge of i d-spheres, any continuous map from the new cell’s boundary to Xi must
be homotopic to the constant map and thus Xi+1 is homotopy equivalent to a wedge of (i + 1)
d-spheres. We continue until we reach Xk = X. �

However, in general, the numbers of cells of each dimension is insufficient information to deter-
mine the homotopy type of a space. For example, although the torus T and the Klein bottle K
can be built from the same set of cells, they have different homotopy types:

Example 2.9.
H0(T ) = Z, H1(T ) = Z⊕ Z, H2(T ) = Z

H0(K) = Z, H1(K) = Z× Z2, H2(K) = 0
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3 Discrete Morse theory

3.1 Definitions

Throughout this section, let X be a simplicial complex, with α, β simplices (or more generally,
cells) of X.

Definition 3.1. A cell α is a face of β if α ( β. We will denote “α is a face of β” by α ∈ ∂β.

We will often speak about codimension-1 faces, i.e. faces α ∈ ∂β such that dimα = dimβ − 1.

Definition 3.2. A cell β is a coface of α if α ( β.

The essential components of Forman’s discrete Morse theory are the discrete Morse function
(Definition 3.3) and critical simplices (Definition 3.5). A discrete Morse function assigns values to
simplices such that higher-dimensional simplices usually have higher values than lower-dimensional
simplices, with some exceptions. A critical simplex is one near which no such exception occurs.
Formally:

Definition 3.3. A discrete Morse function f on a simplicial complex X is a real-valued function
on the set of simplices of X such that for each simplex β both conditions 1 and 2 hold:

1. At most one face α of β has a value greater than or equal to that of β.

2. At most one coface γ of β has a value less than or equal to that of β.

As we will demonstrate later (see Lemma 3.9), we cannot have both an α satisfying condition
1 as well as a γ satisfying condition 2 for a given β.

Example 3.4. Let X be the standard 2-simplex. The first diagram below gives the trivial discrete
Morse function in which all simplices are mapped to their dimensions. The second gives a more
complicated Morse function. The third gives a function that is not a Morse function.

Definition 3.5. A critical simplex β of a discrete Morse function f on X is a simplex for which:

1. No face α of β has a value greater than or equal to that of β.

2. No coface γ of β has a value less than or equal to that of β.

Example 3.6. In our example above, the critical simplices of f on X are, in the first case, all
simplices: [a], [b], [c], [ab], [ac], [bc], [abc]; and in the second case, the simplices [c], [ab], [abc].

Note that we have here denoted simplices by their vertices, and we will use this convention
throughout: if a simplex α has vertices v1, ..., vn, we may where convenient write it as [v1...vn].
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3.2 The main theorem

We can now state the main theorem of discrete Morse theory, as originally proven in [Fo98], although
we defer the proof until the end of this section.

Theorem 3.7. Let X be a simplicial complex with a discrete Morse function f . Then X is homo-
topy equivalent to a cell complex containing the same number of cells of a given dimension as there
are critical simplices of f of that dimension.

For example, for the 2-simplex of Example 3.4, we can reduce the original structure to just one
0-cell, one 1-cell, and one 2-cell, as dictated by the second function given. For the first function all
cells are critical, so the theorem trivially applies: the original structure is homotopy equivalent to
itself.

As another example, we consider the standard simplicial decomposition of the torus, and demon-
strate how discrete Morse theory allows us to remove all but one 0-cell, two 1-cells, and one 2-cell,
leaving us with the standard cell decomposition.

Example 3.8. The minimal simplicial complex on the torus consists of seven 0-simplices, twenty-
one 1-simplices, and fourteen 2-simplices. We label the vertices a through g:

We can mark all non-critical simplices with arrows pointing into or out of them; these arrows
are derived from a discrete Morse function, as we will explain, and each points from a simplex α
to a simplex β such that dimβ = dimα + 1. These arrows can be construed in various ways: as
a pairing of simplices, which is the approach we will generally take; as a discrete vector field, as
Forman decribes in [Fo98]; and as indications of simplicial collapses, as we will describe in the proof
of our main theorem. The critical simplices here are those labeled [d], [bg], [ef], and [bcf]:
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3.3 Pairings and the Hasse diagram

It is often useful to describe the discrete Morse function f not as a function but as a set of pairings
of simplices Pf , or simply P when the choice of f is implied, where {α, β} ∈ Pf iff α ∈ ∂β and
f(α) ≥ f(β). This preserves the essential information regarding critical simplices without requiring
us to know the actual values of f on every simplex. Thus we can work with the simplicial complex
locally rather than globally, since we need only decide how to pair simplices with their neighbors,
rather than assigning values over the entire complex such that the conditions are simultaneously
satisfied at each simplex. The critical simplices as we have defined them above are exactly those
that do not appear in the pairing P .

Instead of finding a discrete Morse function f for a complex X, it is often more convenient to
find a pairing P and check that it corresponds to some discrete Morse function f on X. Clearly,
every f has an associated Pf ; but not every P corresponds to some f . We thus need to determine
when a pairing P is equal to Pf for some f . We note that when such an f exists, it is not unique;
each Pf actually corresponds to an equivalence class of discrete Morse functions, where f and f ′

are equivalent if they have the same critical simplices and the same pairs of simplices α, β such that
α ∈ ∂β but f(α) ≥ f(β). However, we are concerned only with the existence of a corresponding f ,
and not its uniqueness.

First, we note that for a pairing P associated with a discrete Morse function f , each simplex of
X can be involved in at most one pair:

Lemma 3.9. For all γ ∈ X, there exists at most one pair {α, β} ∈ P s.t. γ = α or γ = β.

Proof. First, by condition 1 of Definition 3.3, there exists at most one α such that {α, γ} ∈ P .
Similarly, by condition 2, there is at most one β such that {γ, β} ∈ P .

Now assume that there exists a k-simplex γ such that {α, γ} ∈ P for some α and {γ, β} ∈ P
for some β, so that f(γ) ≤ f(α) and f(β) ≤ f(γ). Since α is a (k − 1)-simplex, we can write
α = [vi1 ...vik ] where the vij are 0-simplices. Then since α is a face of γ, we have γ = [vi1 ...vikvik+1

]
for some 0-simplex vik+1

; and γ is a face of β, so β = [vi1 ...vikvik+1
vik+2

] for some 0-simplex vik+2
.

We consider the k-simplex γ′ = [vi1 ...vikvik+2
], so that α ∈ ∂γ and γ ∈ ∂β. We know from above

that {α, γ′} 6∈ P and {γ′, β} 6∈ P , so f(α) < f(γ′) and f(γ′) < f(β).
Combining these inequalities with those above, we find that

f(α) < f(γ′) < f(β) ≤ f(γ) ≤ f(α)

i.e. f(α) < f(α), a contradiction. Thus we cannot have both {α, γ} ∈ P and {γ, β} ∈ P . �

We illustrate the above lemma for the case k = 1. Here, we have α = [v3], γ = [v1v3], β =
[v1v2v3], γ′ = [v2v3].
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Lemma 3.9 gives us a necessary but not sufficient condition for the existence of an f corre-
sponding to P . To derive the second condition, it is helpful to consider a graphical representation
of the simplicial complex X and pairing P : the modified Hasse diagram. Hasse diagrams – which
are not specific to discrete Morse theory, and are used throughout various fields of mathematics
to represent finite partially ordered sets – are directed acyclic graphs, with which we represent a
partial ordering via its transitive reduction, i.e. the minimal relation whose transitive closure gives
the full ordering.

Definition 3.10. The Hasse diagram of a simplicial complex X is a directed acyclic graph on
the partially ordered set of simplices of X, ordered by the relation α < β iff α ∈ ∂β.

The transitive reduction is given by including an edge from β to α for all pairs of simplices
{β, α} where α ∈ ∂β and dimα = dimβ − 1. We typically write all simplices of a given dimension
in one row, and draw the diagram as a series of rows of decreasing dimension; thus we can refer to
a specific level of the graph to mean the set of all simplices of a given dimension.

