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Introduction

All of our struggles were in vain. 82 levels were too few to give a statistically signi�cant test of the model. As a contribution of
the understanding of nuclear physics, random matrix theory was a dismal failure. By 1970 we had decided that it was a beautiful
piece of work having nothing to do with physics.

– Freeman Dyson, 1970.

1. H��������� B���������

In 1928, biologist John Wishart introduced the theory of random matrices in studying large data sets. In [24], Wishart
viewed large data sets as so complex that studying the �ner details of the corresponding covariance matrices, e.g. with
methods of principal component analysis, became computationally intractable problems. To e�ectively model covariance
statistics of large data sets with principal component analysis, Wishart viewed the data as random. Unfortunately, Wishart’s
perspective did not progress far and was thus le� behind.

A few decades later in the 1950s, Nobel prize-winning physicist Eugene Wigner reintroduced random matrices in [23] to
study the distribution of energy levels in heavy nuclei. Wigner’s motivation for modeling heavy nuclei with large random
matrices resembled Wishart’s original motivation in statistics: heavy nuclei are too complex to e�ectively model all precise
details. On the other hand, Wigner’s ensemble of matrices were either real symmetric or complex Hermitian matrices, as
opposed toWishart’s covariancematrices. Wigner discovered important phenomena such as the semicircle law and computed
eigenvalue statistics for an important class of matrices known as the Gaussian Orthogonal Ensemble (GOE) and the Gaussian
Unitary Ensemble (GUE) for low dimensions. �ese results became known as Wigner’s surmise, and Wigner’s random real
symmetric and complex Hermitian matrices became known as the Wigner matrix ensemble.

From here, mathematiciansMichel Gaudin andMadanMehta, along with physicist Freeman Dyson, studiedWigner’s work
in more detail in [14], [19], and [10]. �ese three papers extended Wigner’s surmise to all dimensions, and moreover [10]
introduced the random eigenvalue problem from the perspective of the statistical mechanics of gases. Ultimately, Wigner,
Dyson, Gaudin and Mehta made the following loosely stated conjecture concerning local correlation functions of eigenvalues,
which determine microscopic location statistics.

Conjecture 1.1. (WDGM Conjecture).
�e local correlation functions in the bulk of the semicircle distribution (or bulk, for short) forWigner ensembles are independent

of the underlying matrix distribution and depend only on the symmetry class (e.g. real symmetric, complex Hermitian). In
particular, the local correlation functions should all converge to the local correlation functions of either the GOE and GUE as the
matrix size goes to in�nity.

�e WDGM conjecture is thus a universality result and may be thought of as a matrix-valued central limit theorem –
roughly speaking, for large systems the randomness behaves like a Gaussian family. �e �rst major step towards establishing
any precise result along the lines of the WDGM conjecture appeared in [9], in which Dyson de�ned a stochastic �ow for any
givenWigner matrix ensemble and computed the corresponding eigenvalue dynamics known as Dyson’s Brownian Motion, or
DBM for short. In many papers such as [11] and [13], Laszlo Erdos, H.T. Yau and many collaborators exploited the relaxation
property of DBM and established both short-time stability of eigenvalue statistics under this �ow, as well as fast time to
relaxation towards Gaussian statistics. Moreover, through analysis of the DBM, Erdos, Yau, and their collaborators have also
proven universality of gap statistics, whichWigner viewed as excitation energies. �ese works answered Dyson’s conjecture,
which we loosely state as follows.

Conjecture 1.2. (Dyson’s Conjecture).
�e time to equilibrium of eigenvalue statistics along the DBM �ow for matrices of dimension N is roughly 1

N .



In fact, Dyson’s conjecture was inspired by a statistical picture of gas particles reaching equilibrium. We summarize the
robust method developed and exploited by Erdos, Yau and their collaborators to answer Dyson’s conjecture and also, in part,
the WDGM conjecture. �e method comes in the following three parts.

• Step 1: Prove a local law, a coincidence of eigenvalue distributions with the universal limit on intervals as small as the
scale of �uctuations of eigenvalues. �is provides a rigidity estimate, which bounds how far eigenvalues can deviate
from where the universal limit predicts they are with high probability.

• Step 2: Prove a stability estimate, which shows statistics such as eigenvalue gaps and correlation functions change
negligibly in the limit of large N a�er evolving the initial data through the DBM for time t = N�1+". Here, " > 0 is
an arbitrarily small but �xed parameter.

• Step 3: Prove short time to relaxation, which shows the statistics already reach Gaussian behavior a�er evolving the
eigenvalues for time t > N�1+� . Here, � > 0 is any �xed positive parameter. In other words, this allows us to
compare statistics at time t = N�1+� with time t = +1. �is is Dyson’s Conjecture.

More recently, as in [3] and [4], universality of eigenvalue statistics have been extended to matrix ensembles beyond the
Wigner ensemble, including adjacency matrices of random regular graphs whose entries are sparse and correlated.

2. T�� P������ ��� C���������M�������

�e aforementioned works primarily concernWigner matrices, whereas the focus of this thesis concerns covariance matri-
ces. With similar ideas, a stochastic eigenvalue �ow was computed in the spirit of DBM, e.g. in [12]. Moreover in [12], using
ideas from statistical mechanics, ergodic theory of Brownian motions, and techniques used for Wigner matrix ensembles,
Erdos, Schlein, and Yau proved the following loosely stated result.

�eorem 2.1. Suppose the initial data for the covariance matrix DBM is, in some sense, optimal. �en Dyson’s Conjecture holds
for this initial data.

�e techniques used in [12] address only universality of local correlation functions and not of gap statistics. �e initial
data assumed in [12] is also restrictive. �is implies the results cannot be applied directly to covariance matrix ensembles of
interest, e.g. sparse covariancematrices. Assuming the restrictive initial data, however, in [22] universality of local correlation
functions was proven for a class of random matrices drawn from a suitably sub-exponential distribution. �is paper also
follows the robust three-step strategy outlined above. Again, the problem concerning universal gap statistics is omi�ed from
this paper, as it relies on the results in [12] to tackle Dyson’s conjecture.

As for sparse covariance matrices, an earlier senior thesis at Harvard [1] establishes a local law for this ensemble. More-
over, a detailed DBM is derived. However, neither short-time stability nor fast convergence to local ergodicity of eigenvalue
statistics is addressed.

3. T��� T����� ��� O�� R������

In this thesis, we address the issues presented above for covariance matrix ensembles. �e following ideas are original to
this thesis unless explicitly mentioned as adapted from earlier works.

First, we adapt the methods of [16] and [17] to recover universality of correlation functions in the bulk for a wide class of
initial data. �is is an improvement of Dyson’s Conjecture for covariance matrix ensembles and removes the strong a priori
assumptions required in [11] and thus used in [22]. Moreover, in doing so we also derive eigenvalue gap universality. To
do this, instead of looking at the covariance matrix ensemble, we look at a linearization whose eigenvalues and eigenvectors
are in natural correspondence with those of the corresponding covariance matrix. In particular, we establish gap universality
for an ensemble of linearized covariance matrices rather than covariance matrices themselves. Given the nonlinear spectral
correspondence between these two ensembles, this will imply no such gap result should exist for covariancematrix ensembles.
To this end we also derive the corresponding eigenvalue dynamics for the eigenvalues of the linearized covariance matrix,
which is also an original contribution of this thesis. �is is the covariance analog to the DBM derived in [9]. With the explicit



eigenvalue dynamics, we may use an important idea from [16] in cu�ing o� interactions on large scales and compare the
dynamics to the DBM for Wigner matrices derived in [9].

�e core of this thesis, however, is concernedwith deriving universality of eigenvalue correlation functions for an ensemble
of covariance matrices X = H⇤H where the entries of H are both sparse and correlated. In the spirit of the papers [3] and
[4], we look at adjacency matrices of biregular bipartite graphs. With this ensemble, we adapt the methods of [4] to prove
a local law and we adapt the methods of [3] to short-time stability of local correlation functions in the bulk. �is completes
Step 1 and Step 2 in the robust method outlined above for bipartite graphs.

In summary, the main result of this thesis is the following informally stated result.

�eorem 3.1. �e three-step strategy holds for local correlation functions for the ensemble given by adjacency matrices of bireg-
ular bipartite graphs. Moreover, Dyson’s conjecture holds for a wide class of covariance matrix ensembles, including the ensemble
of bipartite graphs.

We conclude a �rst description of this thesis by noting that we will also address the unanswered questions concerning [1],
[12], and [22]. We will not provide all details to fully answer these open questions as this is not the focus of this thesis, i.e.
�eorem 3.1. We will, however, comment brie�y on the necessary ingredients and methods to provide such answers.

4. O����������� �� ���� T�����

We organize this thesis into three chapters, one for each of the steps in the robust three-step strategy.
In Chapter I, we concern ourselves with deriving a local law for adjacency matrices of biregular bipartite graphs. In this

chapter, the local law is phrased in terms of estimates on the entries of the Green’s function of the adjacency matrix. We study
the adjacency matrices by exploiting the combinatorial structure of the underlying bipartite graph. �e most important of
these combinatorial methods is the construction of switchings on graphs which generate tractable dynamics of the Green’s
functions. We also follow standard methods in random matrix theory and exploit the analytic properties of the Green’s
functions, including the �xed-point theory.

In Chapter II, we begin evolving the ensemble of adjacency matrices under a matrix-valued Ornstein-Uhlenbeck process.
We compute the generator of this process as a di�erential operator with coe�cients given in terms of the underlying graph
structure. We then exploit this combinatorial data by again appealing to switchings on the underlying graphs. In contrast to
Chapter I, we aim to exploit switchings from the perspective of Markov processes. In particular, we view switchings as a jump
process on the space of bipartite graphs and use its generator to study the generator of the matrix-valued Ornstein-Uhlenbeck
process. �is will allow us to obtain estimates showing the stability of local correlation functions under short-time �ows.

In Chapter III, we focus on eigenvalue statistics of the evolved potentials a�er evolving for a �xed time-scale. In particular,
we prove Dyson’s Conjecture for a wide class of potentials. Here, we explicitly compute the underlying eigenvalue process
given by the matrix-valued Brownian motion. To recover eigenvalue statistics from this explicit system of equations, we
approximate the eigenvalues by cu�ing o� interaction terms to include only those interactions from nearby eigenvalues. �is
important idea comes from [16] and requires another local law for evolved matrices, which we also prove in this chapter. �e
cuto� forces the eigenvalues in the bulk to run a classical DBM for Wigner matrices. �is allows us to directly compare the
bulk eigenvalues of the evolved potential to those of the GOE using ideas from [17]. �is concludes the third-step and thus
proves a universality result for bipartite graphs.
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Chapter I: Local law for Biregular Bipartite Graphs
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I. �e Underlying Model and Main Results

1. B�������� B�������� G�����

We begin this chapter with a discussion of the underlying matrix model. We will de�ne the random matrix ensemble later
from this combinatorial model. We begin by establishing convention and de�ning the following graph structure. To make
this de�nition, we now �x integers M,N > 0.

De�nition 1.1. Suppose V = {1
b

, 2
b

, . . . ,M
b

, 1
w

, . . . , N
w

} is a set of labeled vertices, and suppose E is a simple graph on
V . We say the graph E is bipartite with respect to the vertex sets (V , V

b

, V
w

) if V admits the following decomposition:

V = {1
b

, 2
b

, . . . ,M
b

}
[

{1
w

, 2
w

, . . . , N
w

} =: V
b

[ V
w

,(1.1)

such that for any vertices v
i

, v
j

2 V
b

and v
k

, v
`

2 V
w

, the edges v
i

v
j

and v
k

v
`

are not contained in E.

In words, a graph E is bipartite if its vertices may be decomposed into two disjoint sets of vertices V
b

and V
w

. Moreover,
both V

b

and V
w

, as subgraphs of E, contain no edges. In particular, the graph E cannot contain self-loops.

Remark 1.2. For the remainder of this chapter, we will refer to V
b

as the set of black vertices and V
w

as the set ofwhite vertices.
We will also keep the following assumptions on the size of V

b

and V
w

for the remainder of this chapter:

|V
b

| = M, |V
w

| = N.(1.2)

We will introduce the precise constraints on M and N later when discussing the associated random matrix ensemble.

Remark 1.3. As consistent with existing conventions in graph theory, for a graph E we let [E] denote the set of vertices V .
For the purposes of De�nition 1.1, however, the graph E is stipulated on the labeled vertex set V , hence we need to de�ne
and �x the vertex set V �rst before we de�ne any graph structure. �is last point is subtle and will not be crucial to the
discussion on the underlying random matrix problem..

We will now introduce a stronger regularity constraint on bipartite graphs. So far, the bipartite structure introduced in
De�nition 1.1 has only constrained a qualitative graph structure. �e goal of the following de�nition is to introduce a stronger,
combinatorial structure. First, we �x integers d

b

, d
w

> 0 and introduce the following notation.

Notation 1.4. Suppose v
i

2 V
b

and v
k

2 V
w

. We de�ne E
i

to be the set of edges e 2 E such that v
i

2 e. Similarly, we de�ne E
k

to be the set of edges e 2 E such that v
k

2 e.

In particular, [E
i

] consists of exactly those vertices v 2 V incident to the vertex v
i

, i.e. the edge vv
i

is contained in E.

De�nition 1.5. Let V = V
b

[ V
w

denote a labeled vertex set. Suppose E is a bipartite graph on V . We say the graph E is
(d

b

, d
w

)-regular if the following two conditions hold.

• For each vertex v
i

2 V
b

, the set E
i

has size d
b

.
• For each vertex v

k

2 V
w

, the set E
k

has size d
w

.

Remark 1.6. For the remainder of this thesis, we will interchange between the terms (d
b

, d
w

)-regular and biregular. Because
this la�er terminology suppresses the explicit regularity parameters d

b

, d
w

, we will use it only when these parameters are
�xed or known. Moreover, when we say a graph is biregular, we will imply that it is also bipartite.

Notation 1.7. For a �xed M,N > 0 and d
b

, d
w

> 0, we will de�ne ⌦ = ⌦(M,N, d
b

, d
w

) to be the set of (d
b

, d
w

)-regular
graphs on the vertex set V . Again, we will suppress the dependence of ⌦ on the parameters M,N, d

b

, d
w

whenever there is no
risk of confusion.
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F����� 1. A (1, 2)-regular graph with |V
b

| = 6 and |V
w

| = 3.

In particular, we note the set ⌦ is �nite for any �xed parametersM,N, d
b

, d
w

.
We end this preliminary discussion on bipartite graphs by recording the following combinatorial identity for biregular

graphs which is a direct consequence of De�nition 1.1, De�nition 1.5, and counting edges:

Md
b

= Nd
w

.(1.3)

Indeed, the LHS counts the number of edges in the graph E by counting vertices in V
b

and their neighbors, and the RHS
counts vertices in V

w

and their neighbors.

2. T�� U���������M����� M����

Before we de�ne the matrix model for biregular graphs, for convenience we �rst make the following assumption for the
remainder of Chapter I. First, we de�ne the following structural parameters:

↵ :=

M

N
, � :=

1

↵
.(2.1)

Assumption 2.1. For biregular graphs E 2 ⌦, we assume ↵ > 1, i.e. M > N .

In particular, by counting edges as in (1.3), Assumption 2.1 implies d
b

6 d
w

. We brie�y remark that the regime M < N

follows from our discussion under Assumption 2.1 upon a trivial, deterministic relabeling of the vertex set V .
We now introduce the matrix model for biregular graphs, which begins with the following fundamental construction in

graph theory.

De�nition 2.2. For a biregular graph E 2 ⌦, we de�ne its adjacency matrix A = (A
ij

) to be the (M + N) ⇥ (M + N)

matrix whose entries are de�ned by the edges of E, i.e. for any i, j 2 [[1,M +N ]], we de�ne

A
ij

=

8
<

:
1 ij 2 E

0 ij 62 E
,(2.2)

where we interpret ij as the edge consisting of the labeled vertices i, j in V .

Remark 2.3. In the remainder of this chapter, we may interchange between a graph E 2 ⌦ and its adjacency matrix A when
there is no risk of confusion.

In words, the adjacency matrix A is a matrix whose entries are indicator functions for edges in the graph E. We note that
an adjacency matrix can be de�ned for any graph, not necessarily biregular. However, we now exploit the biregular structure
in terms of the adjacency matrix A and summarize the results below. In particular, the biregular structure corresponds to
spectral information of the adjacency matrix.
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Proposition 2.4. Suppose E 2 ⌦ is a biregular graph and let A denote its adjacency matrix. �en the following hold:

• (I). �e adjacency matrix A has the following block representation:

A =

 
0 H

H⇤
0

!
,(2.3)

where H is a matrix of size M ⇥N , and the star notation denotes the adjoint of a matrix.
• (II). �e matrix A contains the following (unnormalized) eigenvalue-eigenvector pair:

�
max

=

p
d
b

d
w

= d
b

p
↵, e

max

=

0

BBBBBBBBBBBBBB@

1

1

. . .

1

p
↵

p
↵

. . .
p
↵

1

CCCCCCCCCCCCCCA

.(2.4)

In particular, the eigenvector e
max

admits a decomposition e
max

=

⇣
e
b

e
w

⌘⇤
, where e

b

is constant and lengthM , and
e
w

is constant and length N .
• (III). �e corresponding eigenspace V

max

to �
max

is one-dimensional, i.e. �
max

is a simple eigenvalue.
• (IV). For all other eigenvalues � 6= �

max

of the adjacency matrix A, we have the following spectral bound:

|�| 6 C
p
d
w

,(2.5)

where C is independent of the fundamental parameters M,N, d
b

, d
w

.

Proof. Statements (I) and (II) follow from the de�nition of biregular graph and a straightforward calculation. Statements (III)
and (IV) are highly nontrivial statements. Statement (III) is a consequence of the Perron-Frobenius �eorem. Statement (IV)
follows from a combinatorial interpretation of biregular graphs in terms of trees; for a reference, we cite [8]. ⇤

We now use Proposition 2.4 to construct our matrix ensemble. First, by statements (III) and (IV) in Proposition 2.4, we note
the matrix d�1/2

w

A has all (but one) eigenvalues bounded by some constant C independent of the fundamental parameters.
Moreover, by statement (III) in Proposition 2.4, the following matrix has the same spectrum and eigenspaces as d�1/2

w

A except
for V

max

:

X =

 
0 H

H⇤
0

!
, H = d�1/2

w

✓
A� d

b

N
e
b

e⇤
w

◆
, .(2.6)

In particular, X shares the eigenspace V
max

but with eigenvalue �
max

= 0. At least on a heuristic level, because all but
one eigenvalue and eigenspace are preserved, the spectral statistics for adjacency matrices of biregular graphs should be
insensitive to this deterministic shi�.

We may now de�ne our random matrix ensemble as those matrices of the form in (2.6), where A is the adjacency matrix
of E. To stipulate a probability measure on this matrix ensemble, we note matrices of the form in (2.6) are in bijective
correspondence with biregular graphsE 2 ⌦, so we may impose a uniform probability measure on matrices (2.6) by imposing
the uniform probability measure on the �nite set ⌦.

Furthermore, with the data in (2.6), we may de�ne two more matrix ensembles of covariance matrices. Precisely, with
notation in (2.6), we may de�ne the following two matrices:

X⇤ := H⇤H, X⇤,+ := HH⇤.(2.7)

We brie�y remarkX⇤ is a square matrix of dimensionN⇥N , andX⇤,+ is a square matrix of dimensionM⇥M . In particular,
under Assumption 2.1, the matrixX⇤,+ is larger, in dimension, than the matrixX⇤. �is algebraic relation will be important
later when discussing spectral properties of the matrices X,X⇤, and X⇤,+.
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We now formally de�ne our random matrix ensembles as follows for organizational purposes.

De�nition 2.5. Retaining the se�ing of Proposition 2.4, we de�ne X to be the random matrix ensemble of matrices in the
form (2.6), i.e.

X :=

( 
0 H

H⇤
0

!
, H = d�1/2

w

✓
A� d

b

N
e
w

e⇤
b

◆)
.(2.8)

�e probability measure on X is the uniform probability measure induced by the uniform probability measure on⌦. We also
de�ne

X⇤ :=

⇢
H⇤H : H = d�1/2

w

✓
A� d

b

N
e
w

e⇤
b

◆�
,(2.9)

X⇤,+ :=

⇢
HH⇤, H = d�1/2

w

✓
A� d

b

N
e
w

e⇤
b

◆�
.(2.10)

As with the ensembleX , the probability measures on X⇤ and X⇤,+ are the respective uniform probability measures induced
by the uniform probability measure on ⌦.

For terminology’s sake, we say the ensembles X⇤ and X⇤,+ are the ensembles of covariance matrices of dimensionN and
M , respectively. �e ensemble X is the ensemble of linearized covariance matrices.

Before we proceed with discussing the main results of this chapter, we brie�y remark here that we will need to understand
the correspondence of spectral data, i.e. eigenvalues and eigenvectors, among the three matrix ensembles X , X⇤, and X⇤,+.
�is discussion will be deferred to a later section in this chapter.

3. ���� P������������ �� ��� S�������� T��������

In order to state the main results of this chapter, we �rst recall the following integral transform fundamental throughout
the literature in random matrix theory.

De�nition 3.1. Suppose µ(dx) denotes a probability measure on the real line R. We de�ne the Stieltjes transform of µ(dx)
to be the following complex-valued integral transform

s
µ

(z) =

w

R

µ(dx)
x� z

, z 2 C
+

.(3.1)

To motivate the use of the Stieltjes transform in terms of random matrices, we �rst note that the Stieltjes transform admits
an inversion formula, implying a su�ciently regular probability measure on the real line is essentially characterized by its
Stieltjes transform. For details, we refer to [1] and [2].

Recall, from the introduction, the Marchenko-Pastur law with parameter �:

%1(x) dx := %
MP

(x) dx =

p
(�

+

� x)(x� ��)

2⇡�x
1
x2[��,�+]

dx,(3.2)

where we de�ne �± = (1±p
�)2. We now record the following result, e.g. from [1], which computes the Stieltjes transform

of the Marchenko-Pastur law (3.2). We will not include the proof, but brie�y remark that it requires nothing more than
elementary complex analysis.

Proposition 3.2. Given the notation above, the Stieltjes transform of the Marchenko-Pastur law in (3.2) is given by

m1(z) =

1� � � z + i
p
(�

+

� z)(z � ��)

2�z
.(3.3)

We also de�ne the following related function, which will be important in stating the main result of this chapter:

m1,+

(z) =

� � 1

z
+ �m1(z),(3.4)
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F����� 2. �e blue curve is the plot of the Marchenko-Pastur Law with � = 1. �e pink curve is the plot
of the Marchenko-Pastur law with � = 0.75. We note the singularity at the origin for � = 1 only.

which is the Stieltjes transform of the Marchenko-Pastur law %1 with an additional weighted point mass at x = 0. We now
address the Stieltjes transform of the empirical measures of X⇤ and X⇤,+, respectively. We denote these Stieltjes transforms
by s⇤ and s⇤,+, respectively. By de�nition, these transforms are given as follows:

s⇤(z) =

w

R

1

x� z

 
1

N

NX

i=1

�(x� �
i,⇤)

!
dx =

1

N

NX

i=1

1

�
i,⇤ � z

,(3.5)

s⇤,+(z) =

w

R

1

x� z

 
1

M

MX

k=1

�(x� �
k,⇤,+)

!
dx =

1

M

MX

k=1

1

�
k,⇤,+ � z

.(3.6)

Here, the terms �
i,⇤ denote the eigenvalues of X⇤ and the terms �

k,⇤,+ denote the eigenvalues of X⇤,+. We will later study
how these two spectra correspond to each other.

We proceed by introducing the Green’s function of a matrix, which resembles the Green’s function of many systems in
statistical mechanics; for a reference, we refer to [2].

De�nition 3.3. For a real symmetric or complex Hermitian matrix H , we de�ne its Green’s function to be the following
matrix resolvent:

G(z;H) = (H � z)�1 , z 2 C
+

.(3.7)

Notation 3.4. For the matrices X,X⇤, and X⇤,+, we de�ne:

G(z) := G(z;X), G⇤(z) := G(z;X⇤), G⇤,+(z;X⇤,+).(3.8)

We �rst note the above de�nition (3.7) of the Green’s function makes sense, as the spectrum of H is totally real and
z 62 R. Moreover, we now reconcile the Stieltjes transforms s⇤(z) and s⇤,+(z) with the Green’s functions of X⇤ and X⇤,+,
respectively, via the following identities:

s⇤(z) =

1

N
TrG⇤(z), s⇤,+(z) =

1

M
TrG⇤,+(z).(3.9)

We will also de�ne the following partial Stieltjes transforms for the linearization X :

s
b

(z) =

1

M

MX

i=1

G
ii

(z), s
w

(z) =

1

N

M+NX

k=M+1

G
kk

(z).(3.10)

Later in this chapter, we will provide a detailed discussion of the properties of a Green’s function G(z;H), as well as the
Green’s functions of covariance matrices X⇤, X⇤,+ and their linearization X .
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4. T��M��� R������

We are now in a position to state the main result of this chapter. Recall the fundamental parameters M,N > 0 and
d
b

, d
w

> 0. In our ensemble, we will take N ! 1. �is limit will be taken arbitrarily. We will also stipulate ↵ ! ↵1 for
consistency with the existing literature (i.e. [8]), i.e. the ratio ↵ converges to a real number ↵1 as N ! 1. However, this
last assumption on ↵ ! ↵1 will be unnecessary for this chapter and necessary only in later chapters. Here we will only
need to assume ↵ = O(1).

To state the main theorem, we will �rst need to de�ne the following subdomain of the complex plane for any �xed " > 0:

U
",± := {z = E + i⌘ : |E| > ", ⌘ > 0} ,(4.1)

U
"

:= U
",+

[ U
",�.(4.2)

�e repulsion from the origin in the complex plane de�ned in the domains U
",± and U

"

are to avoid the singularity of, for
example, the transform m1,+

. We will also need to de�ne the following control parameters:

D := d
b

^ N2

d3
b

,(4.3)

�(z) :=

1p
N⌘

+

1p
D
,(4.4)

F
z

(r) = F (r) :=

" 
1 +

1p
(�

+

� z)(z � ��)

!
r

#
^

p
r.(4.5)

We may now state the main theorem of this chapter, which compares the Green’s functions G,G⇤, and G⇤,+ to those of
limiting distributions at microscopic scales ⌘ = Im z. �is will be made precise in the statement of the result.

�eorem 4.1. Suppose ⇠ = ⇠
N

is a parameter chosen such that the following growth conditions on D and ⌘ hold:

⇠ log ⇠ � log

2 N, |⌘| � ⇠2

N
, D � ⌘2.(4.6)

�en for any �xed " > 0, we have the following estimates with probability at least 1�e�⇠ log ⇠ , uniformly over all z = E+i⌘ 2 U
"

with ⌘ satisfying the growth condition in (4.6):

max

i

|[G⇤(z)]ii �m1(z)| = O (F
z

(⇠�)) , max

i 6=j

|[G⇤(z)]ij | = O

✓
⇠�(z2)

z

◆
.(4.7)

Similarly, for any �xed " > 0, we have the following estimates with probability at least 1�e�⇠ log ⇠ , uniformly over all parameters
z = E + i⌘ 2 U

"

with ⌘ satisfying the growth condition in (4.6):

max

i

|[G⇤,+(z)]ii �m1,+

(z)| = O (F
z

(⇠�)) , max

i 6=j

|[G⇤,+(z)]ij | = O

✓
⇠�(z2)

z

◆
.(4.8)

Conditioning on the estimates (4.7) and (4.8), respectively, uniformly over z = E+i⌘ 2 U
"

with ⌘ satisfying the growth condition
in (4.6), we have

|s⇤(z)�m1(z)| = O (F
z

(⇠�)) , |s⇤,+(z)�m1(z)| = O (F
z

(⇠�)) .(4.9)

Conditioning on the estimates (4.7), uniformly over all z = E + i⌘ with ⌘ satisfying the growth condition in (4.6), we have

max

k>M

��
[G(z)]

kk

� zm1(z2)
��
= O

�
zF

z

2
(⇠�(z2))

�
,(4.10)

max

M<k<`

|[G(z)]
k`

| = O (⇠�) .(4.11)

Moreover, conditioning on the estimates (4.8), for any �xed " > 0, uniformly over all z = E + i⌘ 2 U
"

with ⌘ satisfying the
growth condition in (4.6), we have

max

i6M

��
[G(z)]

ii

� zm1,+

(z2)
��
= O

�
zF

z

2
(⇠�(z2))

�
,(4.12)

max

i<j6M

|[G(z)]
ij

| = O(⇠�).(4.13)
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Conditioning on (4.7) and (4.8), we have the following estimates uniformly over all z = E + i⌘ with ⌘ satisfying the growth
condition in (4.6):

��s
b

(z)� zm1,+

(z2)
��
= O

�
zF

z

2
(⇠�(z2))

�
,(4.14)

��s
w

(z)� zm1(z2)
��
= O

�
zF

z

2
(⇠�(z2))

�
.(4.15)

Lastly, the estimates (4.7) and (4.9) hold without the condition |E| > " if ↵ > 1. �e estimates (4.12) and (4.13) hold without the
condition |E| > " if ↵ = 1.

Remark 4.2. We brie�y remark here that the estimates obtained in�eorem 4.1 hold at the optimal scale ⌘ � ⇠2/N , up to log
factors. �is is an estimate at the microscopic scale, i.e. the scale at which eigenvalues �uctuate, and is a strong improvement
of the scale N�� for small � > 0 obtained in [8]. Moreover, under certain structural conditions the estimates obtained in
�eorem 4.1 hold for all energies E; in [8], the repulsion from the origin was necessary.

Remark 4.3. We brie�y remark on the repulsion assumption |E| > " in�eorem 4.1. �e removal of this assumption discussed
at the end of the statement of�eorem 4.1 is a direct consequence of studying the dependence of the singularities of theGreen’s
functions and Stieltjes transforms at the origin with respect to the structural parameter ↵. For example, the presence of a
singularity ofm1 at the origin occurs exactly when ↵ = 1. Moreover, the singularities in the Stieltjes transforms of matrices
and the singularities of m1,+

at the origin cancel each other out, allowing for a regularization at the origin. �is will all be
discussed in more detail in a later section when studying the Stieltjes transforms and Green’s functions in more detail.

Remark 4.4. We last remark that if ↵ = 1, the covariance matricesX⇤ andX⇤,+ are equal in law. �is comes from symmetry
of the bipartite graph between the two vertex sets V

b

and V
w

, i.e. the graph statistics are unchanged upon relabeling the
graph. �is allows us to remove the assumption |E| > " > 0 for certain estimates in�eorem 4.1 in the regime ↵ = 1.

We now discuss important consequences of�eorem 4.1, the �rst of which is the following result on eigenvector delocal-
ization, i.e. an estimate on the `1-norm of an eigenvector in terms of its `2-norm. �e proof of this delocalization result will
be delegated to a later section a�er we study in more detail the spectral data of covariance matrices and their linearizations.

Corollary 4.5. (Eigenvector Delocalization).
Assume the se�ing of �eorem 4.1, and suppose u is an eigenvector of X⇤ with eigenvalue �. �en with probability at least

1� e�⇠ log ⇠ , we have

kuk
`

1
= O

✓
⇠p
N

kuk
`

2

◆
.(4.16)

We brie�y remark that the eigenvector delocalization fails for the larger covariance matrix X⇤,+. �is is because of the
singularities in the Green’s function at the origin in the complex plane. �is will be made clearer when we give the proof of
Corollary 4.5.

We conclude this discussion concerning consequences of �eorem 4.1 with the following result concerning estimates on
the underlying probability measures deduced from estimates on the Stieltjes transforms as given in �eorem 4.1; these are
known as rigidity estimates. �e proof is quite technical and strays from the scope of this thesis, so we omit it. We brie�y
remark that it relies heavily upon the Hel�er-Sjostrand formula and functional calculus, and beyond these tools, the local law
in�eorem 4.1. To state the result, we �rst introduce the following de�nition.