Example 3.11. The Hasse diagram of the standard 2-simplex:

Given the Hasse diagram H of X and a pairing of simplices P , we can construct a modified
directed graph H ′ by flipping the edge between any two simplices that appear as a pair in P . Note
that a pairing P consists only of pairs {α, β} such that dim(α) and dim(β) differ by one, so there
is always a corresponding arrow in the graph for each possible pair. When the graph concerned is
clear from context, we may refer to H ′ as the “Hasse diagram” rather than the “modified Hasse
diagram.”

Example 3.12. The modified Hasse diagram of the standard 2-simplex for a given pairing:

The additional condition we require for a pairing P to correspond to some f has to do with
whether P – and thus the associated modified Hasse diagram H ′ – contains a cycle.

Definition 3.13. A pairing P is cyclic if there exists a sequence of simplices α1, β1, ..., αn, βn, αn+1

where n > 1 such that

• dim(αi) = d and dim(βi) = d+ 1 for some d, for all i = 0, ..., n,
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• both αi, αi+1 ∈ ∂βi, but αi 6= αi+1, and {αi, βi} ∈ P for all i = 0, ..., n, and

• α1 = αn+1.

We call the set {α1, β1, ..., αn, βn, αn+1} a cycle. If a pairing P is not cyclic, then it is acyclic.

Theorem 3.14. P is acyclic if and only if the corresponding Hasse diagram H ′ is acyclic.

Proof. First, assume that P contains a cycle {α1, β1, ..., αn, βn, αn+1}. We have that αi, αi+1 ∈ ∂βi
for all i. Each pair {αi, βi} is in the pairing P , so there is an arrow in H ′ from αi to βi. Then
since αi+1 ∈ ∂βi and {αi+1, βi} is not a pair in P , there is an arrow in H ′ from βi to αi+1. We can
follow these arrows to form a path from α1 to αn+1 = α1; thus we have a cycle in H ′.

Now, assume there is a cycle in H ′. We claim that this cycle can include only simplices of
dimension d and (d + 1), for some d. Assume not; then since at every step in the path we must
move up or down in dimension, at some point in the cycle we must move upward twice from a
simplex α of dimension (d − 1) to a simplex γ of dimension (d + 1); this can only be achieved by
a sequence of two consecutive upward arrows, from α to β and β to γ. But then {α, β} and {β, γ}
must have both been in P . So there is a cycle among simplices of dimension d and (d + 1); this
cycle must alternate between downward and upward arrows, where each upward arrow indicates a
pair {αi, βi} ∈ P and each downward arrow indicates an αi+1 6= αi ∈ ∂βi, leading from α1 back to
αn+1 = α1. This sequences gives us a cycle in P , as desired. �

We claim that a pairing P has an associated discrete Morse function f if and only if every simplex
is a member of at most one pair in P and P is acyclic; this was originally proven by Forman in
[Fo98], using instead the language of discrete vector fields. With the help of the following results
from graph theory, we will prove that these two conditions together are necessary and sufficient.

Lemma 3.15. If G is a finite acyclic graph then there exists a vertex in G having no inward-
oriented arrows.

Proof. Assume every vertex vi has an inward-oriented arrow. We choose some vi1 and backtrack
along one of its inward-oriented arrows to find vi2 . Continuing inductively, we create a chain, always
choosing a vij that we have not already chosen. If at some point there is no such vij , we have found
a cycle. If we reach the final vertex vin without having created a cycle, backtracking along the final
inward arrow will force us to choose a vertex already in the chain, thus creating a cycle. �

This fact allows us to perform a topological sort on any acyclic graph: we choose one such
vertex with no inward-oriented arrow, add it to the front of a list, and then remove the vertex and
its associated outward arrows from the graph. The remaining subgraph is still acyclic, so we can
continue inductively, removing vertices with no inward arrows one by one and appending them to
the list in this order, until no vertices remain. We use this construction in the following lemma:

Lemma 3.16. Let G be a finite directed graph. G is acyclic if and only if there is a real-valued
function f on the vertices such that f(vi) > f(vj) whenever there is an edge from vi to vj.

Proof. First, assume that G contains a cycle of vertices {v0, v1, ..., vn, vn+1 = v0}. Then for any
such function f , we require f(v0) > f(v1) > ... > f(vn) > f(vn+1) = f(v0), i.e. f(v0) > f(v0),
which is impossible.

Now, assume that G contains no cycles. We can perform a topological sort on G as described
above, giving us a list of vertices {v1, ..., vm}. We assign values in decreasing order: let f(vi) =
m− i. Whenever there was an edge from vi to vj , our procedure added vi to the list before vj , so
f(vi) > f(vj) as desired. �
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It follows that such an f is strictly decreasing along each directed path in G.

Theorem 3.17. A pairing P on a simplicial complex X corresponds to a discrete Morse function
f if and only if every simplex of X appears in at most one pair of P and P is acyclic.

Proof. For the forward direction, if we have a discrete Morse function f , we can construct the
corresponding pairing P ; by Lemma 3.9 every simplex appears in at most one pair in P . If P
were cyclic with cycle {α1, β1, ..., αn, βn, αn+1} then we would have f(α1) > f(β1) > ... > f(αn) >
f(βn) > f(αn+1) i.e. f(α1) > f(α1). Thus P is acyclic.

Conversely, by Theorem 3.14, P is acyclic if and only if the corresponding modified Hasse
diagram is acyclic. By Lemma 3.16, this occurs exactly when there is a real-valued function of the
vertices f such that f(α) > f(β) whenever there is an edge from α to β. By the construction of the
modified Hasse diagram, f assigns higher values to higher-dimensional simplices, except in cases
where {α, β} ∈ P . Since no simplex appears in more than one pair in P , for every simplex α this
function f can, at most, assign a higher value than f(α) to one face of α, or assign a lower value
to one coface of α. Thus, we take f to be our discrete Morse function. �

3.4 Collapsing simplices

The final idea we introduce before proving our main theorem is that of simplicial collapse. As noted
earlier, although we are working with spaces that have the structure of simplicial complexes, the
process of collapsing may convert a simplicial complex into a more general cell structure. In this
section, we will thus speak about both simplicial complexes and cell complexes.

Definition 3.18. Let α be a face of X. If there is no β ∈ X such that α ∈ ∂β, then α is a maximal
face in X.

Definition 3.19. Let α, β be faces of X, with α ∈ ∂β. If α is not a face of any other cell β′ ∈ X,
then α is a free face of β.

Note that if α is a free face of β, then β is maximal in X (otherwise, if β ∈ ∂γ, then α ∈ ∂γ as
well). In addition, only a codimension-1 face can be a free face: if dimα < dimβ − 1, there would
exist γ ∈ ∂β with dimα < dim γ < dimβ such that α ∈ ∂γ.

Theorem 3.20. If α is a free face of β, then X is homotopy equivalent to X\(int(α)∪ int(β)). We
refer to the deformation retraction X\(int(α)∪ int(β)) as the simplicial collapse of X with respect
to α and β.

In fact, when X and X ′ are related by such a simplicial collapse, they are simple homotopy
equivalent. Simple homotopy theory was developed by Whitehead, and described by Cohen in
[Co73]; as they demonstrate, simple homotopy equivalence is a refinement of the idea of homo-
topy equivalence, and thus implies homotopy equivalence. We will not concern ourselves with the
distinction here.

Discrete Morse theory can be viewed as a generalization of the theory of simplicial collapse, as
Jonsson formulates it in [Jo08]. We consider a simplicial complex X and a discrete Morse function
f , inducing a pairing P . As we will see in the proof of Theorem 3.7, we will remove unmatched
faces before performing collapses involving their neighbors, so we can drop the condition that α
be a free face and instead require only that α be a face of no other matched simplices in P . In
particular, our goal will be to create a series of pairs {αi, βi} such that for all i, αi 6∈ ∂βj for any
j > i.
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Theorem 3.21. Any acyclic pairing P on X admits an ordering of pairs {α1, β1}, ..., {αn, βn} such
that for all i, αi 6∈ ∂βj for any j > i.