De�nition 4.6. For each i 2 [[1, N ]], we de�ne the i-th classical location, denoted �
i

, by the following quantile formula:

i

N
=

�iw

�1
%1(E) dE,(4.17)

where we recall %1 denotes the density function of the Marchenko-Pastur law.

�e following consequence of�eorem 4.1 will compare the classical location �
i

to the i-th eigenvalue �
i

of the covariance
matrix X⇤, where the ordering on the eigenvalues is the increasing order.
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Corollary 4.7. For any �xed  > 0 and index i 2 [[N, (1� )N ]], we have, with probability at least 1� e�⇠ log ⇠ ,

|�
i

� �
i

| = O

✓
⇠2

D1/4

◆
.(4.18)

For details of the proof, we refer to Section 5 in [3] and Section 7 in [17].

5. O������ �� ��� P���� �� T������ 4.1

We now give an outline for the derivation of the local law. �e proof will roughly consist of the following three steps:

• (I).�e �rst stepwill be to study the Green’s functionsG,G⇤ andG⇤,+ o�-the-bat. In particular, we begin by rewriting
the Green’s function of an arbitrary real symmetric or complex Hermitian matrix in terms of its spectral data. Given
this spectral representation, we then aim to understand the correspondence among the spectral data of the covariance
matrices X⇤, X⇤,+ and the linearization X . �is step will also require a preliminary analysis of Green’s functions
motivated by ideas from [4].

• (II).�e second step will be to adapt the methods in [4] to de�ne and study a method of resampling graphs in ⌦. �e
resampling will be generated by local operations on a given graph known as switchings, which we will de�ne more
precisely in a later section. �e local nature of the resampling method will help us derive equations exploiting the
probabilistic stability of the Green’s function under these switchings.

• (III).�e third step will be to derive precisely an approximate self-consistent equation for the diagonal entries of the
Green’s function and study its stability properties. As in [4], this will help us compare the diagonal of the Green’s
function to the associated Stieltjes transform. �e equation in [4], however, contains a constant leading-order coef-
�cient whereas for covariance matrices the leading-order coe�cient is nonconstant. We adapt the methods suitably
to handle this nonlinearity.
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II. Preliminary Analysis of the Green’s Function

We now aim our discussion towards reducing the proof of�eorem 4.1 to proving a local law focusing only on the domain
U" and for only the covariance matrix ensemble X⇤. As a roadmap, we provide a summary of these reductions at the end of
this discussion.

6. R�������� T����� ��� R��� S�������� M�������

We begin with a brief overview of resolvent theory for matrices. Before we discuss any results, because the following
discussion will hold for Green’s functions of a widely general class of matrices, we will not specify which matrix ensemble
we are concerned with, i.e. the covariance matrices X⇤, X⇤,+ or the linearization X . To this end, we will �rst introduce
notation for when we apply these results to these speci�c matrix ensembles.

Notation 6.1. Suppose F is a function of the Green’s function or matrix entries of matrices belonging to any one of the matrix
ensemblesX ,X⇤, orX⇤,+. �en we establish the notation F? to be the function obtained when restricted to the matrix ensemble
X?, where we take ? to be blank or ? = ⇤ or ? = ⇤,+.

�e �rst result is the following perturbation estimate on Green’s functions resulting from perturbations in matrix entries,
known as the resolvent identity, whose proof is a standard result in linear algebra.

Lemma 6.2. (Resolvent Identity)
Suppose A and B are invertible matrices. �en we have

A�1 �B�1

= A�1

(B �A)B�1.(6.1)

In particular, if H and eH denote real symmetric or complex Hermitian matrices with Green’s functions G(z) and eG(z), respec-
tively, for z 62 R, then

G(z)� eG(z) =

h
G
⇣
eH �H

⌘
eG
i
(z).(6.2)

Remark 6.3. Typically in this thesis, we will use Lemma 6.2 for eH a tractable perturbation of the matrix entries of H .

An important consequence of Lemma 6.2 that will be used in estimating `2-averages of Green’s functions is the following
Ward Identity, whose proof follows directly from (6.2) with the choice of Green’s functions G(z;H) and eG(z) = G(z;H).

Corollary 6.4. (Ward Identity)
Suppose H is a real symmetric matrix of size N with Green’s function G(z). �en for any �xed row index i 2 [[1, N ]],

NX

k=1

|Gik(E + i⌘)|2 =

ImGii(E + i⌘)

⌘
.(6.3)

In particular, we obtain the following a priori estimate for any matrix index (i, j):

|Gij(E + i⌘)| 6 1

⌘
,(6.4)

and thus for any matrix index (i, j), the function Gij(z) is locally Lipschitz with constant ⌘�2.

�e third and �nal preliminary result we give is the following representation of the Green’s function G(z;H) in terms
of the spectral data of H . �is spectral representation will be indispensable for exploiting the rich spectral correspondence
among covariance matrices and their linearizations.
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Lemma 6.5. (Spectral Representation)
Suppose H is a real-symmetric or complex-Hermitian matrix with eigenvalue-eigenvector pairs {(�↵,u↵)}↵, and let G(z)

denote its Green’s function. �en for any matrix index (i, j), we have

Gij(z) =

NX

↵=1

u↵(i)u↵(j)

�↵ � z
,(6.5)

where the overline notation denotes the complex conjugate of the vector entry. In particular, the Green’s function is complex
Hermitian.

Proof. If H is a diagonal matrix, the result is clear. If H is not diagonal, suppose ⇤ = UHU⇤ is its diagonalization with a
unitary matrix U . �us, we obtain

G(z) = UG
diag

(z)U⇤,(6.6)

where G
diag

(z) is a diagonal matrix with diagonal entries (�↵ � z)�1. �e spectral representation then follows from multi-
plying the matrices on the RHS, using the construction of the unitary matrix U in terms of the eigenvectors {u↵}↵. ⇤

We now proceed with the fundamental iteration scheme taken from [4] which will allow us to control the Green’s function
of a real symmetric or complex Hermitian matrix at smaller scales in terms of larger scales. Here, as always in this chapter, the
scale will refer to the imaginary part ⌘ of the parameter z = E + i⌘. �e important ingredients will be the resolvent identity
in Lemma 6.2 and the Ward identity in Corollary 6.4. First, to state the result, we de�ne the following control parameters for
the Green’s functions:

�(E + i⌘) =


max

i,j
|Gij(z)|

�
_ 1,

�

⇤
(E + i⌘) = sup

⌘0>⌘
�(E + i⌘0).

Lemma 6.6. For any z = E + i⌘ 2 C
+

, the function �(z) is locally Lipschitz continuous in ⌘ with the following bound on its
almost-everywhere derivative:

|@⌘�(z)| 6 �(z)

⌘
.(6.7)

In particular, for any  > 1 and z = E + i⌘ 2 C
+

, we have

�

⇣
E + i

⌘



⌘
6 �(E + i⌘).(6.8)

Proof. To derive (6.8) from (6.7), we �rst note the Lipschitz bound (6.7) implies

@⌘ (⌘�(E + i⌘)) = ⌘@⌘�(z) + �(z) > 0.(6.9)

�is implies (6.8) upon taking ⌘
1

= ⌘ and ⌘
2

= ⌘/; here we used ⌘
2

< ⌘
1

. It now su�ces to prove the Lipschitz condition
and the bound (6.7). To do so, for a small h > 0, we use the resolvent identity (6.1) and deduce, for any matrix index (i, j),

|Gij(z + ih)�Gij(z)| 6 h
NX

k=1

|Gik(z + ih)| |Gkj(z + ih)|(6.10)

6 h

 
NX

k=1

|Gik(z + h)|2
!

1/2 NX

k=1

|Gkj(z + h)|2
!

1/2

,(6.11)

where we used the Schwarz inequality in the last line. By the Ward Identity (6.3), and the complex-Hermitian structure of
G(z) as obtained in Lemma 6.5, we deduce

|Gij(z + ih)�Gij(z)| 6 h

s
�(z + ih)�(z)

(⌘ + h)⌘
.(6.12)

Because the Green’s function is continuous, so is the control parameter �. Taking a maximum over all matrix indices (i, j),
we thus deduce the Lipschitz condition and the derivative estimate (6.7). ⇤
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7. S������� T����� ��� C���������M�������

We now redirect our focus to Green’s functions of covariance matrices. More precisely, our goal in this discussion is to
prove a correspondence among the spectral theory of the covariance matrices X⇤ and X⇤,+ and the linearization X .

Remark 7.1. Before we begin, we note here that the results to be given concerning the aforementioned spectral correspon-
dence hold for a general class of covariance matrices, not just those coming from biregular graphs studied in this thesis.
Moreover, the proofs for the results will not appeal to any graph structure underlying the covariance matrices X⇤, X⇤,+ or
the linearization X . However, for simplicity, we will retain the notation X⇤, X⇤,+ and X , and the reader is invited to think
exclusively of matrices associated to biregular graphs.

We now record the fundamental result which bridges together the spectral data of the three matricesX⇤,X⇤,+ andX . We
reemphasize the crucial utility of this result to this thesis.

Proposition 7.2. Suppose H is a real-valued matrix of size M ⇥ N with M > N , and suppose X is a block matrix of the
following form:

X =

 
0 H

H⇤
0

!
.(7.1)

�en the following hold:

• (I). �e spectrum of X admits the following decomposition:

�(X) = �1/2
(H⇤H) [ ⇣(X),(7.2)

where �1/2
(H⇤H) denotes the pairs of eigenvalues (±�) such that (±�)2 is an eigenvalue ofH⇤H . Here, ⇣(X) denotes

the set of eigenvalues not in �1/2
(H⇤H), all of which are 0.

• (II). �e spectrum of HH⇤ admits the following decomposition:

�(HH⇤
) = �(H⇤H) [ ⇣2(X),(7.3)

where ⇣2(X) denotes the set of eigenvalues not in �(H⇤H), all of which are 0.
• (III). Suppose �2 2 �(H⇤H) is associated to the following `2-normalized eigenvectors:

v⇤ ! H⇤H, v⇤,+ ! HH⇤.(7.4)

�en ±� is associated to the following `2-normalized eigenvector pair of X :

±� ! 1p
2

 
v⇤,+

±v⇤

!
.(7.5)

• (IV). Conversely, any eigenvalue pair ±� 2 �1/2
(H⇤H) is associated to the following `2-normalized eigenvector pair of

X :

±� ! 1p
2

 
v⇤,+

±v⇤

!
,(7.6)

where v⇤,+ is an `2-normalized eigenvector ofHH⇤ with eigenvalue �2 and v⇤ is an `2-normalized eigenvector ofH⇤H

with eigenvalue �2.
• (V). Suppose � = 0 2 ⇣2(X) is associated to the `2-normalized eigenvector v� of HH⇤. �en for some �0

= 0 2 ⇣(X),
the corresponding `2-normalized eigenvector is given by

�0 !
 
v�

0

!
.(7.7)
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• (VI). Conversely, suppose � 2 ⇣(X). �en � = 0 is associated to the following `2-normalized eigenvector of X :

� !
 
v�

0

!
,(7.8)

where v� is an `2-normalized eigenvector of HH⇤ with eigenvalue �0
= 0.

Before we proceed with the proof of Proposition 7.2, we brie�y explain its meaning in words. Proposition 7.2, e�ectively,
decomposes the spectrum of the linearizationX into the spectrum ofH⇤H and a trivial set of eigenvalues. �is, in turn, may
be realized as the spectrum of the larger covariance matrixHH⇤. In particular, the only nonzero and interesting eigenvalues
among these three matrices are those eigenvalues coming from the smaller covariance matrix H⇤H .

We also brie�y remark for each set of eigenvalues in the decomposition of �(X), Proposition 7.2 gives a correspondence
between the eigenvectors as well. Essentially, the eigenvectors of the linearization X are composed of the eigenvectors
corresponding to the same eigenvalue of the covariance matrices H⇤H and HH⇤.

Both of these ingredients, i.e. for eigenvalues and eigenvectors, are indispensable for studying the corresponding Green’s
functions G⇤, G⇤,+ and G. �e main tool, on the side of Green’s functions, for exploiting Proposition 7.2 will be the spectral
representation of the Green’s function (6.5) in Lemma 6.5. �is discussion will take place a�er the proof of Proposition 7.2.

Proof. (of Proposition 7.2). We organize the proof of Proposition 7.2 by grouping together its statements. In the following we
do not provide all explicit details as they follow from elementary linear algebra.

• Proof of Statements (I) – (II): �is is a consequence of the SVD (singular value decomposition) of the matrix H and
dimension-counting.

• Proof of Statements (III) – (VI): �is is a consequence of direct calculation and dimension-counting.

⇤

We are now in a position to deduce eigenvector delocalization, which we recall bounds, in high probability, the `1-norm
an eigenvector of X⇤ in terms of its `2-norm.

Proof. (of Eigenvector Delocalization).
First, we note in the case u 2 Span(eb), the result is true trivially. Moreover, by Proposition 7.2, it su�ces to prove the

claim for eigenvectors of the linearization X , replacing the `1-norm by a supremum over indices k 2 [[M,M +N ]].
We now take for granted |zm1(z2)| = O(1) uniformly for z = E + i⌘ 2 C

+

; this follows from an elementary analysis
of the Stieltjes transform we will discuss shortly. �is allows us to obtain the following string of inequalities with probability
at least 1� e�⇠ log ⇠ and any index k 2 [[M,M +N ]]:

|u(k)|2 6
X

v� 6=u

⌘2 |v�(k)|2

(�� � �)2 + ⌘2
(7.9)

= ⌘ Im[G(�+ i⌘)]kk(7.10)

6 ⌘
��zm1(z2)

��
+O(⌘

p
⇠�)(7.11)

6 2⌘,(7.12)

where we used the local law for the linearization X to estimate the second line. �is completes the derivation of the eigen-
vector delocalization. ⇤

We now use Proposition 7.2 and the spectral representation (6.5) to deduce the following relation among the Green’s
functions G(z), G⇤(z), and G⇤,+(z) for any z 2 C

+

.
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Lemma 7.3. Suppose X is a block matrix of the form (7.1), and suppose i, j 2 [[1,M +N ]] are indices chosen such that either
i, j 6 M or i, j > M . �en, for any z = E + i⌘ 2 C

+

, we have

Gij(z) =

8
<

:
zG⇤,+(z2) i, j 6 M

zG⇤(z2) i, j > M
.(7.13)

Proof. For simplicity, we suppose X is real symmetric as the proof for complex Hermitian matrices is similar. First suppose
i, j 6 M . By the spectral representation in (6.5) and Proposition 7.2, we obtain

Gij(z) =

X

↵

u↵(i)u↵(j)

�↵ � z
=

X

�2�(HH⇤
)

1

2

✓
u↵(i)u↵(j)p

�↵ � z
+

u↵(i)u↵(j)

�
p
�↵ � z

◆
,(7.14)

where the last equality holds by abuse of notation for eigenvectors of the covariance matrixHH⇤ versus the linearizationX .
�is completes the derivation for the case i, j 6 M . �e proof for the case i, j > M follows by the exact same calculation, but
instead taking a summation over �(H⇤H) and noting the eigenvector terms u↵(i)u↵(j) vanish for �↵ 2 ⇣(X) by Statements
(V) and (VI) in Proposition 7.2. ⇤

We now proceed with extending and improving upon the relations given in Lemma 7.3 for the Stieltjes transforms. In par-
ticular, upon averaging over eigenvector indices for the Stieltjes transforms s, s⇤, and s⇤,+, we may forget about eigenvectors
and instead focus solely on the correspondence of the spectra among X , X⇤, and X⇤,+. �is will give us an extension of
Lemma 7.3. �e proof of this following result is a direct consequence of Proposition 7.2 (statements (V) and (VI)) and Lemma
7.3.

Corollary 7.4. Suppose X is a block matrix of the form (7.1), and de�ne the following Stieltjes transforms (as done previously
in this chapter) for any z = E + i⌘ 2 C

+

:

sb(z) =

1

M

MX

i=1

Gii(z), sw(z) =

1

N

M+NX

k=M+1

Gkk(z), s⇤,+(z) =

1

M
TrG⇤,+(z), s⇤(z) =

1

N
TrG⇤(z).(7.15)

�en we have the following relations:

sb(z) = zs⇤,+(z
2

), sw(z) = zs⇤(z
2

),(7.16)

sb(z) =

� � 1

z
+ �sw(z).(7.17)

We now remark that Lemma 7.3 and Corollary 7.4 allow us to go between the Stieltjes transforms s, s⇤, and s⇤,+, and
also between the Green’s function entries themselves. �is will be important in reducing the proof of the local laws for the
linearization X to the local laws for the covariance matrices X⇤ and X⇤,+. Moreover, this will help us compute the partial
Stieltjes transforms sb and sw of the linearizationX using the Stieltjes transforms ofX⇤ andX⇤,+. We will make this precise
shortly, beginning with the following result which will serve as the �rst reduction of the proof of the local laws.

Lemma 7.5. Assuming the se�ing of�eorem 4.1, then the following two estimates are equivalent:

• (I). For any �xed " > 0, we have with probability at least 1�e�⇠ log ⇠ , uniformly over z = E+ i⌘ 2 U" with ⌘ � ⇠2/N ,

max

i
|[G⇤(z)]ii �m1(z)| = O (Fz(⇠�)) , max

i 6=j
|[G⇤(z)]ij | = O(⇠�).(7.18)

• (II). For any �xed " > 0, we have with probability at least 1�e�⇠ log ⇠ , uniformly over z = E+i⌘ 2 U" with ⌘ � ⇠2/N ,

max

k>M

��
[G(z)]kk � zm1(z2)

��
= O

�
zFz2

(⇠�(z2))
�
,(7.19)

max

M<k<`
|[G(z)]k`| = O

�
z⇠�(z2)

�
.(7.20)

Similarly, the above equivalence holds replacing G⇤ with G⇤,+ and taking the maximums over i 6 M and i, j 6 M .

Proof. �is follows immediately from Lemma 7.3. ⇤
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8. T��M���������P����� L�� ��� ��� S�������� T��������

We recall the Marchenko-Pastur density function with parameter � 6 1 and its Stieltjes transform as follows:

%1(E) dE =

p
(�

+

� E)(E � ��)

2⇡�E
1E2[��,�+]

dE,(8.1)

m1(z) =

1� � � z + i
p
(�

+

� z)(z � ��)

2�z
,(8.2)

where �± = (1 ± p
�)2. By a straightforward calculation, we may deduce the following self-consistent equation for the

Stieltjes transform (for details, see [1]):

m1(z) =

1

1� � � z�m1(z)� z
.(8.3)

We also recall the following auxiliary integral transform:

m1,+(z) =

� � 1

z
+ �m1(z),(8.4)

which may be realized as the Stieltjes transform of the scaled Marchenko-Pastur law �%1 with an additional term given by
uniformly weighted point masses all concentrated at E = 0. Precisely, we have

m1,+(z) =

w

R

1

x� z

0

@�%1(x)dx +

1

M

X

�2⇣2
(X)

�(x� �)

1

A .(8.5)

With this representation of the auxiliary transformm1,+ and Proposition 7.2, we may deduce the next reduction of the proof
of the local law which follows immediately by Lemma 7.3 and the de�nition of the auxiliary transform m1,+.

Lemma 8.1. Assuming the se�ing of�eorem 4.1, the following estimates are equivalent for any z 2 C
+

:
��sb(z)� zm1,+(z

2

)

��
= O

�
zFz2

(⇠�(z2))
�
,(8.6)

��sw(z)� zm1(z2)
��
= O

�
zFz2

(⇠�(z2))
�
.(8.7)

Similarly, the following estimates are equivalent for any z 2 C
+

:

|s⇤(z)�m1(z)| = O (Fz(⇠�)) ,(8.8)

|s⇤,+(z)�m1,+(z)| = O (Fz(⇠�)) .(8.9)

Proof. �e singularities in sb(z) and zm1,+(z2) cancel each other. Precisely, by Corollary 7.4 we have the formula

sb(z)� zm1,+(z
2

) = �
�
sw(z)� zm1(z2)

�
.(8.10)

�is allows us to deduce the equivalence of the �rst two estimates. �e equivalence of the last two estimates follows via an
analogous cancellation of the singularities of s⇤,+ and m1,+; this is a consequence of Proposition 7.2 and the de�nition of
the Stieltjes transform of the empirical measure of a real symmetric matrix. ⇤

Remark 8.2. Before we proceed, we note that Lemma 8.1 improves upon Lemma 7.5 in that it removes the restriction |E| > "

on the energy. �is is a consequence of the averaging phenomenon in de�ning the Stieltjes transform. In particular, we may
only remove the energy assumption a�er averaging away the dependence on the eigenvectors.

We now study the modi�ed Stieltjes transform zm1(z2); this is the integral transform used for comparison for the lin-
earizationX . To begin, we �rst construct a probability measure on the real line whose density is induced by the Marchenko-
Pastur density upon the change of variablesE 7!

p
E. Precisely, we de�ne the following density for the linearizedMarchenko-

Pastur Law:

%(E) =

8
<

:

�
(1+�)⇡|E|

p
(�

+

� E2

)(E2 � ��) E2 2 [��,�+

]

0 E2 62 [��,�+

]

.(8.11)
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F����� 3. �e blue curve is the plot of the linearized Marchenko-Pastur Law with � = 1; this is the famous
Wigner semicircle law. �e pink curve is the plot of the linearized Marchenko-Pastur law with � = 1.25.

In particular, the density % is related to the Marchenko-Pastur density with parameter � by the following change of variables
relation:

%(E2

)dE2

= %1(E)dE.(8.12)

Similarly, we may de�ne the probability measure with additional point masses at E = 0, i.e.

%
+

(E) = (� � 1)�(E) + �%(E).(8.13)

Lastly, we de�ne m(z) to be Stieltjes transform of %, and we de�ne m
+

(z) to be the Stieltjes transform of %
+

. With these
de�nitions, by essentially the proof of Corollary 7.4, we deduce the following identities:

m(z) = zm1(z2), m
+

(z) = zm1,+(z
2

).(8.14)

�us, the modi�ed transforms zm1(z2) and zm1,+(z2) may be realized as honest Stieltjes transforms. It now su�ces to
study the Stieltjes transforms m(z) andm

+

(z). We limit our analysis to the Stieltjes transformm, as we note the identity

m1,+(z) =

� � 1

z
+ �m(z),(8.15)

which follows by de�nition of the augmentedmeasure %
+

. �e �rst result we want to prove in studying the Stieltjes transform
is the following O(1) estimate.

Lemma 8.3. Uniformly over z 2 C
+

, we have

m(z) = O(1).(8.16)

We proceed by considering the two regimes � = 1 and � < 1, which we refer to as the square regime and rectangular
regime, respectively.

Square Regime. If � = 1, we rewrite the density %(E) as

%�=1

(E) =

p
4� E2

2⇡
1E2[�2,2],(8.17)

which is the well-studied semicircle density, whose Stieltjes transform is given by

m(z) =

�z +
p
z2 � 4

2

.(8.18)

For a reference on the semicircle law and its Stieltjes transform, we cite [2], [3], [4], [11], [13], and [17]. We note the branch
of the square root is taken so that

p
z2 � 4 ⇠ z for large z, in which case the bound (8.16) follows immediately.
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Rectangular Regime. Fix constants ⇤ > 0 and " > 0 to be determined. Suppose |E| 2 [",⇤]. By the representation
m(z) = zm1(z2) and the explicit formula for m1(z) as given in (8.2), the bound (8.16) follows immediately in this energy
regime, where the implied constant in (8.16) may be taken independent of ⌘.

Suppose now that |E| > ⇤. Again by the representationm(z) = zm1(z2), we have

|m(z)| = O
⇣
�z2 + i

p
(�

+

� z2)(z2 � ��)
⌘

(8.19)

= O
⇣
�z2 +

p
(z2 � �

+

)(z2 � ��)
⌘

(8.20)

= O(1),(8.21)

since the square root is, again, chosen so that
p
z4 +O(z2) ⇠ z2 for large z.

Lastly, suppose |E| < ". By de�nition ofm(z) as the Stieltjes transform of %, we obtain

|m(z)| =

������

w

E22[�±]

�

(1 + �)⇡|E|(E � ")

p
(�

+

� E2

)(E2 � ��) dE

������
= O

 
1p

�� � "

!
,(8.22)

where the implied constant depends only on �xed data �,�±. Choosing " =

p
��/100 > 0, we obtain the desired bound.

We note this choice of " is positive if and only if ↵ > 1. �is completes the proof of Lemma 8.3. ⇤
We are now in a position to make our �nal reduction of the proof of the local laws in�eorem 4.1. �is reduction exploits

the �rst reduction in Lemma 7.5, allowing us to focus on the covariance matrices X⇤ and X⇤,+. �e reduction will depend
on the following result, for which we need to de�ne the following spectral domain.

DN,�,⇠ = {z = E + i⌘ : |E| 6 N �, ⇠2/N 6 ⌘ 6 N}.(8.23)

Proposition 8.4. Suppose ⇠, ⇣ > 0 and D � ⇠2. If, for a �xed z 2 DN,�,⇠ , we have

P (�

⇤
?(z) = O(1)) > 1� e�⇣ ,(8.24)

then, with probability at least 1� e�(⇠ log ⇠)^⇣+O(logN), we have

max

i
|[G?(z)]ii �m(z)| = O(Fz(⇠�(z))), max

i 6=j
|[G?(z)]ij | = O

✓
⇠�(z2)

z

◆
.(8.25)

Here, ? can take the values ? = ⇤ and ? = ⇤,+.

Compared to the local laws for X⇤ and X⇤,+ in �eorem 4.1, the statement of Proposition 8.4 requires only a pointwise
estimate instead of a uniform estimate. To go from a pointwise estimate to a uniform estimate, we appeal to an adaptation of
a standard argument in random matrix theory using the Lipschitz continuity of the Green’s function entries. Moreover, since
the estimate holds with high probability at each point, we will need to bound from below the probability of the intersection of
these events – by our notion of high probability, this intersection of high probability events also occurs with high probability.
For a reference on this method, we appeal to [4]. Lastly, the statement of Proposition 8.4 requires an a priori estimate on the
Green’s function entries.

We now use Proposition 8.4 to derive the �nal reductions of the proof of�eorem 4.1. �e �rst reduction is to use Propo-
sition 8.4 to derive the local law for the Green’s functions G⇤ and G⇤,+, i.e. the estimates on the covariance matrices in
�eorem 4.1. �e last reductions are removing the repulsion assumption |E| > " on the energy whenever suitable. �ese
two procedures will follow the same argument, essentially, which is a method of scaling using Lemma 6.6. We begin the with
the �rst reduction.

Lemma 8.5. Suppose Proposition 8.4 holds. �en the estimates (4.7) and (4.8) in �eorem 4.1 hold.

Proof. We �rst note that, by the same argument as given in Lemma 8.3, uniformly on the set U" we have the estimates

m1(z),m1,+(z) 6 C,(8.26)
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for some constant C = O(1). Moreover, we note that it su�ces to restrict from U" to the domain DN,�,⇠ , as by Proposition
2.4, the spectrum of X⇤ and X⇤,+ is bounded by O(1).

Fix an energy E
0

in DN,�,⇠ \ U", i.e. z0 := E
0

+ iN 2 DN,�,⇠ \ U". For any ⌘ 2 [⇠2/N,N ], �x z = E
0

+ i⌘ and de�ne
the integer K by

K = min{k : N/2k 6 ⌘}.(8.27)

First, we noteK = O(logN) by the constraints on ⌘ given byDN,�,⇠ . We now de�ne zk = E
0

+ iN/2k for k = 0, . . . ,K .
By the Ward identity, we have the following deterministic bound:

�

⇤
?(z1) 6 1

N
(8.28)

�us, by Proposition 8.4, we deduce the local laws at z = E
0

+ iN . We now proceed inductively; suppose the local law holds
at some k 2 [[0, N ]] with probability at least 1� e(⇠ log ⇠)^⇣+O(logN). �en, on this event, we know

�

⇤
?(zk) = O(1),(8.29)

where the implied constant is independent of k by the comparison given in the local law, and the uniform O(1) estimate on
m1,m1,+ on U". By Lemma 6.6, on this event we obtain the following with probability at least 1� e(⇠ log ⇠)^⇣+O(logN):

�

⇤
?(zk+1

) 6 2�

⇤
?(zk) = O(1).(8.30)

By Proposition 8.4, we obtain the local laws at zk+1

with probability at least 1� e⇠ log ⇠ . Continuing inductively, we deduce
the local law at the parameter z.

To obtain a local law uniformly over U", we now discretize U" \DN,�,⇠ into a la�ice ⇤ of mesh bounded by N�4. If we
de�ne A(z) to be the event that the local laws hold at the point z, then we have by a standard probability bound

P
 
\

z2⇤

A(z)

!
> 1� |⇤|e�⇠ log ⇠ > 1� e�⇠ log ⇠,(8.31)

where in the last lower bound we abuse notation and adapt the parameter ⇠ such that the growth bound ⇠ log ⇠ � logN still
holds. In the last lower bound, we also use the simple bound |⇤| = NO(1). �is completes the proof of Lemma 8.5. ⇤

Wenow proceed to the �nal reduction of the proof of�eorem 4.1. �is reduction is concernedwith extending the local law
for the Green’s function of the linearizationX beyond the domain U" and to energies |E| < ". �e strategy of this extension
mimics the proof of Lemma 8.5, instead now using the regularity of the Stieltjes transform m near the origin established
in Lemma 8.3. Moreover, by Lemma 8.1, it su�ces to extend the estimate beyond U" for the partial Stieltjes transform sw .
Lastly, this extension may be performed for the Green’s function G⇤ of the smaller covariance matrix X⇤ if ↵ > 1. �is is
summarized in the following lemma.

Lemma 8.6. Suppose Proposition 8.4 holds. �en the estimates (4.10) and (4.11) hold without the assumption |E| > ". Conse-
quently, the estimates (4.14) and (4.15) hold without the assumption |E| > ". Moreover, if ↵ > 1, then the estimate (4.7) holds
without the assumption |E| > ".

Proof. We �rst assume ↵ > 1, i.e. the general regime. �e �rst statement follows via the same inductive argument in
Lemma 8.5 once we have the regularity of the Stieltjes transform uniformly over the upper-half plane given in Lemma 8.3. In
particular, we may begin the iteration scheme over dyadic scales over energies |E

0

| < " as well.
For the rectangular regime ↵ > 1, we again use the same inductive argument in Lemma 8.5 upon noting m1 = O(1)

on z 2 C
+

. �is follows by a similar argument given in the proof of Lemma 8.3 concerning the Stieltjes transform m of the
linearization.

Lastly, we deduce the estimate (4.15) holds without the energy assumption by averaging over indices k 2 [[M+1,M+N ]].
We deduce the estimate (4.14) without the energy assumption by Lemma 8.1. ⇤
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8.1. Recap of Reductions. We now summarize the reductions achieved in this discussion as follows.

• We begin by focusing on the domainU", i.e. some repulsion estimate on the energyE. We �rst derive the equivalence
of entry-wise local laws for the Green’s functions of the covariance matrices G⇤ and G⇤,+ and the Green’s function
of the linearization G. �is is the content of Lemma 7.5. �is allows us to focus solely on the covariance matrices
whenever working in the domain U".

• As a brief aside, we prove a strong equivalence for the local laws concerning the Stieltjes transforms s⇤ and s⇤,+

and an equivalence for the local laws concerning the partial Stieltjes transforms sb and sw . �e strength in this
equivalence is removing the repulsion assumption in U". �is is the content of Lemma 8.1, and it will be important
in extending the local laws outside U" whenever appropriate.

• We now assume an a priori estimate, both on the parameter z in constructing the domainDN,�,⇠ , and on the Green’s
function entries. From this, we derive the local laws for G⇤ and G⇤,+. By the �rst point, this gives the entry-wise
local laws for the Green’s function G. �is is the content of Lemma 8.5.

• Wenow extend the estimate for the lower-right entries of the Green’s functionG beyond the domainU", i.e. removing
the repulsion assumption on the energy. �is is the content of Lemma 8.6. �is requires an a priori estimate on the
Stieltjes transform m uniform over the upper-half plane. �is point is taken care of in Lemma 8.3. By the same
method, we also remove the repulsion assumption on the energy for the Green’s function G⇤ in the regime ↵ > 1.

We reemphasize that the underlying mechanism for establishing these reductions is given by Proposition 7.2, which relates
all Green’s functions and Stieltjes transforms by Lemma 7.3 and Corollary 7.4. Extending the estimates past U" requires
additional regularity of the limiting Stieltjes transform.

To recap, to prove �eorem 4.1, it now su�ces to prove Proposition 8.4. �is will be the focus for the remainder of this
chapter.
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III. Switchings on Graphs

We now focus on constructing a method of resampling graphs in⌦. We will construct the resamplings using tools in graph
theory known as switchings. �e resampling method via switchings is discussed in detail for the ensemble of d-regular graphs
in [3] and [4]. Our methods will mimic the methods used in those papers, adjusted appropriately for biregular graphs.

9. S��������� �� B�������� G�����

We begin by introducing notation necessary to de�ne switchings on biregular graphs. Switchings will be local operations
on the biregular graphs, so we will establish notation for vertices and edges containing said vertices as follows.

Notation 9.1. A generic vertex in Vb (resp. Vw) will be denoted by vb (resp. vw).
For a �xed graph E 2 ⌦, we will denote the edges in E containing vb by {eb,µ}db

µ=1. Moreover, for a �xed edge eb,µ containing
vb, we will denote the neighboring vertex by vb,µ, so that eb,µ = vbvb,µ.

Similarly, the edges in E containing vw will be denoted by {ew,⌫}dw
⌫=1. For a �xed edge ew,⌫ containing vw , we will denote the

neighboring vertex by vw,⌫ .
For a �xed vertex vb 2 Vb, we establish the notation for the set of edges not containing vb:

Uvb := {edges e 2 E : vb 62 e} .(9.1)

Similarly for a �xed vertex vw 2 Vw , we de�ne the following set of edges not containing vw :

Uvw := {edges e 2 E : vw 62 e} .(9.2)

vw,2

vw,1

vw

F����� 4. We illustrate the established notation for local data in this graph. Here having �xed a white
vertex vw , the red edges denote the de�ned edges ew,1 and ew,2, whose black vertices are de�ned as vw,1

and vw,2 respectively. �e blue edges denote the set Uvw .

Remark 9.2. Before we proceed, we note that the notation established for vertices and the corresponding edges and neighbors
suppresses the vertex vb from the explicit notation. We do this without the risk of confusion among edges and neighbors of
di�erent vertices of the same color (black or white).

We may now begin to de�ne a switching on a generic graph E 2 ⌦. To this end, we �x a black vertex vb 2 Vb and an edge
ev,µ for some µ 2 [[1, db]]. We de�ne the following space of subgraphs of E:

Svb,µ,E := {S ⇢ E : S = {eb,µ, pb,µ, qb,µ}, pb,µ 6= qb,µ 2 Uvb} .(9.3)
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vw

F����� 5. We illustrate the indicator functions de�ned in (9.6) through (9.8) with the �xed white vertex vw .
Here, Sw,1 denotes the subgraph de�ned by the red edges and Sw,2 denotes the subgraph de�ned by the
blue edges. For both graphs, I(Sw,1) = I(Sw,2) = 1. However, J(Svw , ⌫) = 0 for both edges ⌫ = 1 and
⌫ = 2, where the product in (9.7) is de�ned over the two graphs Sw,1 and Sw,2. �us, the setW is empty.

vw

F����� 6. Again we �x a white vertex vw . We let Sw,1 denote the subgraph de�ned by the red edges and we
let Sw,2 denote the subgraph de�ned by the blue edges. We note I(Sw,1) = 0while I(Sw,2) = 1. Moreover,
we know J(Svw , ⌫) = 1 for ⌫ = 1 and ⌫ = 2, as the two subgraphs share only the vertex vw . �us, the set
W contains the edge label ⌫ = 2.

In words, the set Svb,µ,E is the set of graphs consisting of the edges eb,µ and any two distinct edges pb,µ and qb,µ, neither of
which contains the vertex vb. Similarly, we may de�ne for a �xed white vertex vw 2 Vw and edge ew,⌫ , for some ⌫ 2 [[1, dw]],
the same set of graphs:

Svw,µ,E := {S ⇢ E : S = {ew,⌫ , pw,⌫ , qw,⌫} : pw,⌫ 6= qw,⌫ 2 Uvw} .(9.4)

Notation 9.3. A generic graph in Svb,µ,E will be denoted by Sb,µ. A generic graph in Svw,⌫,E will be denoted by Sw,⌫ .

�e set Svb,µ,E contains the edge-local data along which switchings on graphs will be de�ned. To make this precise, we
need to introduce the following indicator functions. First, we de�ne the following con�guration vectors for �xed vertices
vb 2 Vb and vw 2 Vw:

Svb := (Sb,µ)
db

µ=1 , Svw := (Sw,⌫)
dw

⌫=1 .(9.5)

With this notation, we de�ne the following indicator functions that detect graph properties in Sb,µ and Sw,⌫ .

I(Sb,µ) = 1 (|[Sb,µ]| = 6) ,(9.6)

J(Svb , µ) =
Y

µ0 6=µ

1 ([Sb,µ] \ [Sb,µ0 ] = {vb}) ,(9.7)

W (Svb) = {µ : I(Sb,µ)J(Svb , µ) = 1} .(9.8)

For white vertices vw 2 Vw , the functions I, J andW retain the same de�nition upon replacing b with w and µ with ⌫.
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We now de�ne the augmented probability spaces e⌦ which will make the switchings systematic from the perspective of
Markovian dynamics. For a �xed black vertex vb 2 Vb and a �xed white vertex vw 2 Vw , we de�ne the following augmented
space:

e⌦ =

(
(E,Svb ,Svw) , E 2 ⌦, Svb 2

dbY

µ=1

Svb,µ,E , Svw 2
dwY

⌫=1

Svw,⌫,E

)
(9.9)

⇡ ⌦⇥
dbY

µ=1

Svb,µ,E ⇥
dwY

⌫=1

Svw,⌫,E .(9.10)

We now clarify the de�nition of e⌦, in particular the de�nition in terms of a product space is an abuse of notation. Precisely,
e⌦ is the space of triples (E,Svb ,Svw) such that E is a biregular graph in ⌦, and Svb and Svw are con�guration vectors. In
particular, the product space representation for e⌦ given above is ill-de�ned as the second and third factors in the product
depend on the �rst factor ⌦, hence the approximation. However, the precise set-theoretic de�nition given is well-de�ned.

9.1. Switchings of Biregular Graphs. We now precisely de�ne switchings by de�ning dynamics on e⌦. To this end we
de�ne switchings on con�guration vectors Svb and Svw ; we �rst focus on the con�guration vectors for black vertices.

Fix a label µ and consider a component Sb,µ of a uniformly sampled con�guration vector Svb . Precisely, the components
of Svb are sampled jointly uniformly and independently from Svb,µ,E , where E 2 ⌦ is uniform over all µ and sampled
uniformly. We now de�ne the following map:

Tb :
dbY

µ=1

Svb,µ,E �!
dbY

µ=1

Svb,µ,E0(9.11)

where E0 2 ⌦ is possibly di�erent from E. �e map is given as follows: for any µ, we de�ne the map Tb,µ

Tb,µ(Sb,µ) =

8
<

:
Sb,µ µ 62 W (Svb)

(Sb,µ, sb,µ) µ 2 W (Svb)
.(9.12)

We de�ne the graph (Sb,µ, sb,µ) as follows; this is where we now introduce randomness into the dynamics Tb. Suppose
µ 2 W (Svb), in which case Sb,µ is 1-regular and bipartite with respect to the vertex sets ([Svb ], V1, V2). Consider the set of
1-regular bipartite graphs with respect to the vertex set ([Sb,µ], V1, V2). In words, this is the set of 1-regular graphs on [Sb,µ]

such that, upon replacing Sb,µ with any such graph, the global graph E remains biregular. We now de�ne (Sb,µ, sb,µ) to be
drawn from this set uniformly at random conditioning on the event (Sb,µ, sb,µ) 6= Sb,µ. Lastly, we de�ne the following global
dynamics:

Tb =
dbY

µ=1

Tb,µ,(9.13)

where the product is taken as composition. We note this product is independent of the order of composition; this is a con-
sequence of the de�nition of the functions I, J and W . For white vertices vw 2 Vw , we de�ne the map Tw by replacing all
black indices b and white indices w.

Remark 9.4. We brie�y remark here that sb,µ may be thought of as a fair Bernoulli random variable as there exist only two
possible graphs on [Sb,µ] distinct from Sb,µ that preserve the bipartite structure of the global graph E. �is perspective was
motivated by [4] in the discussion of d-regular graphs, but is unimportant to the discussion at hand.

We note that the maps Tb and Tw de�ne maps on e⌦, because we are allowed to change the underlying graphE when vary-
ing over the space e⌦; this is the utility of the almost-product representation of e⌦. �is allows us to �nally de�ne switchings
of a biregular graph.

De�nition 9.5. For a �xed black vertex vb 2 Vb and a �xed label µ 2 [[1, db]], the local switching at vb along µ is the map
Tb,µ. �e global switching is the map Tb.
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vb vb vb

F����� 7. We illustrate a local switching at vb along the red edge. Here, Sb,µ denotes the subgraph de�ned
by the red edges on the far LHS graph. We note the red edge is contained in the set W , so we may switch
to either the middle graph or the RHS graph.

Similarly, for a �xed white vertex vw 2 Vw and a �xed label ⌫ 2 [[1, dw]], the local switching at vw along ⌫ is the map
Tw,⌫ . �e global switching at vw is the map Tw .

Remark 9.6. We note our construction, technically, implies the mappings Tb,µ and Tw,⌫ are random mappings on the aug-
mented space e⌦. Via this construction, we obtain a probability measure e⌦ induced by the uniform measure and a uniform
sampling of switchings. To obtain an honest mapping on the original space ⌦, we may instead construct deterministic map-
pings by averaging over the random switchings. For precise details, we cite [4].

To even be able to exploit switchings in our analysis of biregular graphs and their Green’s functions, we need the following
lemma which establishes the switchings do not change the underlying probability measures on e⌦ and ⌦. To make sense of
this, we impose the uniform measure on e⌦. To show this coincides with our uniform model on ⌦ amounts to showing the
uniform probability measure on ⌦ is the pushforward of the uniform probability measure on e⌦ under the projection e⌦ ! ⌦,
which follows from a direct inspection. �us, wemust show the uniform probability measure on e⌦ is preserved by switchings.
�is is the content of the following lemma.

Lemma 9.7. �e uniform probability measure on e⌦ is invariant under the dynamics Tb and Tw . In particular, for any function
f : e⌦ ! R, we have

EUnif f(Tw(E)) = EUnif f(E) = EUnif f(Tb(E)).(9.14)

Proof. It su�ces to note that Tb and Tw de�ne bijections on e⌦, which is a �nite set. ⇤

Remark 9.8. We brie�y remark that Lemma 9.7 may be upgraded to a stronger result; in particular, the dynamics Tb and Tw

are reversible with respect to the uniform probability measure on e⌦. �e reversibility amounts to deriving the involution
property of Tw and Tb. �is, however, will not be important in our analysis of Green’s functions, so we omit this discussion.
For details, however, we cite Lemma 6.1 in [4].

10. S��������� �� A��������M�������

We now redirect our focus to the construction of switchings on biregular graphs, now from the perspective of linear
perturbations on a matrix space rather than combinatorial operations on graphs. �e upshot to the matrix perspective is a
method of computing stability of the Green’s functions a�er switchings. To this end, suppose E 2 ⌦ is a biregular graph
with adjacency matrix A. We will �x the following notation.

Notation 10.1. For an edge e = ij on the vertex set V , we let �ij denote the adjacency matrix of the graph on V consisting
only of the edge e. In particular,�ij is the matrix whose entries are given by

(�ij)k` = �ik�j` + �i`�jk.(10.1)
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In the context of switchings on biregular graphs, the matrices �ij are perturbations of adjacency matrices. �is is made
precise in the following de�nition.

De�nition 10.2. Fix a black vertex vb 2 Vb and a label µ 2 [[1, db]]. A local switching of A, denoted Tb,µ, at vb along µ is
given by the following formula:

Tb,µ(A) = A� Sb,µ + (Sb,µ, sb,µ),(10.2)

where Sb,µ is a component of a random, uniformly sampled con�guration vector Svb . A global switching of A, denoted Tb,
is the composition of the random mappings Tb,µ.

Similarly, we may de�ne local switchings and global switchings of adjacency matrices for white vertices by replacing the
black subscript b with the white subscript w, and replacing the label µ with ⌫.

Clearly, a local or global switching of an adjacency matrix is the adjacency matrix corresponding to a local or global
switching of the underlying graph. To realize the matrices �ij as perturbations, we will rewrite the formula de�ning Tb,µ

as follows. As usual, we carry out the discussion for black vertices vb 2 Vb, though the details for white vertices vb follow
analogously.

First, we recall the following notation for a component Sb,µ 2 Svb,µ,E of a con�guration vector Svb :

Sb,µ := {eb,µ, pb,µ, qb,µ} ,(10.3)

subject to the constraint that Sb,µ contains three distinct edges.

Notation 10.3. We will denote the vertices of pb,µ by ab,p,µ 2 Vb and aw,p,µ 2 Vw . Similarly, we will denote the vertices of qb,µ
by ab,q,µ 2 Vb and aw,q,µ 2 Vw .

With this notation, we may rewrite the random mapping Tb,µ as follows:

Tb,µ(A) = A�
�
�vb,vb,µ +�ab,p,µaw,p,µ +�ab,q,µaw,q,µ

�
+

�
�vb,x +�ab,p,µ,y +�ab,q,µ,z

�
,(10.4)

where we recall eb,µ = vbvb,µ. Here, the variables x, y, z are three distinct vertices sampled from the set of white vertices
{vb,µ, aw,p,µ, aw,q,µ} conditioning on the following constraint on ordered triples:

(x, y, z) 6= (vb,µ, aw,p,µ, aw,q,µ).(10.5)

�e representation (10.4) of the random mapping Tb,µ gives an interpretation of switchings analytically as perturbations on a
linear space. �is representation will be important in studying the Green’s functions of adjacency matrices upon switchings.

To exploit the perturbation representation (10.4), however, we must �rst understand the randomness of the vertices of
the randomly sampled components Sb,µ. �is will be the remaining focus of our discussion on constructing switchings on
biregular graphs.

11. P���������� E�������� �� V�������

We begin by de�ning the following probabilistic notion which will be helpful in recording estimates on the distribution of
vertices of randomly sampled components Sb,µ.

De�nition 11.1. Suppose S is a �nite set and X is an S-valued random variable. We say (the distribution of) X is approxi-
mately uniform if the following bound on total variation holds:

X

s2S

����P (X = s)� 1

|S|

���� 6 O

✓
1p
dwD

◆
.(11.1)

We now introduce the following �-algebras on e⌦. �ese �-algebras will allow us to focus on edge-local features of graphs
E 2 ⌦ upon conditioning on the global data E.
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De�nition 11.2. For a �xed label µ 2 [[0, db]], we de�ne the following �-algebras:

Fµ := � (E, (Sb,1, sb,1), . . . , (Sb,µ, sb,µ)) ,(11.2)

Gµ := �
⇣
E (Sb,µ0 , sb,µ0)µ0 6=µ

⌘
.(11.3)

We similarly de�ne the �-algebras F⌫ and G⌫ for ⌫ 2 [[1, dw]] for white vertices.

We brie�y clarify the meaning of the �-algebras Fµ and Gµ, in particular remarking the notation (Sb,µ0 , sb,µ0) denotes
conditioning on the switching data at vb along µ0, and similarly for (Sw,⌫0 , sw,⌫0).

�e last piece of probabilistic data we introduce is the following notation, which will allow us to compare i.i.d. switchings
on biregular graphs.

Notation 11.3. Suppose X is a random variable on the graph data E, {(Sb,µ, sb,µ)}µ, {(Sw,⌫ , sw,⌫)}⌫ . �en eX denotes a
random variable on the variables eE, {(eSb,µ, esb,µ)µ, {(eSw,⌫ , esw,⌫)}, where the tildes on the graph data denote i.i.d. resamplings.

Notation 11.4. For notational simplicity, by pµ, qµ or p⌫ , q⌫ , we will refer to either pb,µ, qb,µ or pw,⌫ , qw,⌫ , respectively, whenever
the discussion applies to both situations.

Having established this probabilistic data, we now focus on obtaining an estimate on the distribution of the pair of edges
(pµ, qµ), and similarly for (p⌫ , q⌫). As with all results concerning switchings from here on, details of proofs resemble those
of Section 6 in [4], so we omit details whenever redundant.

Lemma 11.5. Conditioned on Gµ, the pair (pµ, qµ) is approximately uniform, i.e., for any bounded symmetric function F , we
have

EGµ F (pµ, qµ) =
1

(Ndw)2

X

p,q2E

F (p, q) + O

✓
1

N
kFk1

◆
.(11.4)

Similarly, for any bounded function F , we have

EGµ,qµ F (pµ) =
1

Ndw

X

p2E

F (p) + O

✓
1

N
kFk1

◆
.(11.5)

Proof. Assume we resample about vb 2 Vb; the case for vw 2 Vw follows analogously. By de�nition, we have

EGµ F (pµ, qµ) =
1

(Ndw � dw)(Ndw � dw � 1)

X

p2Evb

F (p),(11.6)

where Evb is the set of edges in E that are not incident to vb. �en, (11.4) follows from the following estimate

1

(Ndw � dw)(Ndw � dw � 1)
=

1

(Ndw)2
+ O

✓
1

N3d2w

◆
(11.7)

as well as the estimate |Evb | 6 (Ndw)2, and lastly the estimate |EC
vb
| 6 Ndw . �is last upper bound follows combinatorially;

for details, see the proof of Lemma 6.2 in [4]. �e estimate (11.5) follows from a similar argument. ⇤

Because an edge is uniquely determined by its vertices in the graph, we automatically deduce from Lemma 11.5 the fol-
lowing approximately uniform estimate for resampled vertices as well.

Corollary 11.6. Conditioned on Gµ, the pair (pµ(b), qµ(b)) (resp. (pµ(w), qµ(w))) is approximately uniform.
Similarly, conditioned on Gµ and qµ(b) (resp. qµ(w)), the random variable pµ(b) (resp. pµ(w)) is approximately uniform.

Proof. �is follows immediately upon applying Lemma 11.5 to the function F (pµ, qµ) = f(pµ(b), qµ(b)). ⇤

To fully exploit the resampling dynamics, we need a lower bound on the probability that a local switching Sb,µ, sb,µ around
a vertex vb 2 Vb does not leave the graph �xed. In particular, we need an estimate for the probability of the event µ 2 W (Svb)

where here µ is �xed and the set W is viewed as random. As discussed in [4], to provide an estimate, the naive approach
to estimating this probability conditioning on Gµ fails in an exceptional set. Precisely, suppose the µ-th neighbor vb,µ of vb
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lives in Sb,µ0 for some µ0 6= µ. In this case, almost surely, we have [Sb,µ] \ [Sb,µ0 ] is nontrivial. It turns out this is the only
obstruction, so we aim to show that vb,µ 2 [Sb,µ0 ] occurs with low probability for any µ0 6= µ.

Formally, we de�ne the following indicator random variable which detects this exceptional set:

h(Svb , µ) =
Y

µ0 6=µ

1 (vb,µ 2 Sb,µ0) .(11.8)

�us, the estimates we need are given in the following result.

Lemma 11.7. For any neighbor index µ, we have

PGµ [I(Sb,µ)J(Svb , µ) = h(Svb , µ)] > 1�O

✓
db
N

◆
.(11.9)

Moreover, we have

PF0 [h(Svb , µ) = 1] > 1�O

✓
db
N

◆
.(11.10)

Proof. We �rst note that (11.9) follows immediately conditioning on h = 0. In particular, the �rst lower bound (11.9) follows
from a combinatorial analysis of the underlying graph using the following union bound:

PGµ,h=1 [I(Sb,µ)J(Svb , µ) = 0] 6 PGµ [I(Sb,µ) = 0]

+ PGµ,h=1 [J(Svb , µ) = 0] .(11.11)

Similarly, (11.10) follows from the union bound

PF0 [h(Svb , µ) = 0] 6
X

µ0 6=µ

PF0 [vb,µ 2 [Sµ0 ]] .(11.12)

For details, we refer back to [4]. ⇤

We conclude this section with an estimate that compares independent resamplings. Recall that fW,W are i.i.d. copies of
the random variable W (Svb). �e following result bounds the �uctuation inW (Svb) from independent resamplings.

Lemma 11.8. Almost surely, we know

#
⇣
W�fW

⌘
= O(1),(11.13)

where the implied constant is independent of N . Moreover, we also have

PGµ

h
W�fW 6= ;

i
6 O

✓
db
N

◆
.(11.14)

�e proof follows the argument concerning Lemma 6.3 in [4] almost identically, so we omit it. We now present the �nal
estimate on adjacency matrices comparing switched matrices upon i.i.d. switchings in the sense of matrix perturbations. �is
will allow us to perform and control resamplings of biregular graphs, in particular using the resolvent perturbation identity.

Lemma 11.9. Under the se�ing of the resampling dynamics, we have

eA�A = Tb,µ(A)� eTb,µ( eA)(11.15)

with probability at least 1�O(db/N). Almost surely, we have

eA�A =

O(1)X

x,y=1

�xy,(11.16)

such that either, conditioning on Gµ, the random indices x, y are approximately uniform in the corresponding set Vb or Vw or,
conditioning on Gµ, pµ, epµ, at least one of the random indices x, y is approximately uniform in the appropriate vertex set.

Lastly, the statement remains true upon switching instead at a white vertex vw along an edge label ⌫.
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Proof. �e result follows from unfolding Lemma 11.8 and the following deterministic identity:

eA�A = 1
µ2fW

h
eTb,µ(E)� E

i
� 1µ2W [Tb,µ(A)�A]

+
X

µ02fW�W

± [Tb,µ(A)�A] ,(11.17)

where the sign corresponds to which of the random sets W or fW contains the indexing label µ0. ⇤
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IV. Green’s Function Analysis

12. S��������� �� G����’� F��������

We �rst discuss several preliminary estimates which will ultimately help us deduce a self-consistent equation describing
the Green’s functionG of the linearized covariance matrixX . Before we begin with the results, we will assume that all graphs
E are switched, so that for example the vertices of E are approximately uniformly drawn.

�e �rst of these results is a deterministic estimate controlling Green’s functions upon i.i.d. switchings of any �xed
biregular graph E 2 ⌦. To state this estimate, we now introduce the following control parameter for any �xed edge label
µ 2 [[1, db]] or ⌫ 2 [[1, dw]]:

�µ = �µ(z) := k�(z)kL1
(Gµ)

,(12.1)

where the notation L1
(Gµ) in the norm denotes the L1-norm conditioning on the �-algebra Gµ.

Lemma 12.1. For any �xed indices i, j 2 [[1,M +N ]] and any label µ 2 [[1, db]], we have

Gij � eGij = O(d�1/2
w �µ�).(12.2)

Moreover, suppose x, y are random variables such that, conditioned on Gµ and x, the random variable y is approximately uniform.
�en we have

EGµ |Gxy|2 = O(�

4

µ�
2

).(12.3)

�e estimate also holds for any �xed label ⌫ 2 [[1, dw]] of a white vertex.

Proof. By the resolvent identity, we have

Gij � eGij =

M+NX

k,`=1

Gik(
eX �X)k`

eG`j

= d�1/2
w

MX

k=1

M+NX

`=M+1

Gik(
eA�A)k`

eG`j + d�1/2
w

M+NX

k=M+1

MX

`=1

Gik

⇣
eA�A

⌘

`k

eG`j .(12.4)

�e estimate (12.1) now follows from the almost sure estimate in Lemma 11.9. �e proof of (12.3) follows from (12.1) and
straightforward calculations; for details, see Lemma 3.9 in [4]. ⇤

As an immediate corollary, we deduce the following estimate which follows from (12.1) by taking suprema.

Corollary 12.2. In the se�ing of Lemma 12.1, we have

� = �µ + O
⇣
d�1/2
w �µ�

⌘
.(12.5)

Having established preliminary, deterministic estimates, we now aim to exploit the approximately uniform structure of
the vertices and edges of a switched biregular graph E 2 ⌦. �is will help us deduce stability of the Green’s function of a
switched graph, though these results will only hold with high probability and are thus non-deterministic. To this end, we
introduce the following notion of high-probability, which will closely resemble other notions of high-probability events used
in this thesis.

De�nition 12.3. Fix a parameter t = tN � logN , and a probability space ⌦. We say an event ⌅ ⇢ ⌦ holds with t-high
probability, or t-HP for short, if

P
�
⌅

C
�
6 e�t+O(logN).(12.6)
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As suggested in the statement of �eorem 4.1, we will take the parameter t = (⇠ log ⇠) ^ ⇣ . Before we proceed with the
Green’s function estimates, however, we now illustrate the utility in the notion of t-HP via the following result for t-HP
events, whose proof follows from a simple union bound.

Lemma 12.4. Suppose ⌅
1

, . . . ,⌅O(N)

is a collection of events that hold with t-HP. �en the union of these events ⌅ = [n⌅n

holds with t-HP.

Lastly, we record the following translation of t-HP events in terms of a t-HP bound on conditional expectations. �is result
follows from a conditional Markov inequality.

Lemma 12.5. Suppose ⌅ ✓ ⌦ is an event that holds with t-HP and let F denote a �-algebra on ⌦ which ⌅ is measurable with
respect to. �en for any k = ON!1(1), we have with t-HP

EF (1
⌅

C ) 6 N�k.(12.7)

Proof. Indeed, we have the following sequence of inequalities:

P
�
EF (1

⌅

C ) > N�k
�
6 Nk EEF (1

⌅

C ) 6 Nke�t+O(logN).(12.8)

⇤

We now state the main stability estimate for the Green’s function, which, upon taking expectation, provides a precise
o(1) estimate on the entries of the Green’s function G(z) of the linearization. �is result is one of the two important results
regarding switchings on Green’s functions; it is a bipartite version of Lemma 5.2 in [4]. However, for the ensemble of biregular
graphs, the combinatorial constraints on the graph introduce structural di�erences, which we will address in the proof of this
result.

Lemma 12.6. Fix a vertex i = vb 2 Vb and an edge label µ 2 [[1, db]]. Suppose z = E + i⌘ 2 C
+

satis�es the following
constraints for a �xed " > 0:

|E| > ", ⌘ & 1

N
.(12.9)

Suppose further that � = O(1) holds with t-HP. �en for all �xed indices j, `, r we have

EF0

 
Gvb,µj �

1

N

M+NX

k=M+1

Gkj

!
= �EF0

⇣
d�1/2
w swGij

⌘
+O(d�1/2

w �),

EF0

"
G`r

 
Gvb,µj �

1

N

M+NX

k=M+1

Gkj

!#
= �EF0

⇣
G`rd

�1/2
w swGij

⌘
+O(d�1/2

w �).

Similarly, �x a vertex k = vw 2 Vw and µ 2 [[1, dw]], and suppose z 2 C
+

satis�es the constraints (12.9). Further suppose
� = O(1) with t-HP. �en for all �xed indices j, `, r, we have

EF0

 
Gvw,µj �

1

M

MX

i=1

Gij

!
= �EF0

⇣
d�1/2
w sbGkj

⌘
+O(d�1/2

w �),

EF0

"
G`r

 
Gvw,µj �

1

M

MX

i=1

Gij

!#
= �EF0

⇣
G`rd

�1/2
w sbGkj

⌘
+O(d�1/2

w �).

Proof. We prove the �rst estimate only for vb 2 Vb; the proof of the second estimate and the estimates for vw 2 Vw are
analogous. In expectation, we �rst note

EF0 Gvb,µj = EF0
eGevb,µj .
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Moreover, because G(z) is independent of the random variable evb,µ, and because, conditioned on Gµ, the random variable
evb,µ 2 Vw is approximately uniform, we also know

EF0

 
1

N

M+NX

k=M+1

Gkj

!
= EF0 Gevb,µj +O(d�1/2

b �).

�us, it su�ces to compute

�EF0

⇣
Gevb,µj � eGevb,µj

⌘
.

By the resolvent identity, we have the following equation holding in expectation:

EF0

⇣
�Gevb,µj � eGevb,µj

⌘
= EF0

0

@
X

k,`

Gevb,µk(
eX �X)k`

eG`j

1

A .(12.10)

Unfolding the high-probability equation (11.15) in Lemma 11.9, we have, with probability at least 1�O(d�1/2
w �) conditioned

on F
0

,

eX �X = d�1/2
w

�
�vbevb,µ ��vbvb,µ + ⌃b

�
+ d�1/2

w

�
�evb,µvb ��vb,µvb + ⌃

⇤
b

�
.(12.11)

Here, we recall that vb,µ (resp. evb,µ) is the vertex adjacent to vb in Svb,µ (resp. eSvb,µ) a�er resampling. Also, ⌃b is the matrix
given by a sum of terms ±�xy where one of the following two conditions holds:

• Conditioned on Gµ, epµ, the random variable x is approximately uniform, or;
• Conditioned on Gµ, the random variable y is approximately uniform.

�us, upon unfolding the RHS of (12.10), we see one term is given by, in expectation,

EF0

h
d�1/2
w Gevb,µevb,µ

eGij

i
= EF0

h
d�1/2
w s eGij

i
+O(d�1/2

w �)

= EF0

h
d�1/2
w sGij

i
+O(d�1/2

w �),

where the �rst equality holds because ev�,µ is approximately uniform by Corollary 11.6 and the second holds since for any
�xed indices i, j, we have Gij ⇠ eGij conditioned on Gµ. In particular, we have

EF0

⇣
Gevb,µevb,µ

eGij

⌘
= EF0

�
Gevb,µevb,µGij

�
+ EF0

h
Gevb,µevb,µ

⇣
eGij �Gij

⌘i

= EF0

�
Gevb,µevb,µGij

�
+O

✓
1p
D

◆
,

where the second equality holds by Lemma 12.1. �us, it su�ces to bound the remaining terms in (12.10). By (12.11), it su�ces
to estimate the expectation of terms Gevb,µx

eGyj . By the second result in Lemma 12.1 and the Schwarz inequality, in the case
where y is approximately uniform conditioning on Gµ, we have, with high probability,

EF0 Gevb,µx
eGyj 6 EF0 | eGyj |2 +O(D�1/2

) 6 O(�).

�us, by the assumption � = O(1), Lemma 12.6 follows a�er accumulating the �nitely many events all holding with proba-
bility at least 1�O(d�1/2

�). ⇤

13. C������������ E��������

We brie�y remark here that the result in Lemma 12.6 is an estimate that holds in expectation – a more precise result is
seemingly unobtainable as it is impossible to control the resampled neighbor of a �xed vertex vb 2 Vb or vw 2 Vw . Our
current aim is to show that it su�ces to prove stability in expectation – this is the goal of concentration, i.e. to obtain an
estimate on the �uctuation of the Green’s function about its expectation conditioning on F

0

. We will make this discussion
more precise as follows, but we remark that the proofs of the following results on concentration are exactly those in Section
4 of [4]. We will brie�y remark on the idea of the proofs, however.