Proof. Let H ′ ⊂ H be the subgraph consisting of only the matched faces in H. An arrow oriented
inward to a simplex α from a simplex γ means either a) α ∈ ∂γ and {α, γ} 6∈ P or b) γ ∈ ∂α and
{α, γ} ∈ P . If α has no inward-oriented arrows, neither a) nor b) is satisfied, i.e. α is not paired
with any of its faces, and the coface which α is paired is the only matched face of X containing α.
Since H ′ ⊂ H is acyclic, by Lemma 3.15, there is a simplex α1 ∈ H ′ that has no inward-oriented
arrows. Thus α1 is a face of exactly one matched simplex in H ′, say β1, with which it is paired. Thus
we can perform the simplicial collapse X → X\{α1, β1} to find a homotopy-equivalent complex;
call it X1. We now consider the subgraph H ′1 := H ′\{α1, β1} (also removing the corresponding
edges). Since H ′1 ⊂ H ′, it is acyclic, so we can repeat the process to find a new pair {α2, β2}.
Continuing inductively, at the ith step we can find another simplex that is the face of exactly one
matched simplex in Xi−1 and is thus a valid candidate for a simplicial collapse. We continue until
we have gone through all the matched pairs and our final subgraph H ′n is empty.

The sequence {α1, β1}, ..., {αn, βn} is now the desired ordering of pairs such that for all i,
αi 6∈ ∂βj for any j > i. �

The above theorem gives a sequence of collapses that cancels out, pair by pair, the portion of
X consisting of non-critical simplices. This is a major idea of discrete Morse theory – that all of
these non-critical simplices have no effect on the homotopy type of X, and thus can be removed.
The proof of the main theorem of discrete Morse theory is essentially the above, together with the
mechanics of addressing unmatched simplices as they arise.

Proof of Theorem 3.7: Let H be the modified Hasse diagram associated with f on X. Since H is
acyclic, there is a simplex α that has no directed edges oriented into it. Either α is unmatched,
in which case it has no cofaces, i.e. it is maximal and critical; or it is matched, in which case as
above, α is a free face of β with {α, β} ∈ P .

If α is maximal and critical, then let X ′ := X\int(α). Clearly, X is the result of attaching the
cell α to the cell complex X ′.

If α is a free face of β with {α, β} ∈ P , let X ′ := X\(int(α)∪ int(β)). Then, by Theorem 3.20,
X is homotopy equivalent to X ′.

We now consider X ′ ⊂ X: the corresponding pairing P ′ remains acyclic, so we can continue
by induction, choosing another simplex α′ in H ′ having no inward-oriented edges. At each step,
we either find and remove another critical simplex, or perform another step in constructing the
ordering of pairs of Theorem 3.21. At each step we remove some number of cells, so this protocol
eventually terminates.

Retracing these steps in reverse, we successively perform one of two operations: we either
attach a pair of non-critical cells, without changing the homotopy type; or we attach a critical
cell. The steps in which we attach two non-critical cells have no effect on the homotopy type of
our final complex, so we can construct a complex equivalent to X by leaving out these steps and
just attaching the critical cells one by one. Thus X is equivalent to a complex containing a cell of
dimension k for every critical simplex of dimension k, as desired. �

3.5 Example: the torus

We demonstrate the technique on the torus, our example from above.

Example 3.22. We begin with the traditional simplicial complex containing seven 0-simplices,
twenty-one 1-simplices, and fourteen 2-simplices, and end with a cell complex consisting of one
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0-cell, two 1-cells, and one 2-cell. To conserve space, rather than depicting each collapse one by
one, we will at each step perform all of the valid collapses at once:

14



3.6 Canceling critical points

Finally, we might wonder how to construct optimal discrete Morse functions, having as few critical
simplices as possible. In general this is a difficult problem – for example, as Forman remarks in
[Fo02], it contains the Poincaré conjecture – and algorithmically, the problem is NP-hard [JP06].
Those constructing discrete Morse functions in practice often rely upon heuristic techniques [Le02].

However, there is a simple condition that is sufficient to cancel to critical simplices; as Forman
notes in [Fo02], the continuous version appears as a key step in a more general proof by Morse in
[Mo34]. Forman formulates the analogous condition for discrete Morse functions, which he presents
in terms of discrete vector fields in [Fo98]. We recast this idea in the language of pairings; the
theorem is as follows:

Theorem 3.23. Let f be a discrete Morse function on X such that α, β are critical, with dimα =
dimβ − 1, and let there be exactly one sequence of distinct simplices

{β =: β0, α0, β1, α1, ..., βn, αn := α}

such that for i = 0, ..., n, αi ∈ ∂βi and for i = 0, ..., n − 1, αi ∈ ∂βi+1 and {αi, βi+1} ∈ P . Then
there is another discrete Morse function f ′ with the same critical simplices as f , except that α, β
are no longer critical.

Proof. We take the pairing P associated with f and remove all pairs of the form {αi, βi+1} as
described above to create a modified pairing P ′. We then add to P ′ all pairs of the form {αi, βi}
for i ∈ [0, ..., n].

No simplex is involved in more than one pair in P ′, since P ′ just contains all the simplices
paired in P , plus α and β, which were previously unpaired. And P is acyclic, since the only new
path we have introduced is αn, βn, αn−1, ..., α0, β0 (and its subpaths), and any cycle involving this
path would require an additional path from β0 = β to αn = α; but we assumed that the sequence
we just reversed was, until then, the unique path from β to α.

The unpaired simplices in P ′ are exactly those unpaired in P , less α and β. Thus P ′ corresponds
to a discrete Morse function f ′ with the same critical simplices as f , less α and β, as desired. �

We illustrate an example of the above theorem: the path in the first figure can be reversed to
create the path including α and β in the second.
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4 (Continuous) Morse theory

Discrete Morse theory is an adaption of a continuous version, simply called Morse theory, in which
the object of study is a smooth manifold rather than a simplicial complex. Morse theory was
introduced by Marston Morse in the 1920s [Mo34], and Milnor’s book [Mi63] is now the standard
reference. The theory relies on the observation that a differentiable function on a manifold will
generally reflect the manifold’s topology: by analyzing the function’s critical points, it is possible
to construct a cell structure for the manifold. In this section, we explore the parallels between
discrete Morse theory and the original theory. First, we introduce the basic components of Morse
theory: the Morse function and its critical points, which are analogous to the discrete versions with
which we began. In this section, let X be a smooth manifold.

Definition 4.1. Let f : X → R be a smooth function. A point x ∈ X is a critical point if

∂f

∂x1
(x) = ... =

∂f

∂xn
(x) = 0

Definition 4.2. Let x ∈ X be a non-degenerate critical point of f (i.e. the Hessian ∂2f
∂xi∂xj

(x) 6= 0).
The number of linearly independent axes along which f is decreasing at x is the index of x.

The main result of Morse theory, as proven in [Mo34], is as follows:

Theorem 4.3. Let f : X → R be a smooth function. For all non-degenerate critical points x of f ,
X contains a cell of dimension dx, where dx is the index of x.

We will explore this theory with a few examples. A Morse function that is simple to analyze is
given by the height function on the manifold, which is valid whenever no two critical points occur
at the same height. If they do, we can “tilt” the manifold to avoid this problem:

We can then understand the Morse function as giving us a method from which to build the
simplicial complex from the bottom up. This interpretation of the Morse function arises from the
following theorems of Morse, as demonstrated by Milnor in [Mi63]:

Definition 4.4. Let X be a smooth manifold. Then we define X(a) ⊂ X to be the submanifold

{x ∈ X|f(x) ≤ a}

Theorem 4.5. If there is no critical point x ∈ X such that a < f(x) ≤ b, then X(a) and X(b) are
homotopy equivalent.