�e discussion on concentration estimates begins with the following de�nition ubiquitous throughout probability theory.
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De�nition 13.1. SupposeX is an L1-random variable, and suppose �(·) is a �-algebra whichX is measurable with respect
to. We de�ne the �(·)-�uctuation of X to be the following centered random variable:

X�(·) := X � E�(·) X.(13.1)

In words, the �uctuation of a random variable with respect to some �-algebra detects the concentration of X towards its
expectation. Our current goal will thus be to control the �uctuation of polynomials in the Green’s function entries. �is will
allow us to e�ectively use Lemma 12.6 in studying the stability of Green’s functions upon switchings of the underlying graph
and adjacency matrix. �e main result towards this goal is the following concentration estimate taken from [4] in Section 4
adapted for biregular graphs.

Proposition 13.2. Suppose that z = E + i⌘ 2 DN,�,⇠ \ U", that ⇣ > 0, and that � = O(1) with probability at least 1� e�⇣ .
Fix k = O(1) and pairs of indices Ik = {(i

1

, j
1

), . . . , (ik, jk)}. De�ne the random variable

XIk(z) = Gi1j1 . . . Gikjk .

�en, for any ⇠ = ⇠(N) satisfying ⇠ ! 1 as N ! 1, we have the following pointwise concentration estimate:

P
⇥
(XIk(z))F0

= O(⇠�)
⇤
> 1� e�[(⇠ log ⇠)^⇣]+O(logN).(13.2)

In order to prove Proposition 13.2, we rely on amore general auxiliary estimate concernedwith probability spaces equipped
with a family of �-algebras of the formFµ andGµ. In particular, the following result applies to amuchwider family of random
variables and �-algebras, and it essentially bounds the �uctuation of a random variable conditioned onF

0

in terms of a priori
�uctuation bounds conditioning on the �-algebras Gµ, in both a second moment and deterministic sense. In the following
statement, we will take d = db or d = dw .

Lemma 13.3. Suppose ⇣ = ⇣(N) > 0. Suppose X is a Fd-measurable random variable and for each µ = 1, . . . , d suppose Yµ

is a Gµ-measurable random variable such that the following probability estimates hold:

P (Yµ = O(1)) > 1� e�⇣ ,

P
⇣
Yµ ⌧ NO(1)

⌘
= 1.

Suppose further that for each µ, we have, almost surely,
��XGµ

�� 6 Yµ,(13.3)

EGµ

��XGµ

��2 6 d�1Yµ.(13.4)

�en, for any ⇠ = ⇠(N) > 0, we have the following probability estimate for su�ciently large N � 1:

P (XF0 = O(⇠)) > 1� e�[(⇠ log ⇠)^⇣]+O(logN).(13.5)

A detailed proof of Lemma 13.3 may be found in [4]. We brie�y remark on the strategy of the proof; the key insight is
to realize the family of random variables Xµ = EFµ X de�nes a martingale with respect to the �ltration {Fµ}µ2[[1,d]]. �e
proof of Lemma 13.3 amounts to studying this martingale with martingale concentration estimates and stopping times. We
now use Lemma 13.3 to prove Proposition 13.2.

Proof of Proposition 13.2. We appeal to Lemma 13.3, le�ing X = �

�1Gij and Yµ = Ck�
Dk
µ , where Ck, Dk = Ok(1)

are constants depending only on k = O(1). By the Ward Identity on DN,�,⇠ and the assumptions of Proposition 13.2, the
assumptions on X,Yµ in Lemma 13.3 are satis�ed.

We �rst assume k = 1 for convenience; from this case, Proposition 13.2 follows for all k = O(1) by a straightforward
calculation that can be found in the proof of Proposition 4.1 in [4]. To prove the almost sure estimate (13.3), we appeal to
Lemma 12.1. Taking expectation of (12.1) conditioning on Gµ and epµ, we �rst see

��X � EGµ X
�� 6 �

�1

��Gij � EGµ Gij

�� 6 O
⇣
d�1/2

�

�1

�µ�

⌘
6 O

�
�

2

µ

�
,(13.6)
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where the last bound follows from Corollary 12.2 and the assumption � = O(1).
To prove the secondmoment estimate (13.4), we �rst appeal to the following lemma taken from [4] which helps us compute

second moments of Gµ-�uctuations.

Lemma 13.4. For any Fd-measurable random variable and any label µ, we have

EGµ

��XGµ

��2
=

1

2

EGµ

���X � eX
���
2

.

�us, it su�ces to estimate the conditional expectation of |X � eX|2. Appealing, again, to Lemma 12.1, we see

���Gij � eGij

���
2

6 2d�1

w

�����

MX

k=1

M+NX

`=M+1

Gik(
eX �X)k`

eG`j

�����

2

+ 2d�1

w

�����

M+NX

k=M+1

MX

`=1

Gik(
eX �X)k`

eG`j

�����

2

.(13.7)

We now focus on bounding the �rst term on the RHS of (13.7); bounding the second termwill follow from the same argument.
By Lemma 11.8, we �rst note

�����

MX

k=1

M+NX

`=M+1

Gik(
eX �X)k`

eG`j

�����

2

6
O(1)X

x,y,z,w=1

���GixGiy
eGzj

eGwj

��� .(13.8)

We �rst de�ne � to be the indicator random variable of the event where eH �H is a sum of terms�xy such that, conditioned
on Gµ, at least one of x, y is approximately uniform. Conditioning on � = 1, suppose z, w as in (13.8) are approximately
uniform; the other cases for other pairs approximately uniform are analogous. Taking conditional expectation with respect
to Gµ, by (12.3) in Lemma 12.1 and the Schwartz inequality, we �nally see

EGµ,�=1

2

4
2d�1

w

�����

MX

k=1

M+NX

`=M+1

Gik(
eX �X)k`

eG`j

�����

2

3

5 6 O(d�1

�

2

�

4

).(13.9)

Conditioning on � = 0, which holds with probability at most O(dM�1

) by Lemma 11.7, we thus immediately see

EGµ,�=0

2

4
2d�1

w

�����

MX

k=1

M+NX

`=M+1

Gik(
eX �X)k`

eG`j

�����

2

3

5 6 O(d�1

�

2

�

4

µ).(13.10)

�is yields the desired second moment estimate and thus completes the proof of Proposition 13.2 for the case k = 1.
⇤

14. T�� S����C��������� E������

We now use Lemma 12.6 and Proposition 13.2 to derive a high-probability stability estimate for the diagonal entries of
the Green’s function G. �is stability estimate will follow from studying a self-consistent equation, which will allow us to
compare the Stieltjes transforms sb and sw to their respective limits. Following this stability estimate, we will again appeal
to Lemma 7.3 to deduce similar stability estimates for the Green’s functions G⇤ and G⇤,+.

Derivation of the Equation. Before we begin the derivation of the stability estimate, we introduce the following two pieces
of notation for a random vector Z = (Zi)i2[[1,M ]]

and eZ = (

eZk)k2[[M+1,M+N ]]

:

E
(i) Z =

1

M

MX

i=1

Zi, E
(k)
eZ =

1

N

M+NX

k=M+1

eZk.(14.1)
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We begin with the derivation by looking at the matrix equation HG = zG + Id and computing the diagonal entries of
both sides. �e (i, i)-entry of the RHS is clearly given by zGii + 1. We now study the LHS, considering the (k, k)-entry for
k 2 [[M,M + 1]]. By matrix multiplication we have

(HG)kk =

MX

i=1

HkiGik = d�1/2
w

MX

i=1

dwX

⌫=1

✓
�i,vb,⌫ � 1

M

◆
Gik(14.2)

= d�1/2
w

dwX

⌫=1

�
Gvb,⌫k � E

(i) Gik

�
,(14.3)

where we used the relation Mdb = Ndw . To compute the averaged di�erence term in (14.3), we appeal to Lemma 12.6 to
deduce the following identity:

EF0(HG)kk = �EF0

 
dwX

⌫=1


1

dw
sbGii +O(d�1

w �)

�!
= �EF0 sbGii +O(�).(14.4)

Taking an expectation conditioning on F
0

in the matrix equation HG = zG+ Id, we see

1 + z EF0 Gkk = �EF0 sbGkk +O (�) .(14.5)

Using Proposition 13.2 to account for the F
0

-�uctuation of the Green’s function terms, we ultimately deduce a stability
equation for the diagonal (k, k)-entries of G, with k > M . We may run a similar calculation for indices i 2 [[1,M ]] and
derive the following system of equations:

1 + (z + �sw)Gii = O ((1 + |z|)⇠�) ,(14.6)

1 + (z + sb)Gkk = O ((1 + |z|)⇠�) .(14.7)

Although this system is a priori coupled, we now appeal to Corollary 7.4 to decouple the equations. More precisely, we deduce
the following system of decoupled equations:

1 +

✓
z + sb +

1� �

z

◆
Gii = O ((1 + |z|)⇠�) ,(14.8)

1 +

✓
z + �sw +

� � 1

z

◆
Gkk = O ((1 + |z|)⇠�) .(14.9)

From here, we may proceed in two fashions. First, we may use Lemma 7.3 and Corollary 7.4 to deduce stability equations for
the Green’s functionsG⇤ andG⇤,+, relating the diagonal entries of these Green’s functions to the Stieltjes transforms s⇤ and
s⇤,+. On the other hand, we may also average over the diagonal entries and deduce self-consistent equations for the Stieltjes
transforms sb, sw and s⇤, s⇤,+. We summarize these estimates in the following proposition.

Proposition 14.1. Suppose � = O(1) with t-HP, and let z = E + i⌘ 2 U" satisfy ⌘ � N�1. �en for any i 2 [[1,M ]] and
k 2 [[M + 1,M +N ]], we have the following equations uniformly over such z with t-HP:

1 +

✓
z + sb +

1� �

z

◆
Gii = O((1 + |z|)⇠�),(14.10)

1 +

✓
z + �sw +

� � 1

z

◆
Gkk = O((1 + |z|)⇠�),(14.11)

1 + (z + 1� � + zs⇤,+) [G⇤,+]ii = O((1 + |z|1/2)⇠�) = O((1 + |z|)⇠�),(14.12)

1 + (z + � � 1 + �zs⇤) [G⇤]kk = O((1 + |z|1/2)⇠�) = O((1 + |z|)⇠�).(14.13)
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Moreover, we have the following averaged equations uniformly over such z with t-HP:

1 +

✓
z + sb +

1� �

z

◆
sb = O((1 + |z|)⇠�),(14.14)

1 +

✓
z + �sw +

� � 1

z

◆
sw = O((1 + |z|)⇠�),(14.15)

1 + (z + 1� � + zs⇤,+) s⇤,+ = O((1 + |z|1/2⇠�) = O((1 + |z|)⇠�),(14.16)

1 + (z + � � 1 + �zs⇤) s⇤ = O((1 + |z|1/2)⇠�) = O((1 + |z|)⇠�).(14.17)

Proof. It remains to upgrade the self-consistent equations (14.10) – (14.17) to hold over all such z = E + i⌘ with t-HP. To
this end, we appeal to the Lipschitz continuity of the Green’s function entries on a su�ciently dense la�ice as in the proof of
Lemma 8.5. ⇤

Analysis of the Equation. We recall from a previous discussion in this chapter that the Stieltjes transform m1 of the
Marchenko-Pastur law with parameter � 6 1 is given by the following self-consistent equation:

�zm2

1(z) + (� + z � 1)m1(z) + 1 = 0.(14.18)

For the augmented Stieltjes transform m1,+, we may similarly deduce a self-consistent equation. In our analysis, we will
be concerned with providing full details for the Stieltjes transform m1 only, as the estimate for the augmented transform
m1,+ will follow from the estimate onm1. We now note Proposition 14.1 implies the Stieltjes transform s⇤ solves the same
self-consistent equation with an error of o(1) throughout the domain DN,�,⇠ \ U", with t-HP. Our goal will be to use the
stability of the self-consistent equation (14.18) under o(1) perturbations to compare s⇤ and m1. �is is the content of the
following result. To state it, we recall the following control parameter:

Fz(r) = F (r) :=

" 
1 +

1p
(�

+

� z)(z � ��)

!
r

#
^

p
r.(14.19)

Proposition 14.2. Let m : C
+

! C
+

be the unique solution to the following equation:

�zm2

+ (� + z � 1)m+ 1 = 0.(14.20)

Suppose s : C
+

! C
+

is continuous and let

R := �zs2 + (� + z � 1)s+ 1.(14.21)

Fix an energy E 2 R \ [�", "] for " > 0 small and scales ⌘
0

< C(E) and ⌘1 6 N , where C(E) = OE(1) is a constant to be
determined. Suppose we have

|R(E + i⌘)| 6 (1 + |z|)r(E + i⌘)(14.22)

for a nonincreasing function r : [⌘
0

, ⌘1] ! [0, 1]. �en for all z = E + i⌘ for ⌘ 2 [⌘
0

, ⌘1], we have the following estimate for
su�ciently large N :

|m� s| = O(F (r)).(14.23)

Here, the constant C(E) is determined by

Im

✓
1� �

E + i⌘

◆
> 3↵1/2"�1/2(14.24)

for all ⌘ 6 C(E).

Before we proceed with the proof of Proposition 14.2, we introduce the following notation.
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Notation 14.3. We denote the solutions to the equation (14.18) by m±, where m+

maps the upper-half plane to itself, and m�

maps the upper-half plane to the lower-half plane.
Moreover, we de�ne the following error functions:

v± = |m± � s| .(14.25)

Having established this notation, becausem
+

takes values in the upper-half plane, we deduce the following upper bound
on the values taken by the imaginary part of m� as follows:

Im(m�(z)) 6 � Im

✓
1� �

E + i⌘

◆
< �3↵1/2"�1/2(14.26)

for scales ⌘ < C(E).
We now proceed to derive an a priori estimate on the error functions v±.

Lemma 14.4. Under the assumptions and se�ing of Proposition 14.2, we have

|v
+

| ^ |v�| 6 3↵1/2"�1/2F (r).(14.27)

Proof. We appeal to the following inequality which holds for any branch of the complex square root
p
· and any complex

parameters w, ⇣ for which the square root is de�ned:

|
p
w + ⇣ �

p
w| ^ |

p
w + ⇣ +

p
w| 6 |⇣|p

|w|
^
p

|⇣|.(14.28)

In particular, this implies the following string of inequalities:

|v
+

| ^ |v�| 6 1

2�z

 
|4�zR|p

|(� + z � 1)

2 � 4�z|
^
p

|4�zR|
!

(14.29)

6 2|R|p
|(� + z � 1)

2 � 4�z|
^
p
"↵R(14.30)

6 2"1/2(1 + |z|)r(E + i⌘)p
|(� + z � 1)

2 � 4�z|
^
p

"↵(1 + |z|)r(E + i⌘)(14.31)

where the second inequality follows from the assumption |z| > |E| > " and the last bound follows if we choose " 6 1. But
this is bounded by 3↵1/2"�1/2F (r) for any r 2 [0, 1]. ⇤

We now proceed with the proof of Proposition 14.2. Before we present the details of the argument, we provide an outline
of the proof. Recall the result of Proposition 14.2 is concerned with an estimate on the quantity v

+

. �e idea behind the proof
is to consider two major regimes for the parameter z = E + i⌘. �e �rst regime is the regime where the di�erence between
the solutions m

+

and m� to the equation (14.18) is dominated by the error term R. In this regime, it su�ces to compute an
estimate for the minimum v

+

^ v�.
In the second regime, we need to run a continuity argument that is structured as follows. �e �rst step is deriving a lower

bound for the di�erence |v
+

�v�| between the error parameters in the scale window ⌘ 2 [⌘
0

, ⌘1]. Coupled with the estimate
on the minimum v

+

^ v� , the continuity of the solutionsm± and s implies it su�ces to estimate v
+

for the boundary value
⌘ = ⌘

0

= C(E) for su�ciently large N . We now make this heuristic precise. For clarity of presentation, we will consider
the regimes in the order opposite to the order of presentation in this outline.

Proof. (of Proposition 14.2).
We consider two di�erent regimes. First consider the regime where |m

+

� m�| > (1 + |z|)r(⌘). Precisely, this is the
regime de�ned by ⌘ > C(E) and the energy-dependent constant D(E) such that

(1 + |z|)r(⌘) <
|(� + z � 1)

2 � 4�z|
D(E)

;(14.32)
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the constant D(E) will be determined later. We note by Lemma 14.4, in this regime it su�ces to prove the following bound:

|v�| > |v�| ^ |v
+

|.(14.33)

We now choose an energy-dependent constant (E) such that for all ⌘ 2 [C(E), ⌘1], we have the bound

↵1/2
(1 + |z|)r(⌘) 6 (E)(1 + |E + iC(E)|).(14.34)

Moreover, note |(� + z � 1)

2 � 4�z| is increasing in ⌘, as seen by translating z = w + 1� � and computing

|(� + z � 1)

2 � 4�z| = |w2 � 4�w +X| = |w(w � 4�) +X|,

where X 2 R. Because r(⌘) is non-increasing in ⌘, for all z = E + i⌘ with ⌘ 2 [C(E), ⌘1], we have

(1 + |z|)r(⌘) <
(E)

D(E)

|(� + z � 1)

2 � 4�z|.(14.35)

We �rst compute a uniform lower bound on the di�erence term as follows:

|v
+

� v�| =

|(� + z � 1)

2 � 4�z|
2�|z|

> 1

2�|E + i⌘1|

 
D(E)

(E)

(1 + |z|)r(⌘)p
|(� + z � 1)

2 � 4�z|
^

s
D(E)

(E)

p
↵(1 + |z|)r(⌘)

!

> 0.

By continuity of s and the estimate Lemma 14.4, choosing D(E) large enough as a function of (E), E, ⌘1, ", it su�ces to
prove the estimate (14.23) for some ⌘ 2 [C(E), ⌘1]. But this follows from Lemma 14.4; in particular, we have at ⌘ = C(E)

and N su�ciently large,

|v�| > | Im(s)� Im(m�)| > | Im(m�)| > 3"�1/2 > 3"�1/2F (r) > |v
+

| ^ |v�|.

�us, we have |v
+

| = |v
+

| ^ |v�| in this �rst regime, implying the stability estimate (14.23).
Now, we take the regime where the a priori estimate

|(� + z � 1)

2 � 4�z| = O((1 + |z|)r(⌘))(14.36)

holds. �us, we know

|v�| 6 |v
+

|+
p

|(� + z � 1)

2 � 4�z|
2"

= |v
+

|+O

 
(1 + |z|)r(⌘)p

|(� + z � 1)

2 � 4�z|
^
p
(1 + |z|)r

!

= |v
+

|+O(F (r)),

implying the estimate in the second regime as well. ⇤

We conclude the discussion of the self-consistent equation by noting that Corollary 7.4 allows us to deduce the following
local law for the Stieltjes transform s⇤,+:

|s⇤,+ �m1,+| = O(F (r)).(14.37)

�is estimate holds in the regime z = E + i⌘ for ⌘ 2 [⌘
0

, ⌘1].
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F����� 8. �is �gure shows a contradiction to the inequality v� < v
+

for scales ⌘ 2 [⌘
0

, ⌘1]. Here, the
pink curve denotes a model curve for v� and the purple curve denotes a model curve for v

+

. We show
v� > v

+

at ⌘ = C(E). By continuity, if this inequality occurs, then the point ⌘(E) where v
+

= v� must
exist. But this contradicts the established lower bound on |v

+

� v�|.

15. T�� F���� G����’� F������� E��������

We conclude this chapter by deducing the estimates for diagonal entries and o�-diagonal entries of the Green’s functions
G⇤ and G⇤,+ from the local laws for s⇤ and s⇤,+. In doing so, we will prove Proposition 8.4. We will prove the entry-wise
estimates for the Green’s function G⇤; the details for the entry-wise estimates of G⇤,+ follows from a similar argument.

Fix an index k 2 [[1, N ]], and for notational convenience, for this calculation only, we let G denote the Green’s function
G⇤. Consider the following approximate stability equation for the diagonal entry Gkk:

1 + (z + � � 1 + �zs⇤)Gkk = O ((1 + |z|)⇠�) .(15.1)

We now appeal to the following estimate which will allow us to study the stability of this equation upon the replacement
s⇤ ! m1 that holds with t-HP:

|zGkk| = O(1).(15.2)

Indeed, if ⌘ � 1, we have

|zGkk| 6
����
E + i⌘

⌘

���� = O(1).(15.3)

If E � 1, we appeal to the spectral representation of Gkk and deduce

|zGkk| 6 C

�����
1

N

X

�

|u�(k)|2 ⇥ E

E � �+ i⌘

�����(15.4)

6 C

N

X

�

����
E

E � �+ i⌘

����(15.5)

= O(1),(15.6)

where we used the uniform a priori bound � = O(1). If ⌘, E . 1, then we appeal to the a priori bound � = O(1) with t-HP
and the trivial bound z = O(1). �us, by Proposition 14.2, we have

1 + (z + � � 1 + �zm1)Gkk = O ((1 + |z|)⇠�) +O(F (⇠�)).(15.7)

On the other hand, the self-consistent equation (14.18) implies the Green’s function term on the LHS may be wri�en as
�Gkk/m1. Moreover, because m1 = O(1) uniformly on the domain U", we establish the following estimate that holds
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over all z 2 DN,�,⇠ \ U" with t-HP:

m1 �Gkk = O (F (⇠�)) ,(15.8)

where we use the estimate (1 + |z|)m1 = O(1). �is completes the proof of the local law along the diagonal of G = G⇤.
To derive the estimate for the o�-diagonal entries, we appeal to the Green’s functionG(z) = (X�z)�1 of the linearization

X . Note this is no longer the Green’s functionG⇤ of the covariance matrixX⇤. In particular, we appeal to the following entry-
wise representation of a matrix equation (for indices i, j > M ):

Gij(HG)ii �Gii(HG)ij = Gij .(15.9)

As in the derivation of the stability equations in Proposition 14.1, by Lemma 12.6 the expectation of the LHS is given by

EF0

h
Gijd

�1/2
w sGii

i
� EF0

h
Giid

�1/2
w sGij

i
+ O(�) = O(�).

�us, at the cost of a concentration estimate in Proposition 13.2, we deduce

|Gij | = O(⇠�),(15.10)

which yields the estimate for the o�-diagonal entries. By Lemma 7.3, this gives the desired estimate for the o�-diagonal
entries of the Green’s function G⇤ with t-HP. An analogous calculation proves the desired entry-wise estimates for the
Green’s function G⇤,+, which completes the proof of�eorem 4.1.
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Chapter II: Dyson’s Brownian Motion for Biregular
Bipartite Graphs
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I. Dyson Brownian Motion for Adjacency Matrices

1. T�� G�������M������ �� H������ S�����

To de�ne Brownian dynamics for matrices, we begin with the following result constructing Gaussian measures on Hilbert
spaces invariant under isometries.

Proposition 1.1. Suppose H is a �nite-dimensional Hilbert space with basis {f↵}↵. Let {z↵}↵ denote a (�nite) collection of
scalar-valued Gaussian random variables. �en there exists a Gaussian measure on H given by the following random vector:

! =

X

↵

z↵f↵(1.1)

such that the measure induced by ! is invariant under isometries of H . In particular, the Gaussian measure is independent of
the choice of basis {f↵}↵.

One consequence of the Gaussian measure is the existence of Brownian motions; for any basis {f↵}↵, we may de�ne the
Brownian motion on H as

B(t) =

X

↵

B↵(t)f↵,(1.2)

where the {B↵(t)}↵ are independent standard one-dimensional Brownian motions. Because the Gaussian measure is invari-
ant under isometries of H by Proposition 1.1, the Brownian motion B(t) is also invariant under isometries of H .

2. T�� G�������M������ �� A��������M�������

We now consider the Hilbert space MM⇥N (R) of realM ⇥N matrices equipped with the following trace form:

(A,B) = Tr(A⇤B),(2.1)

where the star denotes the adjoint of a matrix. �us, MM⇥N (R) comes equipped with a Gaussian measure. Similarly, we
next de�ne the following space of matrices:

M :=

(
X =

 
0 H

H⇤
0

!
: H 2 MM⇥N (R)

)
.(2.2)

Notation 2.1. For convenience, if the blocks of X 2 M are given by H 2 MM⇥N (R), we will write X = (H,H⇤
).

We �rst note that M consists only of real symmetric matrices. Moreover, the space M comes equipped with a Hilbert
space structure induced by that of MM⇥N (R), and thus a Gaussian measure as well.

From the perspective of adjacency matrices of bipartite graphs, the space M is not the space of primary interest, as this
space does not re�ect their algebraic structure. In particular, such adjacency matrices share the common eigenvector:

e(i) =

8
<

:

1p
M

1 6 i 6 M

1p
N

M + 1 6 i 6 M +N
.(2.3)

For any (db, dw)-regular bipartite graph with adjacency matrix X , we have

Xe =

p
dbdwe.(2.4)

Upon the following deterministic shi� and scaling in the matrix entries ofX , we may assume the vector e instead corresponds
to the eigenvalue � = 0:

X(0) = d�1/2
w

 
0 A� db

N (1)

A⇤ � dw
M (1) 0

!
,(2.5)
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whereA denotes the upper-right block of an adjacency matrix and the matrix 1 denotes a matrix of the appropriate dimension
whose entries are all equal to 1. �e matrix X(0) with the above shi� and normalization will be referred to as a normalized
adjacency matrix, or the normalization of the adjacency matrix. �e details of this transformation in matrix entries are
discussed in Chapter I of this thesis. To account for this algebraic invariant of biregular bipartite graphs, we de�ne the
following space of matrices:

Me = {X 2 M : Xe = 0} .(2.6)

Clearly, Me is a subspace of M and thus inherits a Gaussian measure that coincides with the Gaussian measure on M upon
integrating outM?

e . We now proceed to introduce the following stochastic di�erential equation (SDE) as motivated by earlier
works in universality:

dX(t) =

1p
N

dB(t) � 1

2

X(t) dt,(2.7)

whereB(t) denotes the standard Brownian motion onMe. �e SDE (2.7) is a matrix-valued Ornstein-Uhlenbeck process. We
note that on the entire space M , the SDE can be wri�en in coordinates by running each independent matrix entry through
a one-dimensional Ornstein-Uhlenbeck process.

Remark 2.2. AlthoughX(t) contains onlyN � 1 nontrivial eigenvalues, we retain the normalizationN�1/2 in the SDE (2.7).

To be�er study the above matrix-valued SDE, however, we still need to choose coordinates. �e advantage of the abstract
construction of the Gaussian measure is the con�dence that we may freely choose coordinates without changing the measure.
�e suitable choice of coordinates is given by the singular value decomposition of matrices in MM⇥N (R). We summarize
this in the following parameterization of Me.

Lemma 2.3. Suppose X 2 Me has the block representation X = (H,H⇤
). �en, for some matrix eX 2 M(M�1)⇥(N�1)(R),

H = O(M)⇥ (

eX � 0)⇥O(N)

⇤,(2.8)

where the matrices O(M), O(N) are orthogonal of dimension M and N , respectively. Here, multiplication on the RHS is multi-
plication as matrices. Moreover, under the induced map

Me ! M(M�1)⇥(N�1)(R),(2.9)

the Gaussian measure is invariant, where the la�er space is equipped with the same inner product given by (2.1).

Proof. �e parameterization (2.8) comes from the singular value decomposition ofH . �e invariance of the Gaussian measure
is a consequence of the following straightforward calculation:

Tr(A⇤B) = Tr

⇣
O(N)

⇣
eA⇤ � 0

⌘
O(M)

⇤O(M)

⇣
eB � 0

⌘
O(N)

⇤
⌘

(2.10)

= Tr

⇣
O(N)

⇣
eA⇤ eB � 0

⌘
O(N)

⇤
⌘

(2.11)

= Tr

⇣
eA⇤ eB

⌘
.(2.12)

⇤

3. A������� �� S��������� �� ��� G��������

We now brie�y review the background on switchings on graphs discussed in detail in Chapter I. Suppose E is a biregular
bipartite graph, and consider a pair of edges e1 = ij, e2 = mn 2 E with four distinct vertices. We let Ee1,e2 denote the
subgraph of E with edges e1, e2.

De�nition 3.1. We say a simple switching of E at Ee1,e2 is the following perturbed graph:

Es = E � Ee1,e2 + Ein,mj ,(3.1)

where the operations on the RHS are understood in the sense of adjacency matrices.
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Remark 3.2. We note that the switched graph Es suppresses from its notation the dependence of e1, e2. �is will not be
important, but we emphasize it now for clarity’s sake.

F����� 9. We illustrate a simple switching on Ee1,e2 on the LHS and Es on the RHS.

As in Chapter I of this thesis, we now interpret the combinatorics of switchings in terms of the corresponding adjacency
matrices. To do so, we �rst de�ne the following matrix:

⇠mn
ij = �ij +�mn ��in ��mj ,(3.2)

where �xy denotes the adjacency matrix of the graph whose only edge is xy. With this notation, we may easily deduce

A(Es) = A(E) + ⇠mn
ij ,(3.3)

where A(Es) (resp. A(E)) denotes the adjacency matrix of the graph Es (resp. E). We now de�ne the following:

Xmn
ij = Tr

�
⇠mn
ij X

�
= 2 (Xij +Xmn �Xin �Xmj) ,(3.4)

@mn
ij = Tr

�
⇠mn
ij @

�
= 2 (@ij + @mn � @in � @mj) .(3.5)

To motivate the above de�nitions (3.4) and (3.5), we compute the following Taylor approximation: for any F 2 C2
(Me),

F (X + ⇠mn
ij ) = F (X) +

⇥
@mn
ij F

⇤
(X)⇥Xmn

ij +

1

2

⇥
@mn
ij F

⇤
(X)⇥ (Xmn

ij )

2
+ Error .(3.6)

In particular, (3.4) and (3.5) come from Taylor expanding. �is will be crucial in analyzing the generator of (2.7) as we will
need to compute Taylor estimates along matrices corresponding to switchings ⇠mn

ij . To formalize the directions along which
we will Taylor expand, we de�ne the following set of all switchings:

X :=

[

(i,j)2Vb

[

(m,n)2Vb

{⇠mn
ij }.(3.7)

�e terms (3.4) and (3.5) also determine the structure of the generator of (2.7), which we state in the following result.

Proposition 3.3. �e generator of the OU process on Me is given by

L =

1

8MN2

X

i,j,k,`

�
@k`
ij

�2 � 1

16MN

X

i,j,k,`

Xk`
ij @

k`
ij .(3.8)

I.e., for any F 2 C2
(Me), we have

@t EF (X(t)) = E(LF )(X(t)).(3.9)

We now devote the remainder of this discussion towards proving Proposition 3.3. We begin by recalling the following
notions of black and white vertices from Chapter I.

De�nition 3.4. De�ne Vb to be the set of indices {(i, j)} such that i, j�M 2 [1,M ]. Similarly, de�ne Vw to be those indices
(k, `) such that `, k �M 2 [1,M ].
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�e proof of Proposition 3.3 will amount to an application of the Ito formula. To apply this formula, however, we need
to compute the quadratic covariations of the matrix entries dXij , where we choose coordinates as in Lemma 2.3. We record
these covariation processes in the following lemma.

Lemma 3.5. Fix any two indices (i, j) and (k, `). �en, we have

dhXij , Xk`i =

8
>>>><

>>>>:

1
N

�
�ik � 1

M

� �
�j` � 1

N

�
: (i, j), (k, `) 2 Vb;

1
N

�
�ik � 1

N

� �
�j` � 1

M

�
: (i, j), (k, `) 2 Vw;

1
N

�
�i` � 1

M

� �
�jk � 1

N

�
: (i, j) 2 Vb, (k, `) 2 Vw;

1
N

�
�i` � 1

N

� �
�jk � 1

M

�
: (i, j) 2 Vw, (k, `) 2 Vb.