Theorem 4.6. If there is exactly one critical point x such that a < f(x) ≤ b, let d be the index of
x. Then X(b) is homotopy equivalent to X(a) ∪ cd, where cd is a cell of dimension d.
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These theorems are actually entirely analogous to the discrete case. We define X(a) ⊂ X in the
discrete case analogously to Definition 4.4. We can then restate Theorem 3.7 to parallel Theorems
4.5 and 4.6, and the proofs follow from our proof of Theorem 3.7:

Theorem 4.7. Let X be a simplicial complex with discrete Morse function f . If there is no critical
simplex α ∈ X such that a < f(α) ≤ b, then X(b) and X(a) are homotopy equivalent.

Theorem 4.8. If there is exactly one critical simplex α such that a < f(α) ≤ b, let d be the
dimension of α. Then X(b) is homotopy equivalent to X(a)∪∂α cd, where cd is a cell of dimension
d.

Theorem 4.6 makes clear why having two critical points at the same height pose a problem.
However, as long as the critical points are isolated, we can tilt the manifold as demonstrated
above to eliminate the problem. We examine as an example the two-holed torus above, with its
corresponding height function when tilted vertically:

Example 4.9. The two-holed torus:

The labeled points are the critical points of the height function. At point a, the height is
everywhere increasing, so this corresponds to a 0-cell. At points b, c, d, and e, the height is decreasing
along one axis, so these each correspond to a 1-cell. Finally, at f , the height is decreasing along
both axes, giving us a 2-cell. Thus we find that such a manifold is homotopy equivalent to a cell
complex with one 0-cell, four 1-cells, and one 2-cell. We can envision building the manifold from
the bottom up, attaching a cell of the appropriate dimension each time we cross a critical point. In
this case we begin with the 0-cell, attach the four 1-cells in succession, and finally attach the 2-cell
last.

We will examine the circle as a simple example, demonstrating how discrete and continuous
Morse theory allow us to analyze the structure in parallel ways. Many structures admit analysis
via both discrete Morse theory and the original Morse theory, although parallel functions are not
always as simple to construct as they will be in this example.

Example 4.10. The fully reduced cell complex on the circle consists of a single 0-cell and a single
1-cell:
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Any simplicial complex on the circle with an associated discrete Morse function will have as
critical simplices this 0-cell and 1-cell. We can impose a different structure than the one show
above by adding an equal number of non-critical 0-cells and 1-cells; we can then use discrete Morse
theory to analyze the resulting structure. As the number of extra cells in the structure approaches
infinity, we can view the analysis as a question for continuous Morse theory.

Let α be our critical 0-cell and β our critical 1-cell, and without loss of generality let f(α) =
0, f(β) = 1. A decomposition with (n + 1) 0-cells and (n + 1) 1-cells each can be thought of as
having the critical 0-cell at the bottom, the critical 1-cell at the top, and n

2 0-cells and n
2 1-cells

between them on either side. Then we can assign values of f as follows: let iγ indicate the distance,
in terms of number of cells, between a given cell γ and the critical 0-cell. Let f(γ) = iγ

n ; so we have
an increasing function with its minimum at α and its maximum at β.

This is a valid discrete Morse function, since every 0-cell except α has f value greater than the
1-cell below it but less than the 1-cell above it, and similarly every 1-cell except β has f value less
than the 0-cell above it but greater than the 0-cell below it. This function pairs each 0-cell with
the 1-cell directly below it, giving rise to a series of simplicial collapses that result in the reduced
cell complex pictured above.

As n→∞, our discrete Morse function f turns into a smooth, monotonically increasing function
between α and β – essentially a height function (though possibly increasing at a rate different
from the height, depending on the lengths we assign to each successive extra pair of simplices).
The critical points of this height function are α, where the height is nowhere decreasing, thus
representing a 0-cell; and β, where the height is decreasing along one axis, thus representing a
1-cell.

Given a structure that admits analysis by both theories, we might ask which theory produces
the sharpest result. First, we must introduce a standard by which to measure our functions:

Definition 4.11. The ith Betti number of a manifold X is bi := dimHi(X).

As proven in [Mi63], for a manifold X with discrete Morse function f , if ni denotes the number
of critical simplices of dimension n (or f a Morse function with ni critical points of index n), then
the following inequalities hold:

Theorem 4.12. The weak Morse inequalities:

1. For i = 0, ...,dimX, ni ≥ bi

2.
dimX∑
i=0

(−1)ini =
dimX∑
i=0

(−1)ibi

In the second, we note that the right-hand side is the Euler characteristic of X, χ(X). This
observation will be important to much of our later analysis. Intuitively, this equation comes from
the fact that when we perform a simplicial collapse, we get rid of two simplices whose dimensions
differ by one, so their contributions to the sum added up to 0: one of them contributed +1 while
the other contributed -1.

As the name implies, these inequalities can be strengthened to the strong Morse inequalities:

Theorem 4.13. The strong Morse inequalities: For all d = 0, ...,dimX,

d∑
i=0

(−1)d−ini ≥
d∑
i=0

(−1)d−ibi
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These inequalities set bounds for how few critical cells we might possibly find in a Morse
function; thus we can judge Morse functions by how closely they approach these bounds.

Definition 4.14. If X is a manifold with Morse function f , if ni = bi for all i, f is perfect.

For example, the torus has Betti numbers b0 = 1, b1 = 2, b2 = 1, so the weak Morse inequalities
tell us that the decomposition we found in Example 3.22 is the best possible – no decomposition
with fewer cells can exist.

As proven by Benedetti in [Be10a], given a fixed triangulation of a manifold X, smooth Morse
theory generally approaches closer to the above bounds than discrete Morse theory applied to the
given triangulation. However, as Benedetti and others demonstrate in later works, if we are allowed
to refine a given triangulation, discrete Morse theory reaches as close to these bounds as Morse
theory [Be10b], and may even reach closer [AB11].

We continue with a number of examples demonstrating the use of discrete Morse theory, in which
we focus on constructing acyclic partial matchings of the Hasse diagram to determine simplified
cell structures.
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5 Topological examples

xkcd.com/982

5.1 The k-skeleton of the n-simplex

Definition 5.1. Let X be a simplicial complex of dimension n. The k-skeleton Xk ⊂ X is the
subcomplex consisting of all simplices up to and including those of dimension k.

Theorem 5.2. The k-skeleton of the n-simplex is homotopy equivalent to
∨

( n
k+1)

Sk.

Proof. The k-skeleton of the n-simplex on vertices v0, ..., vn consists of the (n+ 1) 0-simplices [vi],
the

(
n+1

2

)
1-simplices [vi1vi2 ], ... , up to the

(
n+1
k+1

)
k-simplices [vi1vi2 ...vik+1

]. We will assume
without loss of generality that each simplex is written with its vertices labeled in ascending order.

We construct a matching as follows: Choose a 0-simplex to be left out of the matching, say v0.
Then match each remaining 0-simplex with the 1-simplex that connects it with v0; i.e. for each
i 6= 0, we create the pair {[vi], [v0vi]}.

Then all 1-simplices of the form [v0vi] are paired, leaving us only with 1-simplices of the form
[vivj ], i, j 6= 0. Thus we can pair each such [vivj ] with the 2-simplex [v0vivj ].

Now all remaining unpaired 2-simplices are of the form [vivjvk], i, j, k 6= 0, so we can pair each
such simplex with the 3-simplex [v0vivjvk]. Continuing inductively, we go on until we have paired
all (k − 1)-simplices of the form [vi1 ...vik ], i1, ..., ik 6= 0 with k-simplices [v0vi1 ...vik ]. We have now
paired all simplices in the graph exactly once except for the 0-simplex [v0] and the k-simplices
[vi1 ...vik+1

] where i1, ..., ik+1 6= 0.
This matching is acyclic. As demonstrated in Theorem 3.14, any cycle must be contained

within two consecutive levels of the graph; so we assume there exists a cycle including the sequence
α1, β1, α2 where dimβ1 = d = dimαi + 1 for some d. Since {α1, β1} ∈ P , α1 does not include v0, so
we can write α1 = [vi1 ...vid ], i1...id 6= 0. Then β1 = [v0vi1 ...vid ], and α2 = [v0vi1 ...vij−1vij+1 ...vid ] for
some j. But α2 includes v0, so it has no upward arrows emanating from it, and we cannot continue
on to any β2. Thus the matching is acyclic.

How many k-simplices were left unpaired? The unpaired simplices are all of the form [vi1 ...vik+1
],

i1, ..., ik+1 6= 0; that is, they are given by (k + 1) of the n vertices v1, ..., vn. Thus there are
(
n
k+1

)
unpaired k-simplices, along with the 0-simplex v0.

So the k-skeleton of the n-simplex is homotopy equivalent to a complex consisting of one 0-
simplex and

(
n
k+1

)
k-simplices; by Proposition 2.8, it is thus homotopy equivalent to

∨
( n
k+1)

Sk. �
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As we can see from the weak Morse inequalities, the discrete Morse function we have just found
is perfect – no other function could give us fewer critical simplices.

In the above pairing, we originally left out one 0-simplex, thus we had(
n+ 1

1

)
− 1

0-simplices to pair with 1-simplices, leaving(
n+ 1

2

)
−
((

n+ 1
1

)
− 1
)

1-simplices to pair with 2-simplices, etc. Thus the number of leftover k-simplices is(
n+ 1
k

)
−
(
n+ 1
k − 1

)
+ ....+ (−1)k

(
n+ 1

0

)
which by combinatorics equals

(
n
k+1

)
.

As we can see,
(
n
k+1

)
is the reduced Euler characteristic (denoted χ) of the k-skeleton of the

n-simplex (actually, it is (−1)k+1 · χ). This result follows from Theorem 4.12, which stated that

dimX∑
i=0

(−1)ini =
dimX∑
i=0

(−1)ibi

In fact, whenever we are able to reduce a complex to a wedge of spheres, so that we have some
number of cells of dimension n and a single cell of dimension 0, their alternating sum must equal
(−1)nχ(X). Thus the number of cells of dimension n is χ(X). Intuitively, we began with some
triangulation of X, from which we can find χ(X). But χ(X) is invariant with respect to the
structure we place on X, and indeed every simplicial collapse eliminates two cells of consecutive
dimension, leaving χ(X) unchanged. Thus in our final structure, the entire value of χ(X), less one
0-simplex, is found among cells of dimension n.

The fact that we have χ rather than χ arises from a subtlety that we have neglected until this
point. We have chosen the convention that ∅ is not a subset of a simplicial complex X and cannot
be included in a pairing; but if we consider ∅ to be a (−1)-simplex of every simplicial complex, then
instead of choosing a 0-simplex to leave out of the pairing, we can instead pair that 0-simplex with
∅. This removes a single, previously critical 0-simplex from our structure, so our new result tells
us about the reduced homology of the structure rather than its homology, and thus in the Morse
inequalities we must replace χ with χ.

5.2 The flag complex on F3
2

Definition 5.3. Let V be an n-dimensional vector space. A k-flag of V , denoted fk, is a set of
vector spaces (sometimes referred to as a chain)

{vi1 , ..., vik |0 ( vi1 ( ... ( vik ( V }

where vij has dimension ij .

For shorthand, we will often leave off the 0- and n-dimensional vector spaces, which are the
same for all flags, and write just

fk = vi1 ( ... ( vik
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In the case of a vector space V over a finite field, the flag complex of V consisting of all flags,
denoted F (V ), can be represented as a finite simplicial complex: we consider each k-flag as a
(k − 1)-simplex, and define the face relation by fj ∈ ∂fk if fj ( fk.

We can analyze the homotopy type of the flag complex using discrete Morse theory. For purposes
of illustration, we will first explore the flag complex on the 3-dimensional vector field over F2, and
then extrapolate our method to the more general case. Although these results are known, the
following proof is original.

Theorem 5.4. Let V = F3
2. Then F (V ) is homotopy equivalent to

∨
8 S

1.

Proof. We first establish some notation. V is spanned by the three standard basis vectors

e1 := [1, 0, 0], e2 := [0, 1, 0], e3 := [0, 0, 1]

We note that there are seven lines contained in V :

e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3

Each plane is determined by two lines, and each line is contained in three planes, so there are(
7
2

)
/3 = 7 planes:

span{e1, e2}

span{e1, e3}

span{e1, e2 + e3}

span{e2, e3}

span{e2, e1 + e3}

span{e3, e1 + e2}

span{e1 + e2, e1 + e3}

The 0-simplices of our complex are given by f1 = vi (i = 1, 2), where vi is one of the 7 lines or
7 planes, and the 1-simplices are given by f2 = v1 ⊂ v2. The faces of the 1-simplex v1 ⊂ v2 are the
0-simplices v1 and v2.

The seven lines and seven planes give us fourteen 1-flags. Since each line is contained in three
planes (or equivalently, each plane contains three lines), there are a total of twenty-one 2-flags,
namely:

e1 ⊂ span{e1, e2}

e2 ⊂ span{e1, e2}

e1 + e2 ⊂ span{e1, e2}

...

e1 + e2 ⊂ span{e1 + e2, e1 + e3}

e1 + e3 ⊂ span{e1 + e2, e1 + e3}

e2 + e3 ⊂ span{e1 + e2, e1 + e3}

This structure can be represented by the Heawood graph, as given below, with circles repre-
senting 1-flags and lines representing 2-flags. We use black circles for 1-flags corresponding to lines,
labeled accordingly, and white circles for 1-flags corresponding to planes, consisting of the lines
adjacent to (and thus included in) them:
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We want to construct a pairing P with no duplicates such that the resulting modified Hasse
diagram is acyclic. Our approach is motivated by Brown’s analysis of the flag complex in terms of
buildings [Br89], which we will summarize briefly: Brown first sets aside a maximal flag, i.e. one
containing a vector space of each dimension i = 1, ..., n− 1:

f0
n := u1 ⊂ ... ⊂ un−1

We will use the natural ordering of our basis vectors, by which e1 < e2 < e3 and e1 + e2 < e3,
and choose our ui to be as small as possible, so for F3

2 we take u1 = e1, u2 = span{e1, e2}. Brown
defines a relation opposite on maximal flags v1 ⊂ ... ⊂ vn−1:

v1 ⊂ ... ⊂ vn−1 is opposite v′1 ⊂ ... ⊂ v′n−1 if vi ⊕ v′n−i = V for all i = 1, ..., n− 1

Let S := {fn|fn not opposite f0
n} be the set of all maximal flags not opposite to f0

n. Then we can
define the subcomplex F ′ ⊂ F

F ′ =
⋃
S

⋃
fk⊂fn

fk

i.e. the subcomplex consisting of all maximal flags that are not opposite to f0
n as well as all of their

faces. (Note that fk ⊂ fn includes all faces of fn along with fn itself.) Brown shows that F ′ is
contractible; our goal will be to show this result using discrete Morse theory.

Thus, we want to construct a pairing P that pairs all flags fn ∈ S and all faces fk ∈ ∂fn for all
fn ∈ S, leaving as critical simplices just the flags f ′n 6∈ S, as well as the 1-flag u1 (to which F ′ will
contract).

We can break the 2-flags in S into three categories, based on their “distance” from f0
2 : Either

a) v1 = u1 and v2 = u2

b) v1 = u1 or v2 = u2 (but not both)

c) v2 ⊃ u1 or v1 ⊂ u2 (but v1 6= u1, v2 6= u2)

The 2-flags not in S, which are opposite to f0
2 , fall into none of these categories. As suggested

above, these categories distinguish simplices based on their distance from f0
2 , where simplices of
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category a) are equal to f0
2 ; simplices of category b) are adjacent to those of category a), in that

they share a codimension-1 face; and simplices of category c) are adjacent to those of category b).
The remaining, opposite, simplices are adjacent to those of category c).

We pair the 2-flags of the above categories according to the following rules:

a) Since u1 must be left unpaired, pair {v2, v1 ⊂ v2}.

b) Let i ∈ {1, 2} be such that vi 6= ui. Pair {vi, v1 ⊂ v2}.

c) Let i, j ∈ {1, 2} (with i 6= j) be such that vi 6⊂ uj and vi 6⊃ uj ; equivalently, vi⊕uj = V . Pair
{vi, v1 ⊂ v2}.