(3.10)

Proof. We consider the case (i, j), (k, `) 2 Vb; the other cases follow similarly. As in Lemma 2.3, we may assume the normal-
ized adjacency matrix X is of the form

X = O(M)

⇣
eX � 0

⌘
O(N)

⇤(3.11)

where eX 2 M(M�1)⇥(N�1)(R) and the orthogonal component corresponds to the span of the eigenvector e and is thus
constant in time. Moreover, we may assume the Gaussian measure on M(M�1)⇥(N�1)(R) is given by drawing each entry
from independent standard one-dimensional Gaussian distributions. �is also implies that the Ornstein-Uhlenbeck process on
X 2 Me is equal, in law, to le�ing each matrix entry in eX run independent one-dimensional Ornstein-Uhlenbeck processes
up to the symmetry constraint. �is implies the quadratic covariation process for eX(t) is given by

dh eXij(t), eXk`(t)i =

1

N
�ik�j`(3.12)

where we use the assumption (i, j), (k, `) 2 Vb. �us, under this same assumption, we compute

dhHij , Hk`i =

X

m,n

X

x,y

[O(M)imO(N)jnO(M)kxO(N)`y] dh eXmn, eXxyi(3.13)

=

X

m,n

X

x,y

[O(M)imO(N)jnO(M)kxO(N)`y]⇥
1

N
�mx�ny(3.14)

=

1

N

X

m,n

O(M)imO(N)jnO(M)kmO(N)`n(3.15)

=

1

N

 
M�1X

m=1

O(M)imO(M)km

! 
N�1X

n=1

O(N)jnO(N)`n

!
.(3.16)

Because the matrices O(M), O(N) give the SVD of the matrix H(t), we know O(M)iM = M�1/2 and O(N)kN = N�1/2

for any suitable indices i, k. With this and the assumption that O(M), O(N) are orthogonal matrices, we see
M�1X

m=1

O(M)imO(M)km = �ik � 1

M
,(3.17)

N�1X

n=1

O(N)jnO(N)`n = �j` �
1

N
,(3.18)

which completes the derivation of the covariation processes in the case (i, j), (k, `) 2 Vb. ⇤

We are now in a position to deduce Proposition 3.3 from the Ito formula. First, we establish the following shorthand for
di�erentiation of any su�ciently smooth function F on a matrix space and indices (i, j):

@ijF (H) :=

⇥
@HijF

⇤
(H).(3.19)

We now proceed with the proof of Proposition 3.3. By the Ito formula, for any F 2 C2
(Me), we have

dF (H) =

M+NX

i,j=1

[@ijF ] (H) dHij +

1

2

M+NX

i,j,k,`=1

[@ij@k`F ] (H) dhHij , Hk`i.(3.20)

43



Taking expectation, the martingale term in dHij vanishes; by construction, we thus have

dEF (H) = �1

2

M+NX

i,j=1

E [Hij [@ijF ] (H)] dt +

1

2

M+NX

i,j,k,`=1

E [[@ij@k`F ] (H)] dhHij , Hk`i.(3.21)

It remains to compute the covariation dhHij , Hk`i; this is computed in Lemma 3.5. �us, we have

MN2
M+NX

i,j,k,`=1

E [[@ij@k`F ] (H)] dhHij , Hk`i =

X

(i,j),(k,`)2Vb

E [[@ij(@ij + @k` � @i` � @jk)F ](H)] dt(3.22)

+

X

(i,j),(k,`)2Vw

E [[@ij(@ij + @k` � @i` � @jk)F ](H)] dt(3.23)

+

X

(i,j)2Vb,(k,`)2Vw

E [[@ij(@ij + @k` � @ik � @j`)F ](H)] dt(3.24)

+

X

(i,j)2Vw,(k,`)2Vb

E [[@ij(@ij + @k` � @ik � @j`)F ](H)] dt.(3.25)

We note however, upon the bijection (i, j) 7! (k, `), that the summations given by the RHS of (3.22) and (3.23) are equal.
Similarly, we see the summations given by (3.24) and (3.25) are also equal. Lastly, we see (3.22) and (3.24) are equal upon
switching the indices k, `. �us, because the process EF (H) contains no di�usion term,

L =

2

MN2

X

(i,j),(k,`)2Vb

@ij (@ij + @k` � @i` � @jk) � 1

2

M+NX

i,j=1

Hij@ij(3.26)

=

2

MN2

X

(i,j),(k,`)2Vb

@ij (@ij + @k` � @i` � @jk) �
X

(i,j)2Vb

Hij@ij ,(3.27)

where the second equality (3.27) holds since H is symmetric. To understand the second-order terms in (3.27), we claim
X

(i,j),(k,`)2Vb

@ij (@ij + @k` � @i` � @jk) =

1

4

X

(i,j),(k,`)2Vb

(@ij + @k` � @i` � @jk)
2 .(3.28)

Indeed, (3.28) follows from the fact that we are summing over all indices (i, j), (k, `) 2 Vb. For the same reason, as well as
the assumed relations

P
j Hij =

P
i Hij = 0, we also have

X

(i,j)2Vb

Hij@ij =

1

4MN

X

(i,j),(k,`)2Vb

(Hij +Hk` �Hi` �Hjk) (@ij + @k` � @i` � @jk) .(3.29)

�is completes the proof of Proposition 3.3. ⇤
We end this discussion by remarking on the nature of the generator L , in particular its representation via di�erential

operators with coe�cients all coming from simple switchings of graphs in ⌦. �is discrete-probabilistic interpretation of the
generator L will be important in studying the short-time stability of certain matrix statistics.

4. T��M��� R�����: E��������� S���������

We now state the main result of this chapter, giving short-time stability of eigenvalue statistics. To make this precise, we
introduce the following eigenvalue statistic.

De�nition 4.1. For a random matrix ensembleH of dimensionN , we let %H,N (�1, . . . ,�N ) denote the density function for
the law of the eigenvalues of H on the simplex �1 < �2 < . . . < �N . For any 1 6 n 6 N , we de�ne the n-point correlation
function, denoted by %(n)H,N , by the following marginal formula for any �1 < . . . < �n:

%(n)H,N (�1, . . . ,�n) =

w

�n<xn+1<...<xN

%H,N (�1, . . . ,�n, xn+1, . . . , xN ) dxn+1 . . . dxN .(4.1)

We now make precise a notion of coincidence of eigenvalue correlation statistics, in an averaged sense.
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De�nition 4.2. Suppose H1 and H2 are two random matrix ensembles of equal dimension N in a matrix space M, e.g.
Wigner matrices, Wishart matrices, and the space Me. We say the averaged bulk eigenvalue correlation statistics of H1 and
H2 coincide at the energy E0 if the following holds.

For any n 2 Z>0, any test function ' 2 C1
c (R), and a constant c > 0 su�ciently small, we have for b = N�1+c

1

2b

E0+bw

E0�b

dE0
w

Rn

'(x1, . . . , xn)N
n
⇣
%(n)H1

� %(n)H2

⌘✓
E0

+

dx1

N%1(E0)
, . . . , E0

+

dxn

N%1(E0)

◆
= oN!1(1)(4.2)

where %(n)Hi
denotes the n-point correlation function of the matrix ensembleHi (for i = 1, 2). Here, we also use %1 to denote

the density function of either the Marchenko-Pastur law or the semicircle law depending on if the random matrix ensembles
H1, H2 are covariance matrix ensembles or Wigner matrix ensembles, respectively.

In particular, De�nition 4.2 requires a small average around the energy E0. We note that there are results, e.g. in [16] in
the ensemble of Wigner matrices, that provide similar results without an average of the energy; universality results along
this line are known as �xed energy universality results. Although it is believed that the arguments in [16] extend to linearized
covariance matrices, we do not pursue that in this thesis.

To state the main theorem of this chapter, we will introduce the following notation for the covariance matrix ensembles
(and their linearization ensembles) at a given time.

Notation 4.3. For a given time t > 0, we let X⇤(t) denote the random matrix ensemble of matricesX⇤(t) = H(t)⇤H(t), where
the matrix H(t) solves the matrix-valued Ornstein-Uhlenbeck equation

dH(t) =

1p
N

dB(t) � 1

2

H(t) dt(4.3)

with initial data H(0) the upper-right block of the normalized adjacency matrix X(0) = (H(0), H⇤
(0)) of a graph in ⌦.

Similarly, we let X (t) denote the random matrix ensembles of linearizations X(t) = (H(t), H(t)⇤).

We now state the main theorem, which states that for any energy E in the bulk of %MP, the averaged bulk eigenvalue
correlation statistics of the random matrix ensemblesX⇤(0) and X⇤(N�1�⇣D1/2

) agree for a small ⇣ > 0. Here, we de�ne
the bulk of %MP to be those energies E a �xed distance from the edges. More precisely, the bulk is de�ned as

IMP," =

⇥
", (1� ")(1 +

p
�)2
⇤
.(4.4)

Here, " > 0 is a �xed (small) constant as in the de�nition of the domains U" and U",� . We also recall the de�nition � := 1/↵.
Similarly, we may de�ne the bulk of the linearization to be

Ilinear," = ±
p

IMP," = ±
⇥p

",
p
1� "(1 +

p
�)
⇤

(4.5)

We now state the main theorem, which serves as the second step in the three-step strategy discussed in the introduction of
this thesis.

�eorem 4.4. Suppose " > 0 and ⇣ > 0 are �xed constants. �en, for any t 2 [0, N�1�⇣D1/2
] and any energy E 2 Ilinear,",

the averaged bulk eigenvalue correlation statistics of X (0) and X (t) coincide.
�us, for any t 2 [0, N�1�⇣D1/2

] and any energy E 2 IMP,", the averaged bulk correlation statistics of X⇤(0) and X⇤(t)

coincide.
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II. Short Time Stability of Dyson’s Brownian Motion for Graphs

5. T�� S�����T��� S�������� E�������

�e remainder of this chapter will now be devoted towards studying the stability of eigenvalue statistics along the following
matrix-valued Ornstein-Uhlenbeck dynamics:

dX(t) =

1p
N

dB(t) � 1

2

X(t) dt,(5.1)

where we recall X(0) = (H(0), H(0)

⇤
) is a normalized adjacency matrix. We recall the generator of the SDE is given by

L =

1

8MN2

X

i,j,k,`

�
@k`

ij

�2 � 1

16MN

X

i,j,k,`

Xk`

ij

@k`

ij

.(5.2)

Our goal now will be to estimate the stability of eigenvalue statistics driven by this generator. To state the general result, we
�rst de�ne the following deterministic norms beginning with a Lr-seminorm on C0

(Me):

kFk
r,t

= (E |F (X(t))|r)1/r ,(5.3)

where the expectation is taken over the randomness ofX(t). We extend this seminorm for derivatives: for any F 2 Ck

(Me):

k@kFk
r,t

:=

����� sup

✓i2[0,1]
sup

Xi2X

�����@X1 . . . @XkF

 
·+ d�1/2

b

kX

i=1

✓
i

X
i

!�����

�����
r,t

.(5.4)

In particular for k = 0 the seminorms (5.3) and (5.4) coincide. We now recall the sparsity parameter from Chapter I:

D = d
b

^ N2

d3
b

.(5.5)

Remark 5.1. In this thesis we will take d 2 [N� , N2/3��

], which gives us the lower bound D > N� . �is lower bound will
be important in the arguments to follow.

We may now state the stability estimate. All adjacency matrices are of bipartite graphs discussed in Chapter I.

�eorem 5.2. SupposeX(t) solves the SDE (5.1) with initial conditionX(0) a normalized adjacency matrix. Moreover, suppose
r(") is su�ciently large as a function of a �xed " > 0. �en, for any F 2 C4

(Me), we have

EF (X(t))� EF (X(0)) = O

 
D�1/2N1+"

max

16i64

tw

0

k@iFk
r,s

ds

!
.(5.6)

Remark 5.3. For F 2 C4
(Me), if the norms k@iFk

r,s

are uniformly bounded, then for short times the RHS is o(1) for large
N . If the function F encodes local eigenvalue statistics, then we have at least one notion of comparing eigenvalue statistics
of the initial data X(0) and X(t) for short times.

However, if we allow longer times, then the error term on the RHS diverges. �is is characteristic, as of now, to the sparsity
of the matrix. More precisely, to upgrade the stability to longer times, we need a stronger bound on D�1/2 which is not
achievable for any allowed value of d, i.e. any sparse matrix.

We now outline the proof of �eorem 5.2. �e idea of the proof relies on exploiting the graph structure appearing in
the �rst- and second-order coe�cients in the generator L given in (5.2). As noted in an earlier discussion, the di�erential
operators, and the coe�cient for the �rst-order term, in L may be viewed as coming from di�erentiating along directions
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⇠mn

ij

induced by simple switchings of graphs. In fact, in proving�eorem 5.2, we will use the switching dynamics to construct
a Markovian jump process with generator Q that approximates (5.1) as follows:

EQF (X(t)) = ELF (X(t)) + O
⇣
D�1/2N1+"

⌘
max

16i64
k@iFk

r("),0.(5.7)

In other words, we will use the underlying graph structure of L to compare it to the generator of a continuous-time jump
process that will be accessible to study via tractable combinatorial methods. We give a detailed construction of the process
determined by Q in a later discussion; most important is the invariance of the uniform measure on ⌦ with respect to the
dynamics generated by Q. �is resembles the invariance of the uniform probability measure under switching dynamics in
Chapter I. As a consequence, the LHS vanishes. By the Dynkin formula, we will then deduce the desired short-time stability.

6. T�� J��� P������ ��� S�����T��� S��������

In order to de�ne the jump process, we discuss more in detail the dynamics on ⌦ generated by simple switchings. For the
remainder of this discussion, we will o�en use the notationA to denote both a biregular bipartite graph and its unnormalized
adjacencymatrix. In this spirit, we will retain the notation fromChapter I and let [A] denote the set of vertices inA. Moreover,
the following discussion will resemble much of the discussion on switching dynamics in Chapter I.

We begin by de�ning the following (random) indicator function for vertices i, j,m, n 2 [A]:

Imn

ij

(A) = A
ij

A
mn

(1�A
in

) (1�A
mj

) .(6.1)

In words, the indicator function Imn

ij

detects whether or not the edges ij and mn exist in A. Moreover, if these edges exist
in A, then the function also detects whether or not the subgraph A

ij,mn

is 1-regular. We now use the function Imn

ij

to de�ne
the following Markovian jump process via its generator:

Qf(A) =

1

4Nd
w

X

(i,j)2Vb

X

(m,n)2Vb

Imn

ij

(A)

⇥
f(A� ⇠mn

ij

)� f(A)

⇤
.(6.2)

Remark 6.1. By the basic theory of point processes, we may give the following description for the process generated by Q.
Fix a graph A 2 ⌦. Events de�ning this process are dictated by a Poisson clock depending on N and d

b

. At each event, two
edges ij,mn 2 A are selected uniformly at random. If Imn

ij

(A) = 1, then perform a simple switching. �e normalization
factor serves to match with the generator L as in�eorem 5.2.

Using this probabilistic description of the jump process de�ned by Q, we may deduce the following result describing the
generator Q in relation to the uniform probability measure on ⌦.

Proposition 6.2. Let µunif denote the uniform probability measure on ⌦. �en, µunif is invariant under the generator Q.

�e idea of the proof of Proposition 6.2 is as follows. Because simple switchings of graphs are an invertible operation,
the uniform probability measure on the discrete space ⌦ should be invariant upon applying simple switchings to graphs. To
give a rigorous proof of Proposition 6.2, however, we need to rigorously de�ne dynamics on ⌦ induced by simple switchings.
For now, we will take Proposition 6.2 for granted and use it to prove �eorem 5.2. We will address the details of the simple
switching dynamics in a later discussion; this discussion has been carried out rigorously in Chapter I in the case of double
switchings, but we will still provide a discussion for simple switchings in detail.

In order to compare the generatorQ and the generatorL , we �rst note these two operators act on di�erent function spaces.
More precisely, Q acts on functions on⌦, i.e. on unnormalized adjacency matrices. On the other hand,L acts on functions on
Me, within which ⌦ embeds by taking the normalization of an adjacency matrix. �us, for these operators to agree, we need
to establish the following convention. First, we recall the normalization of an adjacency matrix with upper-right o�-diagonal
block A as follows:

X
A

= d�1/2
w

 
0 A� db

N

(1)

A⇤ � db
N

(1) 0

!
.(6.3)
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Here, we are abusing notation by now le�ing A denote the o�-diagonal block of an adjacency matrix. �is will not be
important to the subsequent discussion, but we emphasize this abuse of notation for sake of clarity. Moreover, we recall the
notation 1 denotes a matrix of the appropriate dimension whose entries are all equal to 1.

We now introduce the convention: for any function F 2 C4
(Me), we de�ne the function f

F

: ⌦ ! R by the following
equation, le�ing X

A

denote the normalization of A as in (6.3):

f(A) = f
F

(A) = F (X
A

).(6.4)

We now extend this convention to all matrices A 2 M . In particular, for any �xed adjacency matrix A (not block), suppose
A(t) solves the matrix-valued SDE (5.1) with initial data A(0) = A. �en, for all times t > 0 we may similarly de�ne
f(A(t)) = F (X

A(t)), where we replace A with A(t) in the normalization given by (6.3).

Remark 6.3. We brie�y remark here that the a priori C4-regularity on the function F is an unnecessary assumption in
establishing the above convention. However, our short-time stability results depend on this assumed regularity, so we will
assume F is C4 throughout for sake of simplicity.

Remark 6.4. We now remark that, although f(A(t)) = F (X
A(t)) holds for all times t > 0, the probabilistic result in Propo-

sition 6.2 holds only for the initial data t = 0. �is is because the proof of Proposition 6.2 relies on the graph structure
underlying the initial data matrices and the switchings on said graphs.

In addition to the probabilistic result concerning the discrete generator Q in Proposition 6.2, we will use the following
stronger comparison result to deduce the short-time stability in �eorem 5.2.

Proposition 6.5. Fix " > 0 and r(") su�ciently large depending on ". For any F 2 C 4
(Me), we have

Qf
F

(A) = LF (X) +R,(6.5)

where the error term R satis�es the following bound in expectation:

E
µunif R = O

⇣
D�1/2N1+"

⌘
max

16i64
k@iFk

r("),0.(6.6)

I.e., the expectation is taken over the randomness of the uniform probability measure on ⌦.

Remark 6.6. We remark here that Proposition 6.5 is an estimate only for time t = 0, as otherwise the action of the generator
Q on the function f

F

may not be well-de�ned. �us, in some sense Proposition 6.5 gives is much weaker result than that of
�eorem 5.2. �is issue will be remedied in directly studying a weak solution to the SDE (5.1) by separating the solution into
two terms: the initial data X(0) and a Gaussian perturbation term.

As with Proposition 6.2, we will now take Proposition 6.5 for granted, and we will use both results together to give a
proof of �eorem 5.2. Before we give the details of the proof, we now provide an outline building on Remark 6.6 to clarify
the forthcoming decomposition of the generator L and other technical details in the argument. Recall the solution to a
one-dimensional Ornstein-Uhlenbeck SDE with initial data x(0) is given, in law, by

x(t)
d

= e�t/2x(0) + (1� e�t

)

1/2!,(6.7)

where ! is a standard Gaussian random variable independent of x(0). An analogous identity holds for the matrix-analog of
the Ornstein-Uhlenbeck SDE, which we discuss in detail during the course of the proof of �eorem 5.2; the scalar random
variables in the above solution become random matrices instead. We now decompose the action of the generator L into the
action along each component X(0) and !, i.e. we rewrite

L = L
X

+ L
w

(6.8)

where the operator L
X

conditions on the Gaussian term ! and the operator L
W

conditions on the initial data X(0). Here,
we use the independence of x(0) and !.
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First, we address the Gaussian term L
X

. Because the Gaussian distribution is an invariant measure under the one-
dimensional Ornstein-Uhlenbeck SDE, similar to the underlying mechanism of Proposition 6.2, the action of the Gaussian
term of L

x

will vanish. �us, we may consider only the randomness in the initial data X(0), given by the normalized ad-
jacency matrices, while conditioning on the Gaussian perturbation !. �is reduces the stability result into analyzing the
randomness of bipartite graphs. Combining now Proposition 6.2 and Proposition 6.5 and integrating over time, we will be
able to deduce the desired short-time stability.

Before we provide the details of this heuristic outline, we will introduce the following de�nitions which will be important
for the proof of �eorem 5.2 in conditioning on initial data versus Gaussian perturbations. For any function F 2 C4

(Me),
we de�ne

F
X

(W ) := F
W

(X) := F
⇣
e�t/2X(0) + (1� e�t

)

1/2W
⌘
,(6.9)

where W is a random matrix whose distribution follows the standard Gaussian measure, normalized by multiplying the
entires ofW byN�1/2. In words, F

X

(W ) allows us to condition on the initial dataX(0), and F
W

(X) allows us to condition
on the Gaussian term W . �e matrix on the far RHS interpolating between X(0) and W through the time variable t is the
unique weak solution to the matrix-valued SDE (5.1) of primary interest. Lastly, we note that here we use X = X(0) as
shorthand notation.

6.1. Proof of �eorem 5.2. As noted in the preceding outline, the matrix-valued Ornstein-Uhlenbeck SDE (5.1) has the
following unique weak solution:

X(t)
d

= e�t/2X(0) + (1� e�t

)

1/2W,(6.10)

where W is a random matrix whose probability distribution is the Gaussian measure on Me. �e derivation of this weak
solution, and its uniqueness, may be seen by changing coordinates via SVD as in Lemma 2.3 and solving the matrix-valued
equation in standard coordinates. We will take this for granted as it is standard in Ito calculus.

Next, we will decompose the action of L on a function F 2 C4
(Me) into its action on the two functions F

W

and F
X

.
�is is summarized as the following result, whose proof is a straightforward calculation; the reader is welcome to skip the
proof of this auxiliary lemma and continue on to the derivation of the short-time stability and the rest of�eorem 5.2.

Lemma 6.7. For any F 2 C2
(Me), we have the following decomposition of the action of the generator L :

LF (X(t)) = LF
X

(W ) + LF
W

(X),(6.11)

where L is the generator associated to the matrix-valued Ornstein-Uhlenbeck process with initial condition X = X(0).

Proof. Recall the generator L is given by the following second-order di�erential operator:

L =

1

8MN2

X

(i,j),(k,`)2Vb

�
@k`

ij

�2 � 1

16MN

X

(i,j),(k,`)2Vb

Xk`

ij

@k`

ij

.(6.12)

We �rst address the second-order terms; in particular, for any �xed pair (i, j), we have

@
ij

@
k`

F
⇣
e�t/2X + (1� e�t

)

1/2W
⌘

= @
ij

h
e�t/2@

Xk`F + (1� e�t

)

1/2@
Wk`F

i
(6.13)

= e�t@
Xij@Xk`F + (1� e�t

)@
Wij@Wk`F,(6.14)

where (6.14) follows from the independence of X(0) andW . However, (6.14) is exactly equal to

@
ij

@
k`

F
X

(W ) + @
ij

@
k`

F
W

(X).(6.15)

�us, the second-order terms on the LHS and RHS, respectively, of (6.11) agree. To show the �rst-order terms agree, this
amounts to similar identities given as follows:

@
ij

F (X(t)) = e�t/2@
ij

F
W

(X) + (1� e�t

)

1/2F
X

(W ).(6.16)

In particular, averaging over indices (i, j), (k, `) 2 V
b

leads to the vanishing of terms of the form W
ij

@
Xij and X

ij

@
Wij

coming from the �rst-order terms in L . ⇤
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We now continue with the proof of�eorem 5.2. Using Lemma 6.7 and taking an expectation over the randomness in the
process X(t), we deduce

ELF (X(t)) = ELF
X

(W ) + ELF
W

(X).(6.17)

We reemphasize here that the expectation is taken both over the randomness of the initial data X(0) and the Gaussian term
W , where we condition on the appropriate component in each expectation term on the RHS. We note this holds, again, due
to the independence ofX(0) andW . Lastly, we note that the �rst expectation term on the RHS vanishes. �is is because the
underlying distribution of the matrix W is invariant under the matrix-valued Ornstein-Uhlenbeck SDE.�us, we �nd

d
dt

EF (X(t)) = ELF (X(t)) = ELF
W

(X)(6.18)

= EQf
F

(A) + O
⇣
D�1/2N1+"

⌘
max

16i64
k@iFk

r("),0(6.19)

for some positive exponent r(") > 0 depending on a �xed, su�ciently small " > 0. �e �rst equation follows from the
Dynkin formula, and the last equation follows from Proposition 6.5. By Proposition 6.2, we have

d

dt
EF (X(t)) = O

⇣
D�1/2N1+"

⌘
max

16i64
k@iFk

r("),0.(6.20)

Integrating over time s 2 [0, t], we deduce �eorem 5.2. ⇤
It now remains to prove Propositions 6.2 and 6.5. �e remaining discussion on the short-time stability will now be dedicated

to proving these two results, which are both discussed in detail for the case of d-regular graphs in [3]. �e �rst result,
Proposition 6.2 is also discussed in more detail in Chapter I of this thesis, as well as [4] by which Chapter I is motivated.
Moreover, for the sake of local eigenvalue statistics, the reader is invited to skip the details of the proofs of these two results
and proceed to the subsequent discussion on using �eorem 5.2 to prove stability of the Stieltjes transform of X(t).

7. P���� �� P���������� 6.2

We now rewrite the result in Proposition 6.2 as follows: for any function f : ⌦ ! R, we have

E
µunif Qf(A) = 0,(7.1)

where µunif denotes the uniform measure on ⌦. Indeed, this is equivalent to the invariance of µunif by the Dynkin formula.
We now exploit this probabilistic description of the generator Q discussed in Remark 6.1. �e following discussion is

carried out in detail in Chapter I of this thesis with regards to double switchings instead of simple switchings, but the details
are analogous. For that reason, we will not proceed with the same level of rigor and formalism as in Chapter I.

Our goal now is to build dynamics on the probability space ⌦. Suppose S ✓ E is the subgraph of E with vertices
[S] = {i, j,m, n}. We will call such a subgraph E a neighborhood. We de�ne the following indicator function:

I(S) = I(S,E) = 1 {|[S]| = 4, S is 1 -regular}(7.2)

=

X

k1,...,k42[S]

Ik3k4
k1k2

(S).(7.3)

Remark 7.1. We note the notation including the larger graphE to emphasize that we are �xing a graphE 2 ⌦when de�ning
the function I(S). We will suppress this notation for convenience, however.

In words, the indicator function I(S) determines whether or not S, as a graph, is composed of two distinct, non-incidental
edges. �e representation in the last equation follows from a simple unfolding of the functions Imn

ij

and I . We also note the
function I(S) is random only when S is drawn randomly.

To build the desired dynamics on ⌦, we will perform local switchings on graphs. To globalize these dynamics and allow
the switchings to resample the entire graph E, we will introduce another indicator function as in Chapter I.
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Suppose S1, S2 ✓ E are two subgraphs with vertex sets [S
`

] = {i
`

, j
`

,m
`

, n
`

} for ` = 1, 2. We de�ne the following
indicator function J via

J(S1, S2) = J(S1, S2;E) = 1 {[S1] \ [S2] = ;} .(7.4)

In words, the function J(S1, S2) detects whether or not two neighborhoods S1, S2 overlap at the level of vertices. Similar
to the function I(S), the function J(S1, S2) is random only when S1, S2 are drawn randomly. Unlike the function I(S),
however, the function J(S1, S2) is not local and detects information on the intersection of two neighborhoods S1 and S2.
�is will help us glue together simple switchings of randomly drawn neighborhoods S

`

.
We now give the details of the switching dynamics. Fix any graph E 2 ⌦ and its associated adjacency matrix A, and �x a

subgraph S with [S] = {i, j,m, n}. We de�ne the local dynamics

T
S

(A) =

8
><

>:

A� ⇠mn

ij

I(S) = 1, A
ij

= 1, A
mn

= 1,

A+ ⇠mn

ij

I(S) = 1, A
in

= 1, A
mj

= 1,

A I(S) = 0.

(7.5)

We now let T (S) denote the subgraph/neighborhood of T
S

(A) with vertex set [S]. Moreover, for any S1, S2 ✓ E, we de�ne

T
S1,S2(A) =

(
(T

S1 � TS2)(A) J(S1, S2) = 1,

A J(S1, S2) = 0.
(7.6)

We note, conditioning on J(S1, S2) = 1, we have T
S1(TS2(A)) = T

S2(TS1(A)), thus wemay inductively and unambiguously
de�ne the global dynamics T

S1,...,Sk for any k > 1.
In order to exploit the probabilistic description of the generator Q, we need to de�ne the following auxiliary probability

space on which the dynamics will actually occur. We de�ne the space e⌦ as follows:

e
⌦ := {(E,S) : E 2 ⌦, S ✓ E, |[S]| = 4} .(7.7)

In words, the probability space e⌦, as a set, is the set of all pairs (E,S) where E 2 ⌦ and S ✓ E is a neighborhood. We
now impose the following probability measure on e⌦: we will draw the graph E ⇢ ⌦ with respect to the uniform probability
measure on ⌦, and then choose S from the set of neighborhoods in E uniformly at random. In other words, we draw E 2 ⌦

uniformly at random and conditioning on E 2 ⌦, the neighborhood S is drawn uniformly at random. We denote this
probability measure by eµunif .

We now de�ne the switching dynamics. We de�ne the mapping T :

e
⌦ ! e

⌦ as follows: for any (E,S) 2 e⌦, we de�ne

T ((E,S)) = (T
S

(A), T (S))(7.8)

where the RHS is well-de�ned by use of the functions I and J . Here, we identify a graph E with its adjacency matrix A.
�us, to prove Proposition 6.2, it su�ces to prove the following result concerning the Markov dynamics T on e⌦.

Lemma 7.2. �e uniform probability measure on e⌦ is invariant under T . Moreover, the dynamics T are reversible with respect
to the uniform measure on e⌦.

Indeed, Lemma 7.2 follows from the construction of T as an involution on e⌦. In particular, given any two edges {ij}, {mn}
with i, j,m, n mutually distinct vertices, there are only two allowed switchings of the neighborhood {ij,mn}. �is implies

Eeµunif
Qf(A,S) = 0.(7.9)

For any function f : ⌦ ! R, we now li� to a function

ef :

e
⌦ �! R, ef(A,S) = f(A), A 2 ⌦.(7.10)

By taking f to be the indicator function for any subset of graphs, we deduce that the canonical projection e⌦ ! ⌦ pushfor-
wards the measure eµunif to the measure µunif . �is completes the proof of Proposition 6.2.
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8. P���� �� P���������� 6.5

We conclude this discussion by deriving the estimate comparing Q and L . We recall the desired estimate as follows. For
any F 2 C4

(Me) and the corresponding function f
F

: ⌦ ! R, we have

Qf
F

(A) = LF (X) +R,(8.1)

where R satis�es the following expectation bound:

E
µunif R = O

⇣
D�1/2N1+"

⌘
max

16i64
k@iFk

r("),0,(8.2)

where r(") depends on " > 0 chosen to be small. Before we proceed with the details of the proof, we provide a brief outline.
Recall the generator Q is given by

Qf(A) =

1

4Nd
w

X

(i,j)2Vb

X

(m,n)2Vb

Imn

ij

(A)

⇥
f(A� ⇠mn

ij

)� f(A)

⇤
.(8.3)

We now Taylor expand the function f : ⌦ ! R in A 2 ⌦ along the directions in X , which we recall is de�ned as

X :=

[

(i,j)2Vb

[

(m,n)2Vb

{⇠mn

ij

}.(8.4)

In particular, we will Taylor expand to fourth-order, which is where the a priori regularity F 2 C4
(Me) is assumed. Approx-

imately upon Taylor expanding, we expect

Qf(A) ⇡ 1

4Nd
w

X

(i,j)2Vb

X

(m,n)2Vb

A
ij

A
mn


�@mn

ij

f(A) +

1

2

(@mn

ij

)

2f(A)

�
.(8.5)

We will rewrite the entries of the adjacency matrix as follows:

A
ij

=

d
b

N
+

✓
A

ij

� d
b

N

◆
,(8.6)

A
mn

=

d
b

N
+

✓
A

mn

� d
b

N

◆
.(8.7)

Plugging these expansions into the heuristic approximation (8.5), we obtain the generatorL on the RHS upon the convention
f
F

(A) = F (H) for any suitably regular function F 2 C4
(Me), in addition to other terms we will show are, in fact, error

terms. Controlling these error terms will depend on the nonzero correlations between the matrix entries and a combinatorial
analysis of biregular bipartite graphs E 2 ⌦.