We want this pairing to be a bijection between the f2 ∈ S and the f1 6= u1; i.e. it includes all of
the simplices we desire to include, with no duplicates. We can check this by exhibiting the inverse
of the above rules, matching the desired 1-flags to unique 2-flags. (For this direction, we enumerate
the possibilities according to different, more convenient categories.)

• For the 1-flag v2 = u2, pair {v2, u1 ⊂ v2}.

• For a 1-flag v1 6= u1, pair v1 with the smallest v2 ⊃ v1, i.e. {v1, v1 ⊂ {v1, e1, v1 + e1}}

• For a 1-flag v2 6= u2, pair v2 with the smallest v1 ⊂ v2, i.e. either e1, e2, or e1 + e2. (Each
v2 6= u2 must contain one of these, since at most two lines in any plane can have an e3
component; and no v2 6= u2 can contain more than one, since the sum of any two is the
third.)

By inspection, these two formulations of the pairing are indeed inverses. Now, we want to show
that the modified Hasse diagram resulting from this pairing is acyclic. Any cycle must contain a
sequence of flags f1, f2, f

′
1, f
′
2, where {f1, f2}, {f ′1, f ′2} ∈ P and f ′1 6= f1 ∈ ∂f2. We analyze the three

possible cases:

• If f2 = v1 ⊂ v2 is of category a), then the only downward arrow takes us to v1 = u1, which is
unpaired and thus has no upward arrows.

• If f2 = v1 ⊂ v2 is of category b), then the only downward arrow takes us to vi = ui. If v1 = u1,
again this is unpaired and has no upward arrows. If v2 = u2, it is paired with u1 ⊂ u2, i.e. a
2-flag of category a).

• If f2 = v1 ⊂ v2 is of category c), then the only downward arrow takes us to vi, either v1 ⊂ u2

or v2 ⊃ u1. Since u2 and u1, respectively, are then the smallest 1-flags such that vi ⊂ v2 or
v1 ⊂ vi, vi is paired with a 2-flag of category b).

Thus no matter the category of f2, we know that f ′2 must be of an earlier category (or no valid
f ′2 exists). Since this holds true at all points within a path, no path can be a cycle.

Thus we have made a valid pairing, and we are left with eight unpaired 2-flags:

e1 + e2 + e3 ⊂ span{e2, e1 + e3}

e1 + e2 + e3 ⊂ span{e1 + e2, e3}

e2 + e3 ⊂ span{e2, e3}

e2 + e3 ⊂ span{e1 + e2, e1 + e3}
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e1 + e3 ⊂ span{e2, e1 + e3}
e1 + e3 ⊂ span{e1 + e2, e1 + e3}

e3 ⊂ span{e2, e3}
e3 ⊂ span{e1 + e2, e3}

We return to our representation via the Heawood graph:

As usual, arrows indicate pairings. We can consider our pairing as being performed in steps,
category by category. Simplices in purple are considered first, and are paired (or in the case of
e1, left aside as unpaired) when considering category a). Simplices in blue are adjacent to purple
simplices, and are paired next, in category b); note that the arrows from blue simplices take us
directly to purple simplices. Simplices in green are adjacent to blue simplices, and are finally paired
when considering category c); these arrows point to blue simplices. We are now left with only 1-
simplices – those opposite to f0

2 , in Brown’s description – which remain unpaired, and are shown
in black. The colored simplices form the subcomplex F ′ that is contractible, leaving behind eight
1-simplices that all meet at e1, to which the rest of the complex has contracted. Thus the flag
complex is indeed homotopy equivalent to a wedge of eight 1-spheres, as desired. �

As in our previous example, the resulting number of spheres is in fact equal to (−1)n ·χ(F (V )):
8 = 21-14+1. We note that this discrete Morse function is also perfect.

5.3 The general flag complex and lexicographic discrete Morse functions

We now examine a generalization of the above technique to the flag complex on an n-dimensional
vector space over a finite field Fq. In the general case, the order in which we pair maximal flags
and their subsets is less obvious, so we turn to Babson and Hersh’s lexicographic discrete Morse
functions, based on lexicographic orders, as described in [BH04].

The following lemma, essential to lexicographic discrete Morse functions, allows us to construct
individual pairings Pi on each subset Xi of X and combine them to create a pairing P on all of
X corresponding to a discrete Morse function. This result is widely used and has been discovered
independently by several mathematicians; in particular, it appears in Hersh [He05] as well as
Jonsson [Jo08]. We present an adaptation of Hersh’s formulation and proof:
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Lemma 5.5. Let X be a cell complex that decomposes into collections Xi of cells, indexed by the
elements i in a partial order I that has a unique minimal element i0. Assume that every cell belongs
to exactly one Xi, and that for each i ∈ I, ∪j≤iXj is a subcomplex of X. For each i ∈ I, let Pi be
an acyclic pairing on the cells of Xi. Then ∪i∈IPi is an acyclic pairing on X.

Proof. Let H be the modified Hasse diagram associated with ∪i∈IPi. By construction, no cell
α ∈ Xi is paired with a cell β outside of Xi, so H contains no upward-oriented edges between cells
in different components. Suppose we have a downward-oriented edge from a cell β ∈ Xi to a cell
α ∈ Xj , i 6= j. Since ∪j≤iXj is a subcomplex of X, this implies j < i. Since this is true of every
downward arrow between different components at every step of the directed path, the path can
never return to Xi, so our pairing is acyclic. �

Theorem 5.6. F (Fnq ) is homotopy equivalent to a wedge of χ(F (Fnq )) spheres of dimension (n−2).

Proof. First, we create a lexicographic order; the following order was suggested by Hersh [He12].
For the vector space Fnq , we take the standard basis e1, ..., en. We can represent each maximal flag
fn−1 = 0 ⊂ v1 ⊂ ... ⊂ vn−1 ⊂ V by an n× n matrix, constructed as follows: The first i columns of
the matrix give a basis for vi. We choose these columns, left to right, so that for each column the
highest 1 (i.e. the 1 with highest row-index, furthest down in the matrix) has as high a row-index
as possible. Each such leading 1 has only 0s on its right; subject to this constraint, we pick the
next column so that its highest 1 has the highest possible row-index. We label a matrix by listing
the index of this highest-indexed 1 in the ith column for i = 1, ..., n.

For example, in the case of F3
2, we would represent the flag f2 = e1 ⊂ span{e1, e2} by the matrix1 0 0

0 1 0
0 0 1


giving rise to the labeling 123; the flag f2 = e1 + e3 ⊂ span{e1 + e2, e1 + e3} would be represented
by the matrix 1 1 1

0 1 0
1 0 0


giving rise to the labeling 321.

We can label each maximal flag by the label for its matrix, giving us a lexicographic ordering
on the maximal flags. Note that this order has a unique minimal element. The smallest label is
the only one that is strictly increasing, and a strictly increasing label can correspond only to the
identity matrix: our construction of the label requires that all values below the diagonal be 0,
and the condition that all leading 1s have only 0s to their right requires that all values above the
diagonal be 0 as well. However, in general, different flags may have the same label, so this labeling
defines a partial order: let l = l1...ln, l

′ = l′1...l
′
n; then l < l′ if, at the first index i where l and l′

differ, li < l′i. We will index these labels by a set I.
For shorthand, let X := F (Fnq ). For every maximal flag f in−1, where i ∈ I indicates the flag’s

index in our partial order, we create a subset Xi including f in−1 and all of its faces except those
belonging to other maximal flags f jn−1 with j < i. This construction mirrors that of Babson and
Hersh in [BH04]. Formally, we have

Xi := f in−1\ ∪j<i f
j
n−1
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By construction, X is the disjoint union of these sets Xi: every simplex in X is contained in
some maximal face, and thus contained in some Xi, and we avoid overlap by constructing these
sets in the given order and never including a face in Xi if it was already included in some previous
Xj .