We now provide the details of the above proof outline, which follow closely the details given in the proof of Proposition
3.3 in [3]. To make the Taylor expansion (8.5) more precise, we write

Qf(A) =

1

4Nd
w

X

(i,j)2Vb

X

(m,n)2Vb

A
ij

A
mn


�@mn

ij

f(A) +

1

2

(@mn

ij

)

2f(A)

�
+ N2

(R1 +R2),(8.8)

where we make the approximation (8.5) by introducing the following error terms:

R1 = O

✓
N

d
w

◆
1

N4

X

(i,j)2Vb

X

(m,n)2Vb

A
ij

A
mn

(1� I(ij,mn)) sup

✓2[0,1]
sup

X2X
|@

X

f(A+ ✓X)| ,(8.9)

R2 = O

✓
N

d
w

◆
1

N4

X

(i,j)2Vb

X

(m,n)2Vb

A
ij

A
mn

sup

✓i2[0,1]
sup

Xi2X

�����@X1@X2@X3f

 
A+

3X

i=1

✓
i

X
i

!����� .(8.10)

We proceed with using the representations of the adjacency matrix entries given in (8.6) and (8.7). In particular, given we
expect the �uctuationA

ij

�d
b

/N to be small, we use these representations and study the �rst-order term in (8.8) by grouping
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terms as follows:
X

(i,j),(m,n)2Vb

A
ij

A
mn

@mn

ij

f(A) =

X

(i,j)2Vb

X

(m,n)2Vb

d2
b

N2
@mn

ij

f(A)(8.11)

+

X

(i,j)2Vb

X

(m,n)2Vb

@mn

ij

f(A)

d
b

N

✓
A

ij

� d
b

N

◆
+

✓
A

mn

� d
b

N

◆�
(8.12)

+ N2R3,(8.13)

where the error term R3 is given by the following equation:

1

4Nd
w

R3 = O

✓
N

d
w

◆
1

N4

X

(i,j),(m,n)2Vb

@mn

ij

f(A)

✓
A

ij

� d
b

N

◆✓
A

mn

� d
b

N

◆
.(8.14)

We �rst study the term on the RHS of (8.11). We note that, upon averaging over all (i, j) 2 V
b

and (m,n) 2 V
b

, we have
X

(i,j)2Vb

X

(m,n)2Vb

@mn

ij

f(A) = 0,(8.15)

upon unfolding the de�nition of the operator @mn

ij

in terms of partial derivatives along directions in�
ij

2 X . �us, the term
on the RHS of (8.11), i.e. the supposed leading-order term of the expansion of the �rst-order di�erential term, in fact vanishes.
�is explains the need to appeal to the lower-order term in (8.12) in the above expansion of the �rst-order di�erential term.
We now study this term (8.12); upon switching indices (i, j) $ (m,n) 2 V

b

, because we average over indices (i, j) 2 V
b

and
(m,n) 2 V

b

we see this term is given by

2

X

(i,j)2Vb

X

(m,n)2Vb

@mn

ij

f(A)

d
b

N

✓
A

ij

� d
b

N

◆
= 2d1/2

b

X

(i,j)2Vb

X

(m,n)2Vb

d
b

N
X

ij

@mn

ij

f(A),(8.16)

where the equation follows from the de�nition of the normalization X of A. �is, in turn, is equal to

d
b

2N

X

(i,j),(m,n)2Vb

Xmn

ij

@mn

ij

F (H)(8.17)

where the factor of d�1/2
b

comes from the convention f(A) = F (X), and the replacement of X
ij

by Xmn

ij

comes with the
normalization factor of 1/4. �us, we ultimately see, recallingM = ↵N and d

w

= ↵d
b

,

1

4Nd
w

X

(i,j),(m,n)2Vb

A
ij

A
mn

@mn

ij

f(A) =

1

16MN

X

(i,j),(m,n)2Vb

Xmn

ij

@mn

ij

F (H) + N2R3.(8.18)

We now study the second-order terms in (8.8). Again using the representations (8.6) and (8.7), this term is given by

1

4Nd
w

X

(i,j),(m,n)2Vb

A
ij

A
mn

⇥ 1

2

�
@mn

ij

�2
f(A) =

d
b

8d
w

N3

X

(i,j),(m,n)2Vb

�
@mn

ij

�2
f(A)(8.19)

+ N2
(R4 +R5),(8.20)

where the error terms are given by

R4 = O

✓
N

d
w

◆
1

N4

X

(i,j),(m,n)2Vb

✓�
@mn

ij

�2
f(A)

d
b

N

✓
A

ij

� d
b

N

◆◆
,(8.21)

R5 = O

✓
N

d
w

◆
1

N4

X

(i,j),(m,n)2Vb

✓�
@mn

ij

�2
f(A)

✓
A

ij

� d
b

N

◆✓
A

mn

� d
b

N

◆◆
.(8.22)

Compiling these expansions for the �rst- and second-order di�erential terms in (8.8), we �nally deduce

Qf(A) =

1

8MN2

X

(i,j),(m,n)2Vb

�
@mn

ij

�2
F (H) � 1

16MN

X

(i,j),(m,n)2Vb

H
ij

@mn

ij

F (H)(8.23)

+ N2
(R1 +R2 +R3 +R4 +R5).(8.24)
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�us, to �nish the proof of Proposition 6.5, it su�ces to prove the following estimate on the expectation of the error terms
R1, . . . , R5.

Proposition 8.1. In the se�ing of Proposition 6.5, we have

N2 E
"

5X

i=1

R
i

#
= O

⇣
D�1/2N1+"

⌘
max

16i64
k@iFk

r("),0.(8.25)

�e remainder of this discussion will now be devoted to the proof of Proposition 8.1. �e methods and estimates used in
this proof are exactly those in the d-regular graph ensemble studied in [3]. However, because the graph structure is important
in deriving the estimate in Proposition 8.1, we will include the details for sake of completeness. �e proofs are almost identical
as those in [3], however, and the reader is invited to skip the details and go to the discussion of using �eorem 5.2 to derive
stability of local eigenvalue statistics.

8.1. Proof of Proposition 8.1. �e necessary ingredients for the proof of Proposition 8.1 are moment bounds on the adja-
cency matrix entries. �e �rst of these bounds is the following estimate, from which we will derive further moment bounds.

Lemma 8.2. Fix any p = O(1) > 0 and consider any p vertices (i1, j1), . . . , (ip, jp) 2 V
b

. �en, for any x 2 [1,M +N ] and
y 2 [1,M +N ] \ {(i1, j1), . . . , (ip, jp)}, we have

E
⇥
A

i1j1 . . . AipjpAxy

⇤
= O

✓
d
b

N

◆
E
⇥
A

i1j1 . . . Aipjp

⇤
.(8.26)

Proof. First, we may assume (x, y) 2 V
b

or (x, y) 2 V
w

; otherwise, the estimate follows trivially. We derive the estimate for
(x, y) 2 V

b

; the case (x, y) 2 V
w

follows similarly.
We now de�ne the following for notational convenience:

I(p) := {(i1j1), . . . , (ip, jp)}, A(p) := A
i1j1 . . . Aipjp .(8.27)

�us, we have

E [A(p)] =

1

d
b

E
"
A(p)

X

y

A
xy

#
=

1

d
b

E

2

4A(p)
X

y2I

A
xy

3

5
+

1

d
b

E

2

4A(p)
X

y 62I

A
xy

3

5 .(8.28)

We note |I| = O(1) and thus |{y 62 I}| = O(N). Moreover, noting 0 < A
ij

= O(1) for all i, j, and also noting the law of
A

ij

under the uniform measure on graphs is invariant under relabeling vertices, we deduce

E [A(p)] = O

✓
1

d
b

◆
E [A(p)A

xy

] + O

✓
N

d
b

◆
E [A(p)] ,(8.29)

from which the desired estimate follows clearly. ⇤

Remark 8.3. �e estimate given above is somewhat of an independence statement under mild conditions; this will help us
compute estimates for moments of adjacency matrix entries. In particular, we deduce the following moment estimates.

Lemma 8.4. Let a, b be integers de�ned by

# {i, j,m, n} = 4� a, # {i, j,m, n, k, `, p, q} = 8� b.(8.30)

�en, we have

E [A
ij

A
mn

] = O

✓
d
b

N

◆2�ba/2c
,(8.31)

E [A
ij

A
mn

A
k`

A
pq

] = O

✓
d
b

N

◆4�bb/2c
.(8.32)
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Proof. We �rst noteA
ii

= 0 for all indices i, so we may assume the bounds a 6 2, b 6 4. Moreover we also note all moments
ofA

ij

are equal. �en, the desired estimates (8.31) and (8.32) follow from Lemma 8.2. We illustrate for the case a = 1; suppose,
without loss of generality, that i = m. �us, by Lemma 8.2, we have

E [A
ij

A
in

] = O

✓
d
b

N

◆
EA

ij

= O

✓
d
b

N

◆2

6 O

✓
d
b

N

◆3/2

.(8.33)

⇤

We now introduce the following notation for convenience:

I1 := I(ij,mn;A), I2 := I(k`, pq;A),(8.34)

J12 := J({ij,mn}, {k`, pq};A), I12 := I1I2J12.(8.35)

Remark 8.5. We recall that I1 = 0 and J12 = 0 with low probability. We now derive the following estimates conditioning on
exceptional events with regards to the simple switchings dynamics on e⌦.

Lemma 8.6. Let a, b be de�ned as in Lemma 8.4. �en, we have

E [(A
ij

A
mn

+A
in

A
mj

)(1� I1)] = O

✓
d
b

N

◆3�a

,(8.36)

E [(A
ij

A
mn

+A
in

A
mj

)(A
k`

A
pq

+A
kq

A
p`

(1� I12)] = O

✓
d
b

N

◆5�b

.(8.37)

Proof. We �rst assume a, b = 0; for a, b 6= 0, the estimates follow directly from Lemma 8.4 and the following inequalities that
hold for a, b 6= 0:

3� a 6 2�
ja
2

k
, 5� b 6 4�

�
b

2

⌫
.(8.38)

If a = 0, then the event A
ij

A
mn

I1 = 0 corresponds to the event that the subgraph restricted to the vertices (i, j), (m,n) is
not 1-regular. In particular, we have the following bound:

E [A
ij

A
mn

(1� I1)] 6 E [A
ij

A
mn

(A
in

+A
mj

)] = O

✓
d
b

N

◆3

,(8.39)

where the last bound follows by the assumption a = 0 and Lemma 8.2. Because the law of A
ij

is invariant under relabeling
vertices, we deduce (8.36).

Similarly, if b = 0, then the event A
ij

A
mn

A
k`

A
pq

(1 � I12) = 0 corresponds to the event that the subgraph restricted to
the vertices (i, j), (m,n), (k, `), (p, q) is not bipartite, or if it is bipartite, the subgraphs are not 1-regular. Formally, we have
the estimate (conditioning on b = 0)

E [A
ij

A
mn

A
k`

A
pq

(1� I12)] 6 E [A
ij

A
mn

A
k`

A
pq

A⌃] ,(8.40)

where we de�ne

A⌃ = A
in

+A
mj

+A
kq

+A
p`

+A
iq

+A
i`

+A
m`

+A
mq

+A
kj

+A
kn

+A
pj

+A
pn

.(8.41)

Similarly, we deduce the following bound via Lemma 8.2:

E [A
ij

A
mn

A
k`

A
pq

(1� I12)] 6 O

✓
d
b

N

◆5

.(8.42)

Relabeling vertices and by the assumption b = 0, as in the proof of (8.36) we deduce (8.37). ⇤

As a direct consequence of the estimates in Lemma 8.6, we deduce the following averaged estimates.
55



Lemma 8.7. Suppose ↵,� are de�ned by the equations

#{i, j} = 2� ↵, #{i, j, k, `} = 4� �.(8.43)

�en, we have the following estimates:

1

N2

X

(m,n)2Vb

E [(A
ij

A
mn

+A
in

A
mj

)(1� I1)] = O

✓
d
b

N

◆3�↵

,(8.44)

1

N4

X

(m,n)2Vb

X

(p,q)2Vb

E [(A
ij

A
mn

+A
in

A
mj

)(A
k`

A
pq

+A
kq

A
p`

)(1� I12)] = O

✓
d
b

N

◆5��

.(8.45)

Moreover, we have

1

N4

X

(i,j),(m,n)2Vb

E [(A
ij

A
mn

+A
in

A
mj

)(1� I1)] = O

✓
d
b

N

◆3

,(8.46)

1

N8

X

(i,j),(m,n)2Vb

X

(k,`),(p,q)2Vb

E [(A
ij

A
mn

+A
in

A
mj

)(A
k`

A
pq

+A
kq

A
p`

)(1� I12)] = O

✓
d
b

N

◆5

..(8.47)

Proof. We �rst note the estimates (8.46) and (8.47) follow from (8.44) and (8.45), respectively, noting there are O(N2
) pairs

(i, j) such that ↵ = 0 and O(N4
) pairs of pairs {(i, j), (k, `)} such that � = 0.

More generally, for any ↵0 2 [[0, 1]] (resp. �0 2 [[0, 3]]), we note there are O(N2�s

) (resp. O(N4�s

)) sets {i, j} (resp.
{i, j, k, `}) such that ↵ = ↵0 (resp. � = �0). �us, by (8.36) and (8.37), we have

1

N2

X

(m,n)2Vb

E [(A
ij

A
mn

+A
in

A
mj

)(1� I1)] = O

✓
d
b

N

◆3�↵

+

2X

↵0=1

O(N�↵0
)⇥O

✓
d
b

N

◆3�↵�↵0

(8.48)

= O

✓
d
b

N

◆3�↵

.(8.49)

�us, we derive (8.44). Similarly, we may also deduce (8.45). ⇤

We now recall the following seminorm for bounded measurable functions f : for r > 1, de�ne

kfk
r

:= (E |f(A)|r)1/r .(8.50)

Extending the derivatives, we recall, for f 2 Ck

(Me),

k@kfk
r

:= sup

✓2[0,1]k
sup

X2X k

k@
X1 . . . @Xkf(A+ ✓ ·X)k

r

;(8.51)

here, we use the notation X = (X1, . . . , Xk

) 2 X k .
We now derive the following moment estimates coupled with functions of matrices; the bounds in the following lemma

follow from the Holder inequality coupled with the the preceding moment estimates. �ese bounds will be important in
bounding the error terms R1 and R2.

Lemma 8.8. Fix " > 0 and suppose r = r(") � 1 is su�ciently large depending on the the parameter ". De�ne the parameters
↵,� by the equations

#{i, j} = 2� ↵, #{i, j, k, `} = 4� �.(8.52)
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For any f 2 C0
(Me,0) with kfk

r

6 1, we have the following estimates:
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Here, for an indicator random variable � corresponding to an event ⌅, we denote by � = 1� � the indicator random variable of
the complement of ⌅.

Proof. We prove (8.54); the other bounds follow analogously. By the Holder inequality with respect to the expectation E(·),
we see
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where q�1
= 1� r�1. Again by the Holder inequality with respect to the summation over indices (i, j), (m,n) 2 V

b

, we see
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By Lemma 8.4, this upper bound is also bounded by the following:
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where the equality holds by choosing r(") � 1 and the trivial bound ↵ = O(1). �is proves (8.54). ⇤

We now prove the last estimate bounding expectations of function f : ⌦ ! R with coe�cients given by the �uctuation
terms A

ij

� d
b

/N in the expansions (8.6) and (8.7). �ese, along with Lemma 8.8, will be important in bounding the error
terms R3, . . . , R5.

Proposition 8.9. Fix any " > 0, and suppose r = r(") �
"

1 is su�ciently large depending on ". Moreover, de�ne ↵,� by the
equations

# {i, j} = 2� ↵, #{i, j,m, n} = 4� �.(8.63)
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Proof. We employ the following identity, which follows from the averaging identities
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In particular, writing 1 = I1 + I1, we have, by Lemma 8.8,
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�us, it su�ces to bound the �rst average containing the factor I1. We �rst note we may assume ↵ = 0 else the �rst average
vanishes. �us, we see I1(A) = I1(TS

(A)) with S the subgraph whose edges are given by {ij} and {mn}. With this and
the invariance of the uniform measure under T

S

(A), we see
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With the following Taylor estimate:
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as well as Lemma 8.8, we deduce (8.64). To prove (8.65), we appeal to the identity
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Writing 1 = I12 + I12, we have, by Lemma 8.8,
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where we de�ne
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Similarly, we may assume � = 0, else the �rst averaging term containing the factor I12 vanishes. Again, appealing to the
invariance of the uniform measure under T

S

(A) and the identities I12(A) = I12(TS1,S2(A)) with S1, S2 the subgraphs
containing the vertices {ij,mn} and {k`, pq} respectively, we see
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where we de�ne
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Appealing to the Taylor estimate
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as well as Lemma 8.8, we also deduce (8.65). ⇤
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We now prove Proposition 8.1. By Lemma 8.8 and Proposition 8.9, we have
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�us, by de�nition of the parameter D and the change of variables f(A) = F (H) with

@kf = d�k/2
b

@kF,(8.81)

we have
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�is concludes the proof of Proposition 8.1. ⇤
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III. Short Time Stability of Eigenvalues and Eigenvectors

9. S�������� �� ��� S�������� T��������

�e goal of this discussion will be to use the short-time estimate given in�eorem 5.2 to deduce the stability of eigenvalue
statistics a�er short times. As done in Chapter I of this thesis, in order to obtain understanding of the local eigenvalue statistics
of the evolved matrixX(t), our strategy is to �rst show the stability of its Stieltjes transform. We emphasize here that, only in
this discussion do we directly consider the covariance matrix X⇤(t) and not the linearization X(t). �is allows us to exploit
phenomena such as eigenvector delocalization in studying the spectral data ofX⇤(t) through its Stieltjes transform, whereas
delocalization does not hold a priori for the linearization. We refer back to Chapter I for details.

Before we discuss the stability of the Stieltjes transform for short times, we need to introduce two preceding discussions.
�e �rst is a general discussion on notions of stochastic inequalities. �e second is a discussion of the free convolution of
a deterministic matrix with a Gaussian perturbation, which will allow us to interpolate between the initial data X⇤(0) and
evolved matrices X⇤(t) for short times.

9.1. Aside on Stochastic Inequalities. We now introduce the following two ubiquitous notions of stochastic inequalities.
�e second is more important for our purposes, so we emphasize its utility now.

De�nition 9.1. Suppose ⌦ is a probability space, and let ⌅ ✓ ⌦ be an event.

• We say ⌅ holds with high probability if for every ⇣ > 0, there existsN0(⇣) > 0 such that for allN > N0(⇣), we have
P(⌅C

) 6 N�⇣ .
• Suppose A,B are two nonnegative random variables. We say that B stochastically dominates the random variable A
if for any ⇣ > 0, there exists a N0(⇣) > 0 such that for all N > N0(⇣), we have

P
⇣
A > N1/⇣B

⌘
6 N�⇣ .(9.1)

In this case, we will adopt the notation A � B or A = O�B = O�(B).

We conclude this short discussion on stochastic inequalities with the following lemma whose proof is a straightforward
application of the de�nition of stochastic domination.

Lemma 9.2. Suppose I is an indexing set of size |I| 6 NO(1), and suppose {Ai}i2I , {Bi}i2I are two families of nonnegative
random variables such that for each i 2 I , we have Ai � Bi. �en for any nonnegative random variables {ci}i2I , we have

X

i2I

ciAi �
X

i2I

ciBi.(9.2)

9.2. �e Free Convolution. �is discussion on the free convolution is most important in Chapter III of this thesis, where
the free convolution measure allows us to interpolate between the eigenvalue data of the initial data X⇤(0) and the evolved
data X⇤(t). To de�ne the measure, we �rst de�ne a Stieltjes transform through the following functional equation:

mlin,t(z) =

1

2N

NX

i=1

1

Vi � z � Tmlin,t(z)
+

1

�Vi � z � Tmlin,t(z)
.(9.3)

Here, the terms ±Vi correspond to the nonzero eigenvalues of the linearization X(t), i.e. those eigenvalues � such that �2

is an eigenvalue of the covariance matrix X⇤(t). It is known that the above �xed-point equation admits a unique solution
mlin,t(z) that maps the upper-half plane to itself; we refer to [5] for details.

We nowde�ne the Stieltjes transform of the free convolutionmeasure, whichwe denote bymfc,t, by the following equation:

mfc,t(z) =

1p
z
mlin,t(

p
z),(9.4)
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where the square root is chosen with the principal branch of the logarithm on the upper-half plane.

Remark 9.3. �e measure %fc here denotes the free convolution measure in the covariance matrix ensemble, whereas in
Chapter III, the subscript fc will denote the free convolution measure in the linearization ensemble.

�e Radon-Nikodym density %fc of the free convolution measure with respect to Lebesgue measure is de�ned by taking
the Stieltjes inversion ofmfc,t(z). We now state a central result of Chapter III that will help us study the short-time stability
of the Stieltjes transform st(z). �e proof resembles that of the local law in Section 7 of [17] and is delegated to Chapter III.
First, we will establish the following notation for the partial Stieltjes transform of the linearization X(t):

slin,t(z) :=

1

2N

M+NX

i=M+1

(X(t)� z)�1
ii .(9.5)

�eorem 9.4. Fix any ⇣ > 0. �en for any time t 2 [0, N�⇣
] we have with high probability, uniformly over the domain U",�

de�ned shortly,

|slin,t(z)�mlin,t(z)| � 1p
N⌘

.(9.6)

We now use this result to establish a similar weak local law for the Stieltjes transform st(z) of the covariance matrixX⇤(t).
We �rst note the following relation:

st(z) =

1p
z
slin,t(

p
z),(9.7)

where we again take the principal branch of the logarithm in de�ning the square root on the upper-half plane. Indeed, this
follows from the spectral correspondence between X⇤(t) and X(t) discussed in Chapter I.

Because z 2 U",� implies z2 2 U"0,�0 for some "0, �0 > 0, and because |z|�1
= O(1) for all z 2 U",� , we deduce the

following weak local law for the Stieltjes transform of the covariance matrix for any time t 2 [0, N�⇣
]:

sup

z2U",�

|st(z)�mfc,t(z)| � 1p
N⌘

.(9.8)

9.3. Short-Time Estimate for the Stieltjes Transform. We brie�y recall the main estimate from Chapter I. We let m(z)

denote the Stieltjes transform of the Marchenko-Pastur law, and we let st(z) denote the Stieltjes transform of X⇤(t):

m(z) =

1� � � z + i
p
((1 +

p
�)2 � z)(z � (1�p

�)2)

2�z
,(9.9)

st(z) =

1

N
TrGt(z) :=

1

N
Tr (X⇤(t)� z)�1 .(9.10)

Here, we have implicitly stipulated the notation for the Green’s function Gt(z) of X⇤(t). We will take z 2 C+ so that the
functionsm(z) and st(z) de�ne functions from the upper-half plane C+ to itself.

�eorem 9.5. Uniformly over the following domain:

U",� =

�
z = E + i⌘ 2 C+ : |E| > � > 0, ⌘ � N�1+"

 
(9.11)

where �, " > 0 are �xed (small) constants, we have the local Marchenko-Pastur law for the covariance matrix X⇤(0) induced by
the bipartite graph X(0):

|s0(z)�m(z)| � B +

1

(N⌘)1/4
(9.12)

for some B 6 N�⇣ with a �xed ⇣ > 0.

We now extend this local law to Stieltjes transforms st(z) for times t = o(1). First, we de�ne the subdomain of U",� :

U1
",� = {z = E + i⌘ 2 U",� : |⌘| 6 1} .(9.13)

�e following extension of the local Marchenko-Pastur law is a consequence of the weak local law for covariance matrices
given in (9.8), the local law (9.12), and the stability of the self-consistent equation de�ning m(z) discussed in Chapter I.
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Proposition 9.6. Suppose the local law (9.12) holds uniformly over z = E + i⌘ with 1 > ⌘ � N�1�� for some � > 0 and for
some B 6 N�⇣ with a �xed ⇣ > 0. �en we have the following local law uniformly over such z and uniformly over all times
t 2 [0, B]:

|st(z)�m(z)| � B +

1

(N⌘)1/4
.(9.14)

Proof. Using (9.8) and (9.12), we note it su�ces to prove, instead, the estimate

|m(z)�mfc,t(z)| � B +

1

(N⌘)1/4
.(9.15)

Moreover, by the same self-improving estimate in Chapter I, we may restrict ourselves to U1
",� . We now unfold the de�nition

of the Stieltjes transform mfc,t to obtain the following �xed-point equation for the Stieltjes transform:

mfc,t(z) =

1

N

NX

i=1

1 + tmfc,t(z)

V 2
i � z(1 + tmfc,t(z))2

(9.16)

�is now allows us to rewrite the free convolution datamfc,t in terms of the Stieltjes transform s0(z) for the bipartite graphs
as follows:

mfc,t(z) = (1 + tmfc,t(z)) s0(z(1 + tmfc,t(z))
2
).(9.17)

Using the ideas and methods from Lemma 7.1 and Lemma 7.2 in [17], we �rst note

mfc,t(z) = O (logN) .(9.18)

Now, we study the di�erence s0 �mfc,t as in Chapter I on the local law. In particular, using the initial data representation
(9.17) and the self-consistent equation for the bipartite graph data s0 as derived in Chapter I, we may record the following
self-consistent equation for the free convolution data mfc,t:

�z (1 + tmfc,t(z))
2 mfc,t(z)2

(1 + tmfc,t(z))2
+

�
� + z(1 + tmfc,t(z))

2 � 1

� mfc,t(z)

1 + tmfc,t(z))
� 1 = (1 + |z|)oN!1(1)(9.19)

We rewrite the �rst term as �zmfc,t(z)2. We now focus on the second term. Expanding it, we have the second term is given
by the following expression:

mfc,t(z)


(� � 1)

1

1 + tmfc,t(z)
+ z(1 + tmfc,t(z))

�
= mfc,t(z) [(� + z � 1) + E1 + E2] ,(9.20)

where the error terms are given by

E1 = (� � 1)

tmfc,t(z)

1 + tmfc,t(z)
(9.21)

E2 = t (zmfc,t(z)) .(9.22)

Here, we use log(N)-bound in (9.18) to deduce the following deterministic bound:

sup

z2U",�

|tmfc,t| = o(1).(9.23)

�is allows us to Taylor expand the term (1 + tmfc,t(z))�1 via a geometric series. Ultimately, this expansion of the second
term gives us the following self-consistent equation

�zm2
fc,t + (� + z � 1)mfc,t � 1 = (1 + |z|)oN!1(1) � mfc,t(E1 + E2).(9.24)

Because t ⌧ N�⇣ for su�ciently small ⇣ > 0, again by (9.18) we deduce the following bound:

sup

z2U",�

|mfc,t(z)(E1 + E2)| = (1 + |z|)oN!1(1).(9.25)

�us, the stability analysis of the self-consistent equation in Chapter I implies the estimate (9.15). �is gives the desired
estimate for a �xed time t 2 [0, B]. To extend to all times t 2 [0, B], we appeal to a standard stochastic continuity argument
for the Stieltjes transform given in Chapter III. �is completes the proof of Proposition 9.6. ⇤
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We now brie�y discuss the consequences of Proposition 9.6. We �rst recall the following notion of a classical location
de�ned in Chapter I. For any index i 2 [[1, N ]], we de�ne the i-th classical location �i of the Marchenko-Pastur law as the
solution to the following quantile formula:

i

N
=

�iw

�1
%MP(E) dE,(9.26)

where %MP denotes the density function of the Marchenko-Pastur law. Similarly, the i-th classical location of the empirical
distribution of X⇤(t) can be thought of as the eigenvalue �i(t), assuming the eigenvalues are ordered in strictly increasing
order. As discussed in Chapter I, a local law implies a rigidity phenomenon away from the edge of the spectrum. In this
chapter, we additionally show a local law implies an entry-wise estimate on the Green’s function Gt(z) of the covariance
matrixX⇤(t). We summarize these results in the following proposition. We again assume eigenvalues are ordered in strictly
increasing order. We will also introduce the following notation borrowed from Chapter I of this thesis.

Notation 9.7. Let Gt(z) denote the Green’s function of X⇤(t), i.e.

Gt(z) = (X⇤(t)� z)�1(9.27)

for z 2 C+. We will de�ne the following control parameter for the Green’s function:

�t(z) = max

i,j2[[1,N ]]
(|Gij(z)| _ 1) .(9.28)

Proposition 9.8. For a �xed  > 0 independent of N , �x an index i 2 [[, (1� )N ]]. �en

sup

t2[0,D�1/4]

|�i(t)� �(i)| � D�1/4(9.29)

where �i(t) denotes the i-th eigenvalue of X⇤(t) and �(i) denotes the i-th classical location of %MP. Moreover, suppose we have
an interval I ✓ [, (1� )(1 +

p
�)2] such that |I | ⇣ N�1+⇣ for some �xed small ⇣ > 0. �en for any time t 2 [0, D�1/4

],

w

I

NX

i=1

��i(t) = | {i : �i(t) 2 I } | = O(N ⇣
) = O�(1).(9.30)

Lastly, for any z 2 C+ we have

sup

t2[0,D�1/4]

�t(z) � 1 +

1

N⌘
.(9.31)

Proof. �e proof of the weak rigidity estimate (9.29) follows from the local law in Proposition 9.6 exactly as in Chapter I of this
thesis. �e statement of accumulating eigenvalues (9.30) follows from (9.29) and regularity of the Marchenko-Pastur density
inside its bulk.