We note that for all i ∈ I, ∪j≤iXj includes all faces of each Xj , since Xj itself is missing
only those faces that are included already in a lower-labeled simplex. Thus each such ∪j≤iXj is a
subcomplex of X. Thus our complex X and partial order I fulfill the conditions of Lemma 5.5, so
we just need to find an acyclic pairing on each Xi. We do so as follows:

First, if Xi contains no flags f in−2 – i.e. codimension-1 faces of the maximal flag f in−1 – then it
contains no flags of any lower dimension either, since all faces of lower dimension are contained in
some codimension-1 face. Thus, in this case, Xi = {f in−1}, and our pairing Pi is empty, giving us
f in−1 as a critical simplex.

Otherwise, Xi contains some codimension-1 face of f in−1, a flag f in−2. Let vi be the vector space
such that vi ∈ f in−1 but vi 6∈ f in−2. We create a pairing Pi by including the pair {fk, fk ∪ {vi}} for
all fk ∈ Xi such that fk 63 vi.

Firstly, fk∪{vi} is a valid (k+1)-flag: since f in−1 is isomorphic to an (n−1)-simplex, if we take
any face of f in−1 and add another vertex, we get another face of f in−1. In addition, every face of
f in−1 is included in some such pair, because if we remove the vertex vi from any face we get another
valid face of f in−1. The exception is the 1-flag vi itself, which this rule would pair with ∅, but this
is not a concern: if any codimension-1 face of f in−1 is paired already, vi is included in this face and
thus is already paired. If no codimension-1 face of f in−1 is already paired, it must be that i = i0,
in which case we let vi be our single unpaired 1-flag in X.

We need to show that we never try to pair an element of Xi with a face of f in−1 that is already
included in Xj for some j < i. Consider a flag fk ∈ ∂f in−1. Assume fk ∈ Xi, i.e. fk 6∈ ∂f jn−1 for any
j < i, and consider the two cases: vi ∈ fk or vi 6∈ fk. In the first case, since fk 6∈ ∂f jn−1, neither is
fk/{vi}, since fk/{vi} ⊂ fk. In the second case, if fk 6∈ ∂f jn−1, neither is fk ∪ {vi}: if it were, since
fk ⊂ fk ∪ {vi} this would force fk ∈ ∂f jn−1 as well. Thus for every potential pair {fk, fk ∪ {vi}},
one member of the pair is in Xi if and only if the other is as well.

Finally, Pi is acyclic: The complete flag f in−1 is isomorphic to the standard (n − 2)-simplex,
so that Xi is isomorphic to a subset of the simplex; and the pairing we have given, in which all
faces collapse toward a single vertex vi, is isomorphic to a subset of the pairing we constructed in
Example 5.2. Since this original pairing was acyclic, so is Pi.

Thus, by Lemma 5.5, P := ∪Pi is an acyclic pairing on X. In addition, it includes all cells
except vi0 and some number of maximal faces f in−1, i.e. (n−2)-simplices. So, as determined above,
this number of maximal faces is χ(Fnq ), and so F (Fnq ) is homotopy equivalent to a wedge of χ(F (Fnq ))
spheres of dimension (n− 2).

�

As Hersh has shown [He12], the critical cells are contributed by those flags corresponding to
the minimal element and maximal element of I. The single flag corresponding to i0 contributes
a 0-cell, as noted in our construction above, and the flags corresponding to the maximal element
are exactly those that contribute a maximal cell. Thus we need only count the number of flags
corresponding to the maximal element of I, i.e. the strictly decreasing label. Any matrix with such
a label has 1s all along the minor diagonal; by our construction of the matrix, all entries below the
minor diagonal must be 0. There are no restrictions on the entries above the minor diagonal, so
each of these entries may take on any of q values; there are n(n−1)

2 such entries, so the total number
of matrices with this label is qn(n−1)/2. Thus, F (Fnq ) is in fact homotopy equivalent to a wedge of
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qn(n−1)/2 spheres of dimension (n− 2).

5.4 Further examples

We can combine the previous examples to examine the k-skeleton of F (Fnq ):

Corollary 5.7. The k-skeleton of F (Fnq ) is homotopy equivalent to a wedge of

k∑
i=0

(−1)ici

k-spheres.

Proof. We begin with the pairing P constructed above, which pairs all simplices except one 0-
simplex and some number of (n − 2)-simplices. Then for i = n − 2, ..., k + 1 we remove all pairs
that include simplices of dimension i from P . After the final stage, we have a pairing on only
the simplices of dimension 0 through k, which, as above, leaves one 0-simplex unpaired along with∑k

i=0(−1)ici k-simplices. �

The matchings that we have created in our examples in this section share a similar flavor,
due to a common feature of the structures we have encountered: they can all be regarded as
partially ordered sets whose groups of automorphisms act transitively on the elements. Thus, we
can employ a single general rule for all simplices of a certain form, and these rules behave the same
way regardless of our choice of “special” simplices.

Other common mathematical structures share similar underlying structures, as revealed by
their homotopy types. For example, Wachs demonstrates in [Wa05] that the partially ordered set
of partitions of {1, ..., n}, ordered by merging blocks, also has the homotopy type of

∨
(n−1)! S

n−3.
Another example with such symmetry is the space of not-connected graphs on n vertices, as we
will see in the next section.
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6 Evasiveness: an application of discrete Morse theory

xkcd.com/246

Lest the reader think that discrete Morse theory is of interest only to mathematicians, we
present a final example demonstrating its relevance to the general question of determining global
information from local data. Imagine a game with two players, a hider and a guesser, and an
n-dimensional simplex X with a subcomplex Y ⊂ X, where Y is known to both players. The hider
picks a face σ ∈ X (we consider ∅ ∈ X to be a valid face), and the guesser’s goal is to determine
whether σ ∈ Y , by asking questions of the form “is vi in σ?” one by one for different vertices vi. The
guesser’s algorithm can depend on responses to previous questions, but it must be deterministic.
The guesser wins if she can determine whether σ ∈ Y in fewer than (n + 1) questions – that is,
without asking about every vertex in X – for every simplex σ.

Definition 6.1. A subcomplex Y is evasive if no winning strategy exists – i.e. for any guessing
algorithm A there exists some σ ∈ X such that (n+1) questions are required to determine whether
σ ∈ Y . If a winning strategy does exist, Y is nonevasive.

This game describes a rather general search problem, with applications to graph theory, com-
plexity theory, and combinatorics. We will explore one such application below, returning to our
example of the space of not-connected graphs.

Definition 6.2. An evader of a guessing algorithm A on an evasive subcomplex Y is a face σ ∈ X
such that when questions are asked as dictated by A, all (n+1) questions are required to determine
whether σ ∈ Y .

We note that evaders occur in pairs: if the guessing algorithm A requires (n + 1) questions
to determine whether σ ∈ Y , this means that after the nth question the algorithm has narrowed
down the possibilities to two, either σ = α ∈ Y or σ = β 6∈ Y , where β is a simplex containing all
the vertices of α plus an additional vi, so that α is a codimension-1 face of β. Thus both α, β are
evaders of A.

We can take these pairs of evaders to form a pairing P , noting the technicality that if the empty
set is an evader of A, then it will be paired with some 0-simplex vj . According to the conventions
we established previously, a matching cannot include the empty set. For this example, it will be
convenient to deviate from this convention, pairing the empty set with a 0-simplex that, according
to our earlier convention, would have been set aside as unpaired. This deviation is another way
of arriving at the reduced Euler characteristic, and reduced homology, that we have encountered
previously.

Theorem 6.3. The pairing P constructed above corresponds to a discrete Morse function on X.
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Proof. Firstly, by our construction, the pairs are clearly disjoint, since the (n+1)st question cannot
distinguish between more than two distinct simplices.

Now we need that P is acyclic. Let A be a guessing algorithm for a subcomplex Y ∈ X. For
every simplex σ ∈ X, let the sequence s(σ) = {i0, ...im} give the indices of those questions dictated
by A to which the answer is affirmative, in increasing order.