It now remains to prove the second estimate (9.31). Before we do so, we �rst note a proof using a dyadic decomposition of
the scale ⌘ is given in Proposition 5.1 in [3] and an eigenvector delocalization result proven in the next section. We provide a
di�erent argument using the estimate (9.30). We �rst appeal to the spectral representation of the Green’s function Gt(z) as
follows: for any �xed indices i, j, we have

|[Gt(z)]ij | =

�����

NX

k=1

vk(i)vk(j)

�k(t)� z

����� 6
 

sup

k,i,j2[[1,N ]]
|vk(i)vk(j)|

!
NX

k=1

1

|�k(t)� z|(9.32)

� 1

N

NX

k=1

1

|�k(t)� z| .(9.33)

Here, we are using the following delocalization result:

sup

k,i2[[1,N ]]
|vk(i)| � 1p

N
(9.34)
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where the supremum is taken over all `2-normalized eigenvectors. �is result will be proven in a subsequent discussion
concerning the stability of eigenvalues; the result for the bipartite graphs at t = 0, however, is given in Chapter I. For now,
we take the delocalization for granted. Instead of the dyadic decomposition used in [3], we now di�erentiate in ⌘:

@⌘
1p

(�k(t)� E)

2
+ ⌘2

= � ⌘

[(�↵ � E)

2
+ ⌘2]3/2

.(9.35)

�us by the bound (9.33) we see, writing z = E + i⌘0,

|[Gt(z)]ij | � 1 +

1

N

NX

k=1

1w

⌘0

⌘

[(�↵ � E)

2
+ ⌘2]3/2

d⌘.(9.36)

It is now our goal to bound the integral on the RHS of (9.36). To do so, we �rst de�ne the following sets of eigenvalues �k(t)

of X⇤(t): for a �xed, small ⇣ > 0,

I1 =

�
k : |�k � E| 6 N�1+⇣

 
, I2 =

�
k : |�k � E| > N�1+⇣

 
.(9.37)

We �rst compute an upper bound on the integral on the RHS of (9.36) by restricting to those eigenvalues �k with k 2 I2. In
this case, we have the following estimates:

1w

⌘0

⌘

[(�↵ � E)

2
+ ⌘2]3/2

d⌘ 6
1w

⌘0

⌘

N�3+3⇣
[1 + (N1�⇣⌘)2]3/2

d⌘

= N1�⇣
1w

⌘0

⌘

[1 + (N1�⇣⌘)2]3/2
d
�
N1�⇣⌘

�

= N1�⇣
N1�⇣w

N1�⇣⌘0

⌘
⇥
1 + ⌘2

⇤3/2 d⌘,(9.38)

where we employed a change of variables ⌘ = N1�⇣⌘. We note the integrand in (9.38) is increasing in ⌘; to see this, we
compute the derivative as follows:

@⌘


⌘

[1 + ⌘2]3/2

�
=

(1 + ⌘2)3/2 + 3⌘2
⇥
1 + ⌘2

⇤�5/2

(1 + ⌘2)3
> 0.(9.39)

�us, the integral in (9.38) is bounded above by

O(N2�⇣
)

N1�⇣

[1 +N2�2⇣
]

3/2
= O

✓
N3�3⇣

N3�3⇣

◆
= O(1)(9.40)

for N � 1. �is implies

N�1
X

k2I2

1w

⌘0

⌘

[(�↵ � E)

2
+ ⌘2]3/2

d⌘ � N�1
X

k2I2

1 � 1.(9.41)

We now study the eigenvalues �k with the index k 2 I1. To control this term, we simply compute the following estimate:

1

N

X

k2I1

1w

⌘0

⌘

[|�k � E|2 + ⌘2]3/2
d⌘ �

1w

⌘0

⌘

⌘3
d⌘ 6 1

N
+

1

N⌘
,(9.42)

where we used (9.30) to estimate the size |I1| � 1. �is completes the proof of Proposition 9.8. ⇤

Remark 9.9. We conclude the discussion of the local Marchenko-Pastur law for X⇤(t) by remarking on the eigenvector
delocalization that was important in the proof of Proposition 9.8. In particular, the delocalization was obtained in Chapter I
as a consequence of a local law for the diagonal of the Green’s function. In this discussion of time-evolved matrices X⇤(t),
an estimate on the diagonal entries is unavailable to us. �is is also the case in the ensemble of d-regular graphs studied in
[3], where other methods become necessary.

Remark 9.10. Instead of partitioning the spectrum of X⇤(t) into the sets I1 and I2, we may also appeal to a weak level
repulsion estimate proved in Chapter III of this thesis.

64



10. S�������� �� ��� E�����������

We now focus our a�ention towards eigenvector stability under the matrix-valued Ornstein-Uhlenbeck process onMe. As
in the discussion concerning stability of the Stieltjes transform, we recall the result on eigenvector delocalization for bipartite
graphs. First, we adopt the following notation.

Notation 10.1. For the adjacency matrix X = (H,H⇤
) of a bipartite graph, consider the covariance matrix X⇤ = H⇤H . For

any given eigenvalue �↵ of X⇤, we will denote the corresponding eigenvector by v↵.

We may now state the eigenvector delocalization result for covariance matricesX⇤ given by a bipartite graph E 2 ⌦. For
any eigenvector v↵ corresponding to an eigenvalue �↵ of X⇤, we have

kv↵k`1 � 1p
N

kv↵k`2 .(10.1)

We now extend the delocalization to all times. �e ideas in this section closely resemble those of Section 4 in [3], relying on
eigenvector dynamics studied in [6]. �e main goal of this section is to prove the following eigenvector delocalization result
for time-evolved covariance matrices. In order to state the result, we introduce notation for the eigenvectors of X⇤(t).

Notation 10.2. We let vt,↵ denote the eigenvector of X⇤(t) corresponding to the eigenvalue �↵(t).

Proposition 10.3. Let q 2 V be a vector such that for some �xed B > 0, we have the a priori estimate

max

↵
|q · v0,↵| 6 B.(10.2)

�en, for any t > 0, we have

max

↵
|q · vt,↵| � B.(10.3)

�e strategy of proving Proposition 10.3 is as follows. Using the Chebyshev inequality, it su�ces to bound the moments
of the dot product q · vt,↵. To bound these moments, we de�ne the following pseudo-moment generating function for this
dot product for any vector ⌘ = (⌘i)Ni=1 as follows:

ft(⌘;q) = E�t

"
NY

i=1

1

(2⌘i � 1)!!

(q · vt,i)
2⌘i

#
,(10.4)

Here, the subscript �t in the expectation denotes an expectation conditioning on the eigenvalue process {�↵(t)}↵. We also
use the notation (n+ 1)!! = (n+ 1)(n� 1) . . . 1 for any odd integer n 2 Z, and use the convention (�1)! = 1.

�us, our goal will be to estimate this pseudo-MGF. To study this pseudo-MGF ft(⌘;q), we study it in context of a particle
random walk on the la�ice [[1, N ]] de�ned through a generator. �e construction and study of this p-particle random walk in
the context of eigenvector delocalization is given in more context and detail in the paper [6]. To describe this random walk,
we �rst de�ne its con�guration space ⌦p for a �xed p = O(1) independent of N :

⌦ = ⌦p :=

(
⌘ 2 ZN

>0 :

NX

i=1

⌘i = p

)
.(10.5)

In words, the space ⌦p is the space of all con�gurations of p particles on the la�ice [[1, N ]]. We now de�ne the random walk
process; to do so, we �rst give the following de�nition.

Notation 10.4. For any con�guration ⌘ 2 ⌦p and any two �xed sites i 6= j 2 [[1, N ]], we de�ne ⌘ij 2 ⌦p as the con�guration
obtained by

⌘ijk =

8
>>>>>>>>><

>>>>>>>>>:

⌘k k 6= i, j

⌘i � 1 k = i, ⌘(i) 6= 0

⌘i k = i, ⌘(i) = 0

⌘j + 1 k = j, ⌘(i) 6= 0

⌘j k = j, ⌘(i) = 0

.(10.6)
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In words, the con�guration ⌘ij is the con�guration obtained from the con�guration ⌘ by moving one particle at site i to
site j; if, in the con�guration, the site i is void of any particles, then ⌘ij = ⌘, i.e. the con�guration ⌘ is unchanged. �is
de�nition now allows us to de�ne a continuous-time p-particle jump process on [[1, N ]] through the following generator:

Lt(f) =

X

i 6=j

dij(t)2⌘i(1 + 2⌘j)
⇥
f(⌘ij)� f(⌘)

⇤
,(10.7)

where the weight dij(t)2⌘i(1 + 2⌘j) determines the particle jump rate. In our situation, we are interested in the weights

dij(t) =

�i(t) + �j(t)

N(�i(t)� �j(t))2
.(10.8)

Here, the eigenvalues �i(t),�j(t) are the eigenvalues of the time-evolved covariance matrix X⇤(t). With these weights, we
now give the corresponding Kolmogorov forward equation:

@tft(⌘) = Ltft(⌘).(10.9)

�is ODE is well-posed because ⌦ is �nite. Moreover, its solution for some initial condition f0 is given by the pseudo-MGF
ft(⌘;q) so long as the spectrum of the initial data X(0) is simple. A proof of this is given by a direct calculation using the
following SDE for the eigenvector dynamics:

dvt,↵ =

1p
N

X

� 6=↵

p
�↵ + ��

�↵ � ��
vt,�dB

(s)
↵� � 1

2N

X

� 6=↵

�↵ + ��

(�↵ � ��)
2
vt,↵dt.(10.10)

For details on this SDE, see [6].
We now exploit study the generator Lt of this p-particle random walk by exploiting its contraction property on any `r(⌦)

space. �is follows from an application of the Duhamel formula and semigroup theory.

F����� 10. We illustrate the particle random walk on the la�ice with N = 5 and p = 4. �e LHS corre-
sponds to a con�guration vector ⌘ = (0, 2, 0, 1, 1, 0) and the RHS corresponds to a con�guration vector
⌘ = (0, 1, 1, 1, 1, 0). �e RHS is obtained from the LHS by a particle transition from site 1 to site 2 on the
la�ice.

10.1. Proof of Proposition 10.3. Before we begin the proof, we �rst note the following argument resembles that of delo-
calization in [3].

Now suppose �rst that the spectrum ofX(0) is simple, in which case the pseudo-MGF ft(⌘;q) solves the forward equation
(10.9). Because Lt is a contraction on `1, we see

kftk`1(⌦p) 6 kf0k`1(⌦p) 6 B2p,(10.11)

where for the second inequality, we used delocalization for the initial data and the assumption ⌘ 2 ⌦p to obtain k⌘k`1(Z) = p.
�us, for any eigenvector index i 2 [[1, N ]], we pick the con�guration ⌘(i) whose components are given by ⌘j = p�ij , i.e.
all p particles are at site i, which gives us

ft(⌘(i)) =

1

(2p� 1)!!

E (q · vi,t) 6 B2p.(10.12)

Using the Chebyshev inequality, we deduce Proposition 10.3 in the case that the spectrum ofX(0) is simple. In the case that
the spectrum ofX(0) is not simple, we note that the eigenvectors vi,t are uniformly continuous in the eigenvalues �i(t), and
thus a perturbation in the spectrum of X(0) reduces the problem to the calculation for the case of X(0) retaining a simple
spectrum. �is completes the proof of delocalization.
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IV. Short Time Stability for Correlation Functions

11. P���������� D���������� ��� D���������

We now aim to prove bulk universality of n-point correlation functions. In the spirit of this thesis we restrict our a�ention
to %1 = %MP. We note there that our notation %1 = %MP suppresses the dependence of the ratio ↵ = M/N .

We now recall the main theorem, which states that for any energy E in the bulk Ilinear,", the averaged bulk eigenvalue
correlation statistics of the random matrix ensembles X (0) and X (N�1�⇣D1/2

) agree for a �xed ⇣ > 0. Here, we de�ne
the bulk of %MP to be those energies E a �xed distance from the edges. More precisely, we recall the bulk is de�ned as

IMP," =

⇥
", (1� ")(1 +

p
�)2
⇤
.(11.1)

Here, " > 0 is a �xed (small) constant as in the de�nition of the domains U" and U",� . We also recall the de�nition � := ↵�1.
Similarly, we recall the bulk of the linearization to be

Ilinear," = ±
p

IMP," = ±
⇥p

",
p
1� "(1 +

p
�)
⇤
.(11.2)

Here, the sign denotes a re�ection of the bulk about the origin.

F����� 11. �e �gure on the LHS is the bulk of the semicircle law, which is the linearization of the
Marchenko-Pastur law for � = 1. Note here the �gure includes a neighborhood of the origin, whereas
in our ensemble we exclude this neighborhood from the bulk of the linearization. �e �gure on the RHS is
the positive part of the bulk of the linearized Marchenko-Pastur law for � = 0.75.

12. P���������� E��������

We �rst record two important estimates that are almost immediate consequences of the short-time stability of the Stieltjes
transform and the eigenvector delocalization. �ese estimates control Green’s functions of perturbations of the linearizations.

Lemma 12.1. Fix a positive integer n > 0. For any spectral parameter z = E + i⌘ 62 R with |E| > " for a �xed " > 0, and a
short time t 6 D�1/4, we have

sup

✓2[0,1]n
sup

Y 2X n
�

⇣
z;X(t) + d�1/2✓ · Y

⌘
� 1 +

1

N⌘
.(12.1)

Here, the function �(z;H) denotes the entry-wise maximum of the Green’s function G(z;H) = (H � z)�1 of the matrix H as
used before. Here, we allow either d = db or d = dw , without a change to the estimate.

Proof. Before we proceed with any calculations, we reduce the problem to the following three assumptions.
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• First, by the following relation which holds for any real matrix H :

G(z;H) = G(z;H)(12.2)

where the RHS is the entry-wise complex-conjugate of the Green’s function G(z;H), we may assume ⌘ > 0.
• Second, we may assume |E| � 1 by the O(1) bound on eigenvalues of biregular graphs established in Chapter I and
the perturbation inequality for eigenvalues:

�(V �W ) 6 kV �Wk1,

where V,W are real symmetric matrices. Similarly, we may assume ⌘ � 1. �us, we may assume |z| ⇣ 1.
• Lastly, by the same bootstrapping method used in the proof of the local law in Chapter I of this thesis, we may work
in the regime ⌘ � N�1.

Proceeding with the derivation of (12.1), we �rst compute the following spatial derivatives of G(z;X⇤(t)):

@X1...Xn G = (�1)

n
X

�2Sn

GX�(1)G . . .X�(n)G.(12.3)

Here, Sn denotes the permutation group of n le�ers. �is may be derived via the resolvent identity in Chapter I. We give the
calculation for n = 1 to illustrate the idea, from which one may di�erentiate inductively:

(X(t) + ✓ · Y � z)�1 � (X(t)� z)�1
= (X(t) + ✓ · Y � z)�1

(✓ · Y ) (X(t)� z)�1 .(12.4)

We note this identity holds because all matrices are in Me. Dividing by ✓ and le�ing ✓ ! 0 concludes the derivation. With
this, we write down the following Taylor estimate:

���Gij(z;X(t) + d�1/2✓ · Y )

��� 6 |Gij(z;X(t))|+ sup

✓2[0,1]n
sup

X2X n
|rXG · ✓|

� |z|
✓
1 +

1

N⌘

◆
+On

✓
sup

X2X
@XG

◆
.(12.5)

To bound the error term above, we give the following estimate:

(GY G)ij =

X

k,`

GikYk`G`j 6 O (�(z;X⇤(t)))
2 � |z|2

✓
1 +

1

N⌘

◆2

� 1 +

1

N⌘
+

1

(N⌘)2
.(12.6)

We note the implied constant in the big-Oh term may be chosen independent of i, j as any matrixX 2 X has �nitely many
non-zero terms, which are all bounded. Given the assumption ⌘ � N�1, we know

1

(N⌘)2
� 1

N⌘
.(12.7)

Because |z| ⇣ 1, we also know |z|2 = O(|z|). With this, we see
���Gij(z;X(t) + d�1/2✓ · Y )

��� � 1 +

1

N⌘
+ 1 +

1

N⌘
+

1

(N⌘)2
� |z|

✓
1 +

1

N⌘

◆
,(12.8)

which completes the derivation of (12.1). ⇤

Before we proceed with the proof of �eorem 4.4, we record the following consequences, which give the same Green’s
function estimate (12.1) for covariance matrices. Before we do so we introduce the following notation that will only be used
in stating the consequences of Lemma 12.1.

Notation 12.2. Suppose X(t) = (H(t), H(t)⇤), so that X⇤(t) = H(t)⇤H(t). We establish the following notation for the
perturbed covariance matrices: for ✓ 2 [0, 1]n and Y 2 X n, we de�ne

X⇤(t; ✓, Y ) :=

⇣
H(t) + d�1/2✓ · Y

⌘⇤ ⇣
H(t) + d�1/2✓ · Y

⌘
,(12.9)

X⇤
(t; ✓, Y ) :=

⇣
H(t) + d�1/2✓ · Y

⌘⇣
H(t) + d�1/2✓ · Y

⌘⇤
.(12.10)
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We record the following consequence for possible future use as it will not be used in this thesis. �e proof of the corollary
follows immediately from Lemma 12.1, the spectral correspondence between the linearization X(t) and the corresponding
covariance matrices, and lastly the spectral representation of the Green’s function.

Corollary 12.3. Assuming the se�ing of Lemma 12.1, the estimate (12.1) holds upon replacingX(t)+d�1/2✓·Y withX⇤(t; ✓, X)

and X⇤
(t; ✓, X).

13. P���� �� T������ 4.4: C���������� F��������

We are now in a position to prove �eorem 4.4. To do so, we rely on the following result concerned with universality
of averaged correlation functions in the bulk. �e result is taken as Lemma 5.4 in Section 5 in [3]; for a proof, we refer to
�eorem 6.4 in [13].

�eorem 13.1. SupposeH1 andH2 are two random matrix ensembles of equal dimensionN , and denote their Green’s functions
by G1(z) and G2(z), respectively.

Fix a positive integer n > 0, and �x a sequence of positive integers k1, . . . , kn. Fix a (small) constant � > 0. For a scale
⌘ 2 [N�1�� , N�1

], we �x a sequence of complex numbers zmj = Em
j ± i⌘ for j 2 [[1, km]] andm 2 [[1, n]]. Here, we stipulate

the energies Em
j 2 Ilinear," are in the bulk of the Marchenko-Pastur law. Moreover, the signs in the imaginary part of zmj are

arbitrary.
Let' 2 C1

c (Rn
) be a smooth functionwith compact support such that for anymulti-index ⌫ = (⌫1, . . . , ⌫n)with 1 6 |⌫| 6 4,

the following gradients estimates hold for any ! > 0 �xed and su�ciently small:

sup

x2[�N!,N! ]
|@⌫'(x)| 6 NO(!),(13.1)

sup

x2[�N2,N2]
|@⌫'(x)| 6 NO(1).(13.2)

Lastly, suppose the following estimate holds:
������
E'

0

@N�k1
Tr

0

@
k1Y

j=1

G1(z
1
j )

1

A , . . . , N�kn
Tr

0

@
knY

j=1

G1(z
n
j )

1

A

1

A � E'(G1 ! G2)

������
= O

⇣
N��/2+O(�)

⌘
,(13.3)

where the notation G1 ! G2 denotes switching all terms depending on G1 to the corresponding terms depending on G2, and the
implicit constant is allowed to depend on all data in the statement of this theorem except the dimension N . �en, the averaged
bulk eigenvalue correlation statistics of H1 and H2 agree in the sense of De�nition 4.1.

In particular, to prove�eorem 4.4, it will su�ce to show that the estimate (13.3) holds in our matrix ensembles X (0) and
X (t) for short times; this is the content of the following proposition.

Proposition 13.2. Fix a small constant ⇣ > 0, and suppose t 2 [0, N�1�⇣D1/2
]. Assuming the se�ing of�eorem 13.1 up until

the gradient estimates (13.1) and (13.2) with the following random matrix ensembles of linearized covariance matrices:

H1 = X (0), H2 = X (t).(13.4)

�en the estimate (13.3) holds.

Before we prove Proposition 13.2 in detail, we give an outline of the argument. Because the Green’s functionsG(z;X⇤(t))

and G(z;X⇤(0)) are functions of the linearizations X(0) and X(t), we may compare the expectation terms in (13.3) with
the short-time stability estimate on the generator L of the matrix-valued di�usion. �is is where the restriction on the time
interval t 2 [0, N�1�⇣D1/2

] comes from.
To implement the short-time stability in�eorem 5.2, we will need to control the derivatives of the expectation term with

respect to the switching matrices ⇠mn
ij 2 X . To do so, we will appeal to the derivative formula (12.3) as well as the estimates

obtained in Lemma 12.1. �e remainder of the proof will then follow directly from straightforward calculations.
69



Proof. We begin by de�ning the following function:

F (X(t)) = '

0

@N�k1
Tr

0

@
k1Y

j=1

G1(z
1
j )

1

A , . . . , N�kn
Tr

0

@
knY

j=1

G1(z
n
j )

1

A

1

A .(13.5)

�is will be treated as a function of X(t) for times t = 0 and another time t 6 N�1�⇣D1/2. By �eorem 5.2 we have the
following short-time stability for the expectation of F (X(t)):

EF (X(t))� EF (X(0)) = O

 
D�1/2N1+⇣

max

16i64

tw

0

k@iFkr,s ds
!
.(13.6)

�us, it will su�ce to prove the following gradient estimate on the function F for times t 6 N�1�⇣D1/2:

max

16i64
k@iFkr,s = O

⇣
N ⇣/2+O(�)

⌘
(13.7)

and then choose ⇣,� > 0 su�ciently small. For simplicity and clarity of presentation, we will focus on the case n = 1 and
k1 = 1; the argument for general n > 0 follows similarly.

We now di�erentiate the function F (X) from de�nition. In what follows, the Green’s function G(z) will denote the
Green’s function of a perturbed linearized covariance matrix as in Lemma 12.1. In particular, by the chain-rule we have

@X1...XiF
⇣
X(t) + d�1/2✓ ·X

⌘
= @X1...Xi'

✓
1

N
TrG(z)

◆
(13.8)

= @X2...Xi


@X1'

✓
1

N
TrG(z)

◆
⇥ 1

N
Tr (@X1G)

�
(13.9)

= Oi

✓
max

16k6i
|'(k)|⇥ 1

N
max

16k6i

���Tr
⇣
@Xj1 ...Xjk

G(z)
⌘���
◆
.(13.10)

Here, (13.10) follows from a repeated application of the Leibniz rule and chain rule for di�erentiating along switchingmatrices
Xj 2 X . We now use the a priori gradient estimate (13.1) to bound the �rst term inside the big-Oh term in (13.10) to deduce

@X1...XiF
⇣
(X(t) + d�1/2✓ ·X

⌘
= Oi

✓
NO(!)

N
max

16k6i

���Tr
⇣
@Xj1 ...Xjk

G(z;X(t) + d�1/2✓ ·X)

⌘���
◆
.(13.11)

We now bound the trace term appealing back to the di�erentiation identity (12.3) which we rewrite as follows:

@X1...XiG = (�1)

i
X

�2Si

GX�(1)G . . .X�(i)G.(13.12)

Because i 2 [[1, 4]] and eachXj has at most O(1) non-vanishing entries, we deduce the following straightforward gradient-
trace bound, which will help us control the gradient bound (13.10):

1

N
Tr (@X1...XiG) = O

0

@ 1

N

NX

j=1

i!


max

�2Si

��GX�(1) . . . X�(i)G
��
�

jj

1

A(13.13)

= Oi

⇣
�

Oi(1)
⌘
.(13.14)

Combining this estimate with the bounds on perturbed Green’s functions (12.1) in Lemma 12.1, we deduce the following
bound

@X1...XiF
⇣
X(t) + d�1/2✓ ·X

⌘
= Oi

 ✓
1 +

1

N⌘

◆O(1)
!

� O
⇣
NO(�)

⌘
,(13.15)

where we used the assumption ⌘ 2 [N�1�� , 1] in the last big-Oh estimate. We note this bound holds only with high-
probability as the inequality (12.1) in Lemma 12.1 is a stochastic inequality. For the low-probability complement event, we
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will go back to the preliminary estimate (13.10) and apply straightforward bounds as follows, instead using (13.2) as opposed
to (13.1):

@X1...XiF
⇣
X(t) + d�1/2✓ ·X

⌘
= Oi

✓
max

16k6i
|'(k)|⇥ 1

N
max

16k6i

���Tr
⇣
@Xj1 ...Xjk

G(z)
⌘���
◆

(13.16)

= Oi

⇣
NO(1)⌘�C

⌘
(13.17)

= Oi

⇣
NO(1)

⌘
,(13.18)

where C = O(1) is a positive constant. �us in taking an expectation in the de�nition of the k � kr,s norm, we have

k@iFkr,t = O
⇣
N ⇣+O(�)N�⇣/r+O(1)

⌘
= O

⇣
N ⇣/2+O(�)

⌘
(13.19)

upon taking the exponent r > 0 suitably small. Here, we drop the subscript i from the big-Oh term because i 2 [[1, 4]] is
drawn from a set of size O(1). �is completes the proof of Proposition 13.2 and thus the proof of �eorem 4.4. ⇤
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Chapter III: Convergence of Local Statistics for Dyson’s
Brownian Motion for Covariance Matrices
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I. Bulk Universality for Deformed Linearized Covariance Matrices

1. A G������ U���������M����

As alluded to in the introduction, this chapter focuses on comparing eigenvalue statistics a�er short-time evolution to
the equilibrium statistics. As in Chapter II of this thesis, we begin by constructing a Brownian motion on the Hilbert space
M = MM⇥N (R) ofM ⇥N matrices with real entries. We denote this Brownian motion by B(t).

Remark 1.1. Again, we will assume the following limit of ratios converges:

lim

N!1

M

N
> 1,(1.1)

and for all M,N the corresponding ratios exhibit the lower bound M/N > 1. �is is a technical assumption and is not
necessary, but places the following discussion in the context of Chapter I and Chapter II.

In contrast to Chapter II, we de�ne the following normalized matrix-valued Brownian motion H(t) as opposed to the
Ornstein-Uhlenbeck process:

dH(t) =

1p
N

dB(t), H(0) = H.(1.2)

We now de�ne the following matrix space of linearized covariance matrices:

M` :=

(
X =

 
0 H⇤

H 0

!
, H 2 M

)
.(1.3)

In words, the space M` is the space of real symmetric matrices whose diagonal blocks trivially vanish and whose o�-diagonal
blocks are parameterized by the space M . �is allows us to de�ne X(t) through the following SDE driven by the Brownian
motion B(t):

dX(t) =

 
0 dH(t)

dH(t)⇤ 0

!
, X(0) = X =

 
0 H(0)

H(0)

⇤
0

!
,(1.4)

where the matrix di�usion dH(t), with initial condition H(0), is given by (1.2). We note that the matrix X(t) may be
parameterized via the following Gaussian perturbation of the initial data:

X(t) = X(0) +

p
t

 
0 W

W ⇤
0

!
=: X +

p
tW`,(1.5)

where W is a random matrix whose entries are i.i.d. centered Gaussian random variables with variance 1/N . In particular,
under the notation established in Chapter II of this thesis, we have W` = (W,W ⇤

).
We now address the initial data H(0) and X(0) and de�ne a notion of regularity. First, for notational simplicity and

consistency with [17] which studies the DBM statistics for Wigner matrices, we let V = H(0) denote the initial data. We
begin with the following assumption on V .
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Assumption 1.2. �e initial data V isM ⇥N diagonal, i.e. V has the following form:

V =

0

BBBBBBBBBBBB@

V1 0 0 . . .

0 V2 0 . . .
...

...
. . .

...
0 0 . . . VN

0 0 . . . 0

. . . . . . . . . . . .

0 0 . . . 0

1

CCCCCCCCCCCCA

.(1.6)

�e representation V may be a�ained from a (time-dependent) singular value decomposition. Indeed, the trace inner
product on MM⇥N (R) is invariant under the SVD, and thus so is the Brownian motion B(t).

Remark 1.3. �e main result of this chapter will be deterministic in V , which allows us to take an SVD of the initial data in
the overall goal of universality for linearized covariance matrix ensembles.

We now introduce the pair of parameters (gN , GN ) = (g,G) satisfying the following bounds for some �xed "1 > 0:
1

N
6 g 6 N�"1 , N"1` 6 G 6 G"1(N),(1.7)

where we take either G"1(N) = N�"1 or G"1(N) ⇣ 1.
For a real number E0 we de�ne the following interval, or energy window,

IE0,G = (E0 ±G).(1.8)

Lastly, we de�ne the following pseudo-Stieltjes transform for the initial data V as a function of z = E + i⌘ 2 C+:

mV (E + i⌘) :=

1

N

NX

i=1

1

Vi � E � i⌘
.(1.9)

We now introduce the following notion of regularity which controls the spectrum and pseudo-Stieltjes transform of the initial
data at small scales in the energy window IE0,G.

De�nition 1.4. �e initial potential V is (g,G)-regular at E0 if the following pseudo-Stieltjes transform bounds hold uni-
formly over z = E + i⌘ with E 2 IE0,G and ⌘ 2 [g, 10]:

cV 6 ImmV (E + i⌘) 6 CV(1.10)

for some N -independent constants CV , cV > 0. Moreover, we require the following spectral bounds:

• For some N -independent constant BV > 0, we have

kV k1 6 NBV ,(1.11)

where the norm k · k1 is the operator or spectral norm.
• If M > N , we require, in addition for some N -independent constant " > 0, the following lower bound:

inf

i2[[1,N ]]
|Vi| > " > 0.(1.12)

In words, regularity of V amounts to regularity of the spectral data of V through its pseudo-Stieltjes transform in a window
around a �xed energyE0, for suitable scales ⌘. �e `1-estimate serves to control the growth of V in the largeN limit. Lastly,
the lower bound on the singular values in the regime M > N serves to regularize otherwise singular dynamics that we will
de�ne shortly. We note that for a large class of random matrix ensembles satisfying a local law, the uniform lower bound on
the spectrum of V is also satis�ed, and is thus a reasonable constraint to impose.

Lastly, we introduce the following a priori delocalization estimate from Chapter II on the eigenvectors of the solutionX(t)

to the SDE (1.4). For su�ciently regular initial data V , as discussed in Chapter II, the result holds. In the context of this thesis,
this includes, with high probability, initial data coming from biregular bipartite graphs.
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A Priori Estimate 1.5. Suppose X(t) solves the SDE (1.4) with H(0) = V . �en the eigenvectors of X(t) are delocalized with
high probability, i.e. for any growth parameter ⇠ satisfying ⇠ log ⇠ � log

2 N and time t > 0, we have

P
 

sup

�(t)2�(X(t))
sup

i>M

��u�(t)(i)
�� > ⇠p

N

!
6 e�

⇠2

2 ,(1.13)

where we let u�(t) denote the `2-normalized eigenvector ofX(t) corresponding to the eigenvalue �(t). Moreover, ifM = N , then
the constraint i > M on the index may be removed.

We brie�y remark that although we will use this a priori bound, extending the existing methods in this thesis, coupled
with ideas from [18], we may remove this technical assumption. For simplicity, however, we assume it. �is will be remarked
on with more detail later.

Instead of restricting our initial data to bipartite graphs, as is the subject of this thesis, we work with a much wider class
of (g,G)-regular initial data V . By the local laws established in Chapter I of this thesis, the initial data coming from bipartite
graphs is (g,G)-regular with high probability in a sense de�ned in Chapter I.

Lastly, we de�ne the following sets of allowable times. For !, � > 0 to be determined, de�ne

T�,! :=

�
t : `N! 6 t 6 `N!+�

 
,(1.14)

T! :=

�
t : `N! 6 t 6 GN�!

 
.(1.15)

2. T�� L���������M���������P����� L��, T�� S��������� L��, ��� T�� D������� L��

We review the semicircle law, which describes the limiting spectral distribution of Wigner matrices:

%sc(E)dE = 1|E|62

p
4� E2

2⇡
dE.(2.1)

In particular, the semicircle law describes the eigenvalue statistics of the GOE ensemble, which we recall here.

De�nition 2.1. �e Gaussian Orthogonal Ensemble, or GOE for short, is the following probability density on the space of
N ⇥N -real symmetric matrices with respect to �at Lebesgue measure:

1

ZGOE,N
exp

✓
�N

4

TrH2

◆
dH, dH =

Y

i6j

dHij .(2.2)

We also review the linearized Marchenko-Pastur law describing spectral statistics of linearized covariance matrices:

%(E) =

8
<

:

�
(1+�)⇡|E|

p
(�+ � E2

)(E2 � ��) E2 2 [��,�+]

0 E2 62 [��,�+]

.(2.3)

Aswill soon bemade precise, while themacroscopic statistics of linearized covariancematrices follow the linearizedMarchenko-
Pastur law discussed in Chapter I of this thesis, the microscopic statistics follow the classical GOE statistics, which has been
historically tied to Wigner matrices and generalized Wigner matrices; for a reference, see [2], [3], [11], [13], [17], and [16].

While the macroscopic eigenvalue statistics of linearized covariance matrices follow the linearized Marchenko-Pastur law
given by the density %, the Gaussian perturbation follows a slightly perturbed statistics. We follow the ideas of [17] and [18]
and introduce the following interpolation of the spectra of X and

p
tW` to address the perturbation in eigenvalue statistics.

De�nition 2.2. �e free convolution measure of the Gaussian perturbationX+

p
tW` is the probability measure correspond-

ing to the Stieltjes transform mfc,t : C+ ! C+, given by the unique solution to the following �xed-point equation:

mfc,t(z) =

1

2N

NX

i=1

✓
1

Vi � z � tmfc,t(z)
+

1

�Vi � z � tmfc,t(z)

◆
, z 2 C+.(2.4)

Here, we take for granted existence and uniqueness of solutions to the above �xed-point equation. We also take for granted
the following properties of the solution. For a reference on the free convolution, we cite [5].