We impose a reverse-lexicographic ordering on these sequences, which hence defines an ordering
on the simplices: let s(α) = {i0, ...im}, s(β) = {j0, ...jm′}. If s(β) is an extension of s(α), i.e.
m′ > m and for all k ≤ m we have s(α) = s(β), then we say β < α. If neither s(β) nor s(α) is an
extension of the other, then we again order them reverse-lexicographically: if for some k < m,m′,
we have il = jl for all l < k and ik < jk, then β < α.

We consider a potential cycle containing the sequence {α0, β0, α1}. Since {α0, β0} ∈ P , if
s(α0) = {i0, ...im}, then s(β0) = {i0, ...im, n + 1}: these simplices are undistinguished until the
final question, at which point A asks about the single vertex vi such that vi ∈ β but vi 6∈ α. Since
α1 ∈ ∂β0, s(α1) is a subset of s(β0), missing some single index ij 6= n + 1 (since α1 6= α0). Thus
s(α1) = {i0, ..., ij−1, ij+1, ...im, n+ 1}. But ij+1 > ij , so by our ordering α1 < α0. Since this holds
for any α0, α1, every step in a path is decreasing, and thus no path can be a cycle. Thus P is
acyclic, as required. �

The main result of this section, as demonstrated by Forman [Fo00] and others, is as follows:

Theorem 6.4. If Y is nonevasive then Y is homotopy equivalent to a point.

Proof. Continuing with our P constructed above, we take the pairing P ′ ⊂ P on Y consisting of
all pairs {α, β} ∈ P such that α, β ∈ Y . Since P is acyclic, so is P ′; therefore P ′ corresponds to a
discrete Morse function on Y . Recall that X has no critical simplices (vj being paired with ∅), so
the unpaired – i.e. critical – simplices of Y are those paired with simplices in X\Y , i.e. those pairs
of evaders of A.

In particular, this implies that if Y is nonevasive, having an algorithm A with no evaders, then
there exists a pairing P that includes all simplices of Y . Thus, adding back one 0-simplex to our
count of critical simplices, we find that Y is homotopy equivalent to a point. �

The paradigm of evasiveness can be applied to a family of problems in graph theory: determining
whether a graph satisfies a given monotone decreasing graph property by checking edges one by one.
A graph property is a subset of Gn, the space of all graphs on n vertices, such that membership
in the subset depends only on the isomorphism type of the graph, i.e. the labeling of vertices is
irrelevant. A graph property is monotone decreasing if whenever a given graph has the property,
so do all of its subgraphs. Formally:

Definition 6.5. A subset P ⊂ Gn is a graph property if for all G,G′ ∈ Gn such that G,G′ are
isomorphic, then G ∈ P if and only if G′ ∈ P .

Definition 6.6. A graph property P is monotone decreasing if P (G) implies P (G′) for all G′ ⊂ G.

A conjecture attributed to Karp suggests that all non-trivial monotone graph properties are
evasive [Fo00]. We offer as an example one such monotone decreasing graph property: the set of
not-connected graphs on n vertices, Nn.

We provide a sketch of Forman’s analysis of the homotopy type of Nn, as given in [Fo02]. The
space Nn is constructed by creating a 0-simplex corresponding to each of the

(
n
2

)
possible edges in

a graph on n vertices, and then including all possible i-simplices to represent each of the possible
graphs with i+ 1 edges, up to i =

(
n
2

)
− 1.
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Theorem 6.7. Nn is homotopy equivalent to
∨

(n−1)! S
n−3.

Outline of Proof: The 0-simplices are the graphs composed of a single edge, denoted {i, j} for
the two vertices i, j that the edge connects. We first consider the 0-simplex {1, 2}. Let this be our
unpaired 0-simplex, and then for all pairs of graphs G,G+ {1, 2} such that G,G+ {1, 2} are both
unconnected, pair them (excluding the pair {∅, {1, 2}}). For any graph G that remains unpaired,
we next consider the 0-simplices {1, 3} and {2, 3}: at most one of these can be added to G with
a result that is also unconnected and not yet paired, so we add this pair to P . At the next step,
we consider all remaining unpaired graphs G combined with one of {1, 4}, {2, 4}, and {3, 4}, and
add the appropriate pair to P . We continue inductively until we have reached vertex n. Forman
demonstrates that this pairing is acyclic.

The unpaired graphs that are left are those unconnected graphs that are the union of two
connected trees, with the vertices 1 and 2 in separate components, and such that the vertex numbers
increase along every path emanating from the vertices 1 and 2. There are a total of (n− 1)! such
graphs, each comprising n− 2 edges, so they are (n− 3)-simplices. �

Example 6.8. Nn has the homotopy type of
∨

(n−1)! S
n−3. Thus Nn is evasive. We illustrate the

case for n = 4:

We can represent the space of all graphs on 4 vertices by a simplex on 6 vertices, taking the
edges of our graph, of which there are

(
4
2

)
= 6, to be the vertices of our simplex. The space of

not-connected graphs is a subcomplex, as given by the colored simplices above: the one-edged
graphs that are not connected (i.e. all of them) are colored blue, the two-edged graphs that are
not connected (again, all of them) are colored purple, and the three-edged not-connected graphs
(this time, only 4 of the 20) are colored green. All graphs with four or more edges are connected
(luckily for us, since they’d be difficult to color in two dimensions). As we saw earlier, this space is
homotopy equivalent to a wedge of six 1-spheres, and in particular is not homotopy equivalent to
a point.

The property of being not connected is thus evasive, and so any algorithm must, in at least
some cases, check each of

(
n
2

)
possible edges in order to decide whether a given graph is connected.

This example has real-life implications: Forman in [Fo04] gives the example of trying to determine,
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immediately after a disaster, whether a network of communication lines remains connected, when
one can only test the individual components. This analysis demonstrates that there is no guaranteed
way of finding the answer without testing every individual component.

We might wonder whether it would be more fruitful to pose the question as “Is G connected?”
rather than “Is G not connected?” – perhaps the space of connected graphs is homotopy equivalent
to a point, even though the space of not-connected graphs is not. But the space of connected
graphs is not a simplicial complex, since it does not contain all of the faces of all of its simplices:
in terms of graphs, when we remove an edge from a connected graph, the result is not necessarily
still connected. Thus the theorem would not apply.

This application is explored in more detail in [Fo00]. Forman demonstrates that we can deter-
mine not only whether a subcomplex is evasive, but how evasive it is – how many faces may evade
even the best guessing algorithm – based on the subcomplex’s homotopy type.
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7 Summary

xkcd.com/263

Mathematics is often seen as a reliable but prosaic tool for finding answers. Perhaps the most
fundamental question in mathematics is “How can one solve this problem?” But equally important,
and more easily overlooked, is the related question “Has this problem already been solved?” Many
mathematical questions appear in different guises, and recognizing an old problem in a new form
is an essential – and more imaginative – task for mathematical inquiry.

Discrete Morse theory provides an approach to this latter question within the realm of topolog-
ical spaces endowed with discrete structure. The theory provides a natural language with which to
examine equivalences between such structures, describing many problems within algebraic topology
and encompassing a great number of applications. As we saw in our study of evasiveness, questions
about a space can often be reduced to questions about its topology, and so determining the space’s
homotopy type reveals the answer to our original question – even when the question seemingly has
little to do with topology, arising from a highly applicable, real-world problem.

In this work, the applications we have noted focus mainly on computer science and graph
theory, and much interesting work in this realm has been (and continues to be) done: for example,
see Shareshian’s work on 2-connected graphs [Sh01]; Babson et al. on not-i-connected graphs
[BB96]; Wachs on partially ordered sets of partitions, graphs, and trees [Wa05]; and Jonsson on
3-connected and Hamiltonian graphs [Jo03]. Applications to other fields abound as well: Green
applies the theory to polygons and their higher-dimensional analogs, polytopes, in [Gr11]; Vassiliev
links the ideas to the study of knots in [Va93]; and Benedetti introduces a version for manifolds
with boundary in [Be10a]. With such widespread realms of application, discrete Morse theory has
powerful implications for our understanding of structures throughout discrete mathematics.
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