• �e free convolution measure has a density %fc,t absolutely continuous with respect to Lebesgue measure on R.
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• �e density %fc,t is compactly supported and analytic on the interior of its support.

We brie�y remark that the free convolution density %fc,t and Stieltjes transformmfc,t depend on the matrix parameterN ; this
will continue to be suppressed from the notation for convenience, but we note that if we takeN ! 1, the above qualitative
properties of free convolution become rough.

To each law %, %fc and %sc, we introduce the classical locations �i, �i,t, and µi with the following quantile formulas:

i

N
=

�iw

�1
%(E) dE =

�i,tw

�1
%fc,t(E) dE =

µiw

�1
%sc(E) dE.(2.5)

In words, the classical locations give, heuristically, a rough expectation for the eigenvalue locations for the corresponding
matrix ensemble. �ese will be necessary in both stating and deriving the universality of eigenvalue statistics.

3. B��� U����������� �� E��������� S���������

We now introduce the two main results in this chapter. �e �rst concerns eigenvalue gap statistics, comparing the gap
statistics between adjacent eigenvalues for the perturbed matrix X(t) = X +

p
tW` to the statistics for the GOE ensemble.

�eorem 3.1. Suppose X(t) = X +

p
tW`, and assume X = (V, V ⇤

), where V is (g,G)-regular at E0. Suppose t 2 T�,!

for su�ciently small !, � > 0. �en, for any O 2 C1
c (Rn

) and index i such that �i,t 2 IE0,G/2, we have, for any indices
i1, . . . , in 6 N c! ,

EX(t)
[O (N%fc,t(�i,t)(�i � �i+i1), . . . , N%fc,t(�i,t)(�i � �i+in))]

� EGOE
[O (N%sc(µi)(�i � �i+i1), . . . , N%sc(µi)(�i � �i+in))] 6 N�c!(3.1)

for some universal constant c! > 0.

We note that�eorem 3.1 gives a rough rate of decay explicitly in the gap statistics. We also remark the universality of the
constant c! follows from the spectral bound on the initial data V and depends on at most the C1-norm of the test function
O. �ese dependencies will follow from the proof of �eorem 3.1.

From �eorem 3.1, we may obtain the second result of this chapter giving bulk universality of averaged correlation func-
tions for perturbed matricesX(t), which will avoid giving an explicit rate of decay and will instead pass to the limitN ! 1.
To state this result, recall the n-point correlation function of a matrix ensemble from Chapter II of this thesis.

�eorem 3.2. Assume the se�ing of �eorem 3.1, and for any �xed c < !/2 ^ �/2, de�ne the parameter b = N c/N . �en for
any O 2 C1

c (Rn
), we have for any E00 in the interior of the support of %:

E0+bw

E0�b

dE0

2b

w

Rn

O(↵1, . . . ,↵n)

2

64
1

(%fc,t(E0))
n
%(n)t

✓
E0

+

↵1

N%fc,t(E0)
, . . . , E0

+

↵n

N%fc,t(E0)

◆
�

0

B@
%fc,t ! %sc

E0 ! E00

%(n)t ! %(n)GOE

1

CA

3

75 dn~↵ !N!1 0,(3.2)

where the vector notation denotes the same term but with replacements, e.g. replacing %fc,t with %sc.

�e method for deriving the universality of correlation functions from the gap universality may be found in [11] and [17].
We brie�y remark here that the core tool is the Hel�er-Sjostrand functional calculus, and the fundamental estimate is a strong
local law comparing local eigenvalue statistics of the GOE andX(t), respectively; we derive the appropriate strong local law
later in this chapter.

Before we proceed with an outline of the proof of �eorem 3.1, we brie�y remark on the results themselves in �eorem
3.1 and�eorem 3.2. �eorem 3.2 is an extension of previously known results, i.e. those in [11] and [22]. In those two papers,
much stronger a priori estimates were required for the initial data V in order to prove the universality of averaged correlation
functions. �e methods used in [11] to prove such universality involved studying the entropy and time to local ergodicity
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motivated by methods for the Wigner ensemble, in contrast to �rst proving gap universality as in this thesis. �eorem
3.1, however, is a new result in the theory of covariance matrix ensembles, as far as the author is aware. As suggested
by the methods and results in this chapter, the reason for this is because previous works, i.e. [1], [21], and [22] studied
covariance matrices rather than their linearizations whose eigenvalue dynamics contain only constant coe�cient di�usion
terms. Moreover, the results in �eorem 3.1 and 3.2 helps provide a bridge between the local eigenvalue statistics of a vast
family of covariance matrix ensembles and Wigner matrix ensembles, helping shape the macroscopic picture of the WDGM
universality conjecture discussed in the introduction of this thesis.

3.1. Outline of �eorem 3.1. We now provide an outline of the proof of �eorem 3.1. We appeal to the ideas from uni-
versality of gap statistics for Wigner matrices, �rst deriving the explicit eigenvalue dynamics known as Dyson’s Brownian
Motion, or DBM for short, along the matrix-valued SDE (1.4) as �rst performed in [9]. �e derivation will resemble that of
the Wigner �ow, but with modi�cations to account for the inherently di�erent algebraic structure of linearized covariance
matrices. In particular, the SDEs de�ning the eigenvalue dynamics include logarithmic interaction terms as well. We note
this step di�ers from the approach in Chapter II in studying the DBM.

Next, we appeal to the short-range approximation scheme for DBM in [16] and [17]. �is approximation scheme provides
a sub-microscopic error a�er accounting for only the interaction terms from nearby eigenvalues. In [17], this is done with
level repulsion, a phenomenon currently unknown for eigenvalues of (linearized) covariance matrices. On the other hand,
[16] provides the approximation using only a rigidity estimate established in [17], which provides a priori control on the
location of eigenvalues up to their average �uctuation with high probability. We will establish the rigidity estimate following
the ideas of [17] by deriving a strong local law.

Lastly, accounting for only interaction terms on a microscopic scale allows us to approximate the DBM with a Wigner
�ow, i.e. the eigenvalue dynamics established in [9]. Following the ideas of [17], this allows us to directly compare the DBM
for linearized covariance matrices and the GOE �ow. From this, we may deduce�eorem 3.1.

4. A����������� �� R�����M����� E��������

We now aim to apply�eorem 3.2 to the matrix ensemble of bipartite graphs. By the main result in Chapter I of this thesis,
we deduce that with high probability the adjacency matrix of a bipartite graph is (g,G)-regular. To be precise, we let⌅ denote
an event holding with high probability on which the adjacency matrix is regular. Because�eorem 3.2 is deterministic in the
initial data we deduce that on ⌅, the averaged local correlation functions of the bipartite graph, a�er evolving under the DBM
for time t = N�1+", coincide with those of the GOE. Meanwhile, by the bound P⌅C 6 N�D for allD > 0, the contribution
from the expectation term in�eorem 3.2 on the complement event ⌅C is negligible in the limit asN ! 1. We thus deduce
that, a�er time t = N�1+", the averaged local correlation functions of bipartite graphs and the GOE coincide. �us by the
results in Chapter II, this completes the proof of universality for averaged bulk local correlation functions for bipartite graphs.

We conclude this introduction by applying�eorem 3.1 and�eorem 3.2 to other covariance matrix ensembles of interest.
Applying �eorem 3.2 in the following manners still leaves incomplete answers to important questions, but we provide the
following outline to give a broad picture of the universality problem for covariance matrices.

• Concerning the ensemble of sparse covariance matrices as studied in [1], by �eorem 3.2, to prove universality of
local correlation functions it su�ces to show short-time stability of eigenvalue statistics. To this end, the arguments
in [15] applied to linearized covariance matrices should su�ce in proving the desired short-time stability.

• Concerning the strongly regular initial data in [22], by �eorem 3.1, to show universality of eigenvalue gaps for
the corresponding linearization matrices it now su�ces to show short-time stability of gap statistics. �is seems to
require an optimal level repulsion estimate for linearized covariance matrices, which unfortunately seems to be out
of reach for now. We remark on this later in this chapter.
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II. A Brownian Motion Model for Linearized Covariance Matrices

5. T�� S��������� D����������� E������

We begin by reviewing the following matrix-valued SDEs in the underlying model:

dH(t) =
1p
N

dB(t), H(0) = H,(5.1)

dX(t) =

 
0 dH(t)

dH(t)⇤ 0

!
, X(0) = X =

 
0 H(0)

H(0)⇤ 0

!
.(5.2)

As in the breakthrough paper [9], our goal is now to compute the associated eigenvalue dynamics of the SDE (5.2). To
derive these dynamics systematically, we introduce the following spectral set which captures the trivial eigenvalues of the
time-parameterized family of matrices X(t):

⇣t(X) :=
�
�(t) 2 �(X(t)) : �2(t) 62 �(H(t)⇤H(t))

 
.(5.3)

We now describe the spectral set ⇣t(X) in words. If M > N , for any eigenvalue �2 2 �(H(t)⇤H(t)), we obtain a pair of
eigenvalues ±� 2 �(X(t)) in the spectrum of the linearization X(t). �e trivial eigenvalues consist of those eigenvalues
� 2 �(X(t)) not obtained from this spectral procedure. �is is the set of eigenvalues ⇣t(X). As discussed in Chapter I, we
deduce any �(t) 2 ⇣t(X) is equal to 0, and ⇣t(X) is empty exactly when M = N .

Remark 5.1. We brie�y remark here why we de�ne the set ⇣t(X), as the eigenvalues in this set are trivially 0. In particular, the
corresponding eigenvalue dynamics of the matrix-valued SDE (5.2) will involve terms depending on the repulsion between
eigenvalues, including repulsion between eigenvalues both contained in and not contained in the set ⇣t(X). �us, we will
want to interpret the trivial eigenvalues as honest eigenvalues and not �xed real numbers.

We now introduce an important assumption on which regularization of the eigenvalue dynamics heavily depends. �e
assumption takes form of an a priori estimate on the repulsion of nontrivial eigenvalues from 0 and resembles the notion of
regularity for our initial potential V .

Assumption 5.2. IfM > N , then for any �xed time scale T 2 T�,! and t 2 [0, T ]

inf
�↵ 62⇣(X)

|�↵| > " > 0,(5.4)

where we assume " > 0 is independent of M,N .

We note that Assumption 5.2 with time scale T follows with high probability if the following hold:

• Assumption 5.2 holds with time scale T = 0.
• �e time scale T satis�es T = oN!1(0).

�is is an immediate consequence of the perturbation inequality for any real symmetric matrices A,B:

sup
�2�(A�B)

|�| 6 kA�Bk1(5.5)

where the norm on the RHS is the operator norm. Indeed, we parameterize solutions to (5.2) as follows for time t > 0:

X(t) =

 
0 H +

p
tW

H⇤ +
p
tW ⇤ 0

!
,(5.6)

where W 2 M is sampled from the standard Gaussian measure on M . Le�ing A = X and B = X(t), coupled with the
high-probability estimate on the operator norm kWk1 from the high-probability estimate on centered Gaussian random
variables, this gives su�ciency of the conditions on the initial data and the time scale.
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We may now introduce the corresponding eigenvalue dynamics. To this end we de�ne the following simplex:

�M+N := {(x1, . . . , xM+N ) : x1 < x2 < . . . < xM+N} .(5.7)

�e eigenvalue dynamics will live on the simplex �M+N , with the following deterministic equation for � 2 ⇣t(X):

d�(t) = 0, �(0) = 0.(5.8)

�e SDEs for nontrivial eigenvalues are given as the main result in the following theorem.

�eorem 5.3. Suppose X(t) solves the SDE in (5.2). Let {�↵(t)}↵ denote the eigenvalues of X(t) realized as correlated paths
on the simplex �M+N . Moreover, we assume N � 1 is su�ciently large so that the following equations are nonsingular.

(1) IfM = N , then the eigenvalues {�↵(t)}↵ solve the following system of SDEs, known as Dyson’s Brownian Motion:

d�↵(t) =
1p
N

dB↵(t) +
1

2N

X

� 6=±↵

1

�↵ � ��
dt,(5.9)

where {B↵(t)}↵ denote independent standard one-dimensional Brownianmotions with the constraintB↵(t) = �B�↵(t).
Here, B�↵(t) denotes the Brownian motion driving the process de�ning ��↵(t).

(2) Conditioning on Assumption 5.2, if M > N , then the eigenvalues {�↵(t)}↵ 62⇣t(X) solve the following system of SDEs:

d�↵(t) =
1p
N

dB↵(t) +
1

2N

0

@
(±↵)X

� 62⇣t(X)

1

�↵ � ��
+

M �N

�↵

1

A dt(5.10)

=
1p
N

dB↵(t) +
1

2N

0

@
(±↵)X

� 62⇣t(X)

1

�↵ � ��
+

X

�2⇣t(X)

1

�↵ � ��

1

A dt(5.11)

where (±↵) over the summation indicates an omission of terms � = ±↵. Again, the {B↵(t)}↵ are independent standard
one-dimensional Brownianmotions except for the constraintB↵(t) = �B�↵(t), where we retain the notation forB�↵(t).

Remark 5.4. �e regime M = N will be referred to as square DBM, and the regime M > N as rectangular DBM.

F����� 12. Simulation for the DBM equations driving positive eigenvalues for M = N = 7.

Before we derive the above systems of SDEs, we emphasize here that the eigenvalue SDEs are autonomous; outside possibly
the initial dataX0, the dynamics do not depend on the matrix entries. Moreover, the eigenvalue equations are decoupled from
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F����� 13. Simulation for the DBM equations driving positive eigenvalues for M > N and ↵ = 3.

the eigenvectors. �is autonomous behavior of the SDEs is an important ingredient in studying the relaxation properties and
ergodicity of the spectral dynamics.

We now provide a brief outline for the derivation of the square and rectangular DBMs; the derivation resembles that of
the DBM analog for Wigner matrices; see [2], for example. �e underlying computational tool will be the Ito formula. �is
reduces the problem of deriving the DBMs to computing derivatives of eigenvalues along the matrix entries given by the �rst-
and second-order perturbation formulas from quantum mechanics; we will give a derivation of these identities as well.

Upon applying the Ito formula, the dri� terms will follow from straightforward calculation with the eigenvectors and ma-
trix entries ofX(t). To study the martingale term, we will compute its generator and identify it as a (scaled) one-dimensional
Brownian motion with uniqueness results from semigroup theory.

We note, however, that the dri� term includes a singularity at collisions of eigenvalues with distinct indices. In particular,
a rigorous derivation of this identity includes an analysis of the collisions of distinct eigenvalues, when viewing eigenvalues
with distinct indices as distinct particles on the real line. We will not address this issue in full detail, instead citing a result
for covariance matrices and Assumption 5.2 coupled with global eigenvalue control for Gaussian matrices, which will imply
eigenvalue intersections occur with low probability.

�e Ornstein-Uhlenbeck Variant. We now brie�y discuss a slight variant of the matrix dynamics (5.1) and (5.2). In par-
ticular, instead of a classical Brownian motion, we consider the following matrix-valued Ornstein-Uhlenbeck (OU) equation:

dH(t) =
1p
N

dB(t) � 1

2
H(t)dt, H(0) = H.(5.12)

Similarly, we de�ne the Ornstein-Uhlenbeck equation on the space M` as follows:

dX(t) =

 
0 dH(t)

dH(t)⇤ 0

!
, X(0) = X =

 
0 H

H⇤ 0

!
.(5.13)

In particular, the equation (5.13) is the matrix-valued SDE studied in detail in Chapter II of this thesis. On the simplex�M+N ,
we may derive a similar system of SDEs driving the eigenvalue dynamics corresponding to (5.13). Before we state this result,
we brie�y remark on the qualitative similarities and di�erences when adding the dri� term in (5.12).
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�e presence of a dri� term in the SDE (5.13), in contrast to (5.2) is motivated by ideas in [11] in which the corresponding
eigenvalue dynamics follow Langevin dynamics with respect to a uniformly convex quadratic potential. Because the eigen-
value statistics of covariance matrices should coincide regardless of the distribution of independent matrix entries so long
as certain technical assumptions are satis�ed such as uniformly sub-exponential decay (see, for example, [1] and [22]), the
local eigenvalue statistics should coincide. �us, the inclusion of the dri� term in (5.13) should not change local eigenvalue
statistics, but we include this brief discussion for possible future use and for its own sake as well.

As for the corresponding eigenvalue SDEs for the equation (5.13), by the Ito formula one should expect only a change in
the dri� term. �is is, indeed, true, and we summarize the changes in the following theorem.

�eorem 5.5. Suppose X(t) solves the SDE in (5.13). Let {�↵(t)}↵ denote the eigenvalues of X(t) realized as correlated paths
on the simplex �M+N .

(1) IfM = N , then, the eigenvalues {�↵(t)}↵ solve the following system of SDEs:

d�↵(t) =
1p
N

dB↵(t) +

0

@ 1

2N

X

� 6=±↵

1

�↵ � ��
� �↵(t)

2

1

A dt,(5.14)

where {B↵(t)}↵ denote independent standard one-dimensional Brownianmotions with the constraintB↵(t) = �B�↵(t).
Here, B�↵(t) denotes the Brownian motion driving the process de�ning ��↵(t).

(2) Conditioning on Assumption 5.2, if M > N , then the eigenvalues {�↵(t)}↵ 62⇣t(X) solve the following system of SDEs:

d�↵(t) =
1p
N

dB↵(t) +

0

@ 1

2N

(±↵)X

� 62⇣t(X)

1

�↵ � ��
+

M �N

2N�↵
� �↵(t)

2

1

A dt(5.15)

=
1p
N

dB↵(t) +

0

@ 1

2N

(±↵)X

� 62⇣t(X)

1

�↵ � ��
+

1

2N

X

�2⇣t(X)

1

�↵ � ��
� �↵(t)

2

1

A dt(5.16)

where the notation for the superscript (±↵) over the summation indicates an omission of terms � with � = ±↵. Again, the
{B↵(t)}↵ denote independent standard one-dimensional Brownian motions except for the constraintB↵(t) = �B�↵(t),
where we retain the same notation for B�↵(t).

6. P����������� F������� ����������M��������

We now direct our focus towards computing the �rst- and second-order derivative formulas for the eigenvalues of X(t).
For our purposes, the matrix X(t) solves a matrix-valued SDE, but this will not contribute towards the derivative formulas.
Before we state the result, we introduce some notation.

Notation 6.1. Suppose±�↵ 62 ⇣(X) are an eigenvalue pair ofX , so in particular��↵ = ��↵. If v↵ denotes the eigenvector of
X corresponding to the eigenvalue �↵, then we let v�↵ denote the eigenvector of X corresponding to the eigenvalue ��↵.

As discussed in Chapter I of this thesis, we know

v�↵(i) =

8
<

:
v↵(i) i 6 M

�v↵(i) i > M
.(6.1)

We now give the eigenvalue formulas below, as well as the �rst-order derivative formulas for the eigenvectors (corresponding
to nontrivial eigenvalues, i.e. those not contained in ⇣(X)). �e eigenvector formulas are important in deriving the second-
order formulas for the eigenvalues.
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Lemma 6.2. Suppose X 2 M`, and let {�↵}↵ denote the eigenvalues of X . �e following formulas hold with high probability
in context of the DBM. Writing X = (Xij), we have, for �↵(t) 62 ⇣(X),

@Xij�↵ = v↵(i)v↵(j),(6.2)

@XijXk`�↵ =
X

� 6=±↵

v�(k)v↵(`) + v�(`)v↵(k)

�↵ � ��
[v�(i)v↵(j) + v�(j)v↵(i)] ,(6.3)

where the notation for the summation index denotes a sum over eigenvalues �� 6= ±�↵. Moreover, the corresponding eigenvectors
v↵ satisfy the following derivative formula:

@Xijv↵ =
X

� 6=±↵

v⇤
�

⇥
@XijX

⇤
v↵

�↵ � ��
v� .(6.4)

We reemphasize that the second-order formula for the eigenvalues and the �rst-order formula for the eigenvectors are
coupled. Moreover, in the regime M > N , these formula are well-posed in part because of Assumption 5.2, i.e. the terms in
the summation corresponding to �� 2 ⇣(X) do not introduce singularities into the derivatives.

Proof. We begin with the following eigenvalue-eigenvector equation:

Xv↵ = �↵v↵.(6.5)

We now di�erentiate both sides with respect to Xij and, using the dot notation for the derivative, we obtain

Ẋv↵ +Xv̇↵ = �̇↵v↵ + �↵v̇↵.(6.6)

From here, we may proceed in two di�erent fashions. First, we begin by pairing both sides with v↵ to derive one equation;
to derive another set of equations, we pair both sides with v� for all � 6= ±↵, obtaining the following system of equations:

v⇤
↵Ẋv↵ = �̇↵,(6.7)

v⇤
�Ẋv↵ + ��v

⇤
�v̇↵ = �↵v

⇤
�v̇↵.(6.8)

To derive the �rst equation, we di�erentiate the equation v⇤
↵v↵ = 1 to deduce v↵ is orthogonal to its derivative. We also

note the �rst equation gives us the �rst-order formula for the eigenvalue �↵ since Ẋ is the matrix whose entries are all 0,
except the (i, j) and (j, i) entries are both equal to 1.

We now look at the second equation (6.8), and deduce, for �↵ 6= ±�� ,

v⇤
�v̇↵ =

v⇤
�Ẋv↵

�↵ � ��
.(6.9)

We note the above expression holds for �↵ 6= ±�� as one can show the event �↵(t) = ��(t) does not hold for any t > 0

with high probability in the context of DBM; for a reference, we cite [2]. On the other hand, (6.1) implies

v⇤
�↵v̇↵ = 0.(6.10)

�us, we deduce by orthonormality of the eigenvectors,

v̇↵ =
X

� 6=±↵

v⇤
�Ẋv↵

�↵ � ��
v� .(6.11)

�is proves the �rst-order perturbation formula for the eigenvectors v̇↵. We use this formula to derive the second-order
formula for the eigenvalues by di�erentiating the �rst-order formula as follows:

�̈↵ = @Xk` [v↵(i)v↵(j)] = v̇↵(i)v↵(j) + v↵(i)v̇↵(j)(6.12)

=
X

� 6=±↵

v�(k)v↵(`) + v�(`)v↵(k)

�↵ � ��
[v�(i)v↵(j) + v�(j)v↵(j)] ,(6.13)

which completes the derivation of the second-order formula for the eigenvalues �↵. ⇤
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7. D��������� �� ��� DBM

We now use the perturbation formulas given in Lemma 6.2 to derive the DBM in�eorem 5.3 and�eorem 5.5. We begin
by deriving the square DBM in �eorem 5.3, thus allowing us to forget about the trivial eigenvalues in ⇣(X). From here, we
then derive the rectangular DBM in �eorem 5.3, focusing on the contribution from ⇣(X). Lastly, we prove �eorem 5.5,
redirecting our focus to the contribution from the additional dri� term in the Ornstein-Uhlenbeck equation (5.12).

We �rst introduce the following result, whose proof may be found in, for example, [2]. �is result shows that the event on
which the nontrivial eigenvalues of X(t) intersect occurs with probability 0.

Proposition 7.1. For each nontrivial eigenvalue �↵(t) 62 ⇣(X(t)), de�ne the event

E↵(t) :=
[

� 6=↵:�� 62⇣(X)

{�↵(t) = ��(t)} ,(7.1)

where X(t) solves the stochastic matrix dynamics (5.2) and (5.13). �en for any �xed time T > 0,

P

0

@
\

t6T

\

�↵ 62⇣(X)

E↵(t)

1

A = 0.(7.2)

We brie�y remark that the proof of Proposition 7.1 follows from standardmartingale stopping time techniques in stochastic
analysis. We take Proposition 7.1 for granted, however. In particular, the following calculations with the potential singularity
hold rigorously with high probability given the high probability event on which Assumption 5.2 holds. Lastly, we remark that
the proof in [2] is an argument along the DBM for Wigner matrices, not covariance matrices. �e proof, however, applies
with minor modi�cations to the SDEs (5.2) and (5.13).

Derivation of the Square DBM. By Ito’s formula, we have

d�↵ =
X

Xij2X

@Xij�↵ dXij +
1

2

X

Xij ,Xk`2X

@XijXk`�↵ dhXij , Xk`i(7.3)

=
1p
N

X

Xij2X

@Xij�↵ dBij +
1

2

0

@
X

Xij ,Xk`2X

@XijXk`�↵ dhXij , Xk`i

1

A .(7.4)

In the above equation, we suppress from all processes the dependence on time. We �rst address the martingale term, which
we denote by Xmgle(t). Using the �rst-order perturbation formula for the eigenvalue �↵, we have

Xmgle(t) =
1p
N

0

@
MX

i=1

M+NX

j=M+1

+
M+NX

i=M+1

NX

j=1

1

A v↵(i)v↵(j) dBij .(7.5)

We now let Xmgle,1(t) denote the �rst sum in Xmgle(t) and Xmgle,2(t) denote the second sum. We now identify these two
terms as Brownian motions by computing their generators.

Fix a time t0 > 0, and let Et0 denote conditional expectation conditioning on events occurring up to time t0. Because
Xmgle,i(t) are centered processes, it remains to compute their conditional quadratic covariations. In particular, we compute

Et0hXmgle,1(t),Xmgle,1(t)i =
1

N

MX

i=1

M+NX

j=M+1

|v↵(i)|2|v↵(j)|2hdBij , dBiji(7.6)

=
1

4N
dt.(7.7)

�is follows from the matrix structure ofX(t): for indices (i, j)with |j�i| > M , the Brownian motions dBij are statistically
independent. Similarly,

Et0hXmgle,2(t),Xmgle,2(t)i =
1

N

M+NX

i=M+1

MX

j=1

|v↵(i)|2|v↵(j)|2hdBij , dBiji(7.8)

=
1

4N
dt.(7.9)
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Lastly, to compute the covariation, we have from the same calculation

Et0hXmgle,1(t),Xmgle,2(t)i =
1

N

MX

i=1

MX

j=1

|v↵(i)|2|v↵(j)|2 dt(7.10)

=
1

4N
dt.(7.11)

�us, we see that Xmgle(t) is a centered Gaussian process with quadratic variation given by

dhXmgle(t),Xmgle(t)i =

✓
1

4N
+

1

4N
+

2

4N

◆
dt =

1

N
dt.(7.12)

�is implies, by the Kolmogorov equations, that Xmgle(t) is a scaled Brownian motion, i.e.

Xmgle(t) =
1p
N

dB↵(t),(7.13)

whereB↵(t) is a standard one-dimensional Brownian motion onR. To show the Brownian motionsB↵(t) are independent, it
su�ces to show they are statistically uncorrelated because they are Gaussian random variables. �is follows from orthonor-
mality of the eigenvectors {v↵}↵ and the representation of Xmgle(t) in terms of the eigenvectors given in Lemma 6.2. �e
relation B↵(t) = �B�↵(t) follows immediately from �̇↵ = ��̇�↵.

We now address the dri� term; because the entriesXij , Xk` are driven by i.i.d. Brownian motionsBij(t), Bk`(t), we have

dhXij(t), Xk`(t)i =
1

N
(�ik�`j + �i`�jk) dt(7.14)

given the symmetric structure of the matrix Xt. �us, the dri� term may be wri�en as

Xdrift(t) =
1

2

0

@ 1

N

X

Xij=Xk`2X

�
@XijXk`�↵

�
1

A dt(7.15)

=
1

2N

0

@
MX

i=1

M+NX

j=M+1

X

� 6=±↵

v�(i)v↵(j) + v�(j)v↵(i)

�↵ � ��
[v�(i)v↵(j) + v�(j)v↵(i)]

1

A dt.(7.16)

For each term in the sum, we expand the eigenvector terms and group according to indices ↵,� as follows:

[v�(i)v↵(j) + v�(j)v↵(i)] [v�(i)v↵(j) + v�(j)v↵(i)] = |v�(i)|2|v↵(j)|2 + |v�(j)|2v↵(i)|2

+ 2v�(i)v↵(i)v�(j)v↵(j).(7.17)

By the spectral correspondence between X(t) and the covariance matrices X⇤(t) = H(t)⇤H(t) and X⇤,+(t) = H(t)H(t)⇤

discussed in Chapter I of this thesis, we see

MX

i=1

M+NX

j=M+1

|v�(i)|2|v↵(j)|2 =
MX

i=1

M+NX

j=M+1

|v�(j)|2|v↵(i)|2 =
1

2
,(7.18)

MX

i=1

v�(i)v↵(i)
M+NX

j=M+1

v�(j)v↵(j) = 0,(7.19)

where the second equation follows from orthonormality of di�erent eigenvectors. �us, we �nally deduce

Xdrift(t) =
1

2N

X

� 6=±↵

1

�↵ � ��
dt,(7.20)

which completes the formal derivation of the square DBM.
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7.1. Derivation of Rectangular DBM. With the same argument as in the derivation of the square DBM, we have

d�↵ =
1p
N

dB↵(t) +
1

2N

MX

i=1

M+NX

j=M+1

X

� 6=±↵

@
(2)
Xij

�↵ dt,(7.21)

where the Brownian motions B↵(t) are independent. We now expand the dri� term as follows:

Xdrift(t) =
1

2N

MX

i=1

M+NX

j=M+1

X

� 6=±↵

@
(2)
Xij

�↵ dt(7.22)

=
1

2N

X

� 6=±↵

MX

i=1

M+NX

j=M+1

v�(i)v↵(j) + v�(j)v↵(i)

�↵ � ��
[v�(i)v↵(j) + v�(j)v↵(i)] dt(7.23)

=
1

2N

X

� 6=±↵

1

�↵ � ��
dt.(7.24)

Here, we appeal to Chapter I and use that for any v� with �� 2 ⇣(X), we have

MX

i=1

|v�(i)|2 = 1(7.25)

as well as the following vanishing identity for any index j > M :

v�(j) = 0.(7.26)

We now split the sum over eigenvalues �� into those in and not in ⇣(X), respectively:

Xdrift(t) =
1

2N

(±↵)X

� 62⇣(X)

1

�↵ � ��
+

M �N

2N�↵
.(7.27)

Here, we used that any � 2 ⇣(X) is equal to 0 and the size of ⇣(X) is equal to M � N . Noting that by Assumption 5.2
the eigenvalue �↵ is bounded uniformly away from 0, the second term coming from those �� 2 ⇣(X) does not diverge,
completing the derivation of the rectangular DBM.

7.2. Derivation of �eorem 5.5. We proceed as in the derivation of �eorem 5.3 and use the Ito formula, giving us the
following SDE:

d�↵ =
X

Xij2X

@Xij�↵dXij +
1

2

X

Xij ,Xk`2X

@XijXk`�↵ dhXij , Xk`i.(7.28)

Proceeding as in the derivation of the square DBM and the rectangular DBM, and using the Ornstein-Uhlenbeck de�nition
of dXij as given in (5.12), we now have

d�↵ =
1p
N

dB↵(t) +

0

@ 1

2N

(±↵)X

� 62⇣(X)

1

�↵ � ��
+

1

2N

X

�2⇣(X)

1

�↵ � ��

1

A dt

� 1

2

X

Xij2X

Xij@Xij�↵ dt,(7.29)

where the contribution from the additional dri� term in (5.12) is given by the term in the second line. By the �rst-order
perturbation formula for the eigenvalue �↵, we see the contribution from this dri� term is given by

1

2

X

Xij2X

Xij@Xij�↵ =
1

2

X

i,j

v↵(i)Xijv↵(j) =
1

2
�↵(7.30)

since the �rst term on the RHS is exactly equal to the standard dot product of the eigenvector v↵ with Xv↵ = �↵v↵. �is
completes the derivation of�eorem 5.5.
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8. D���� B�������M����� ��� C���������M�������

We conclude the derivation of DBM for linearized covariance matrices by discussing the derivation of DBM for the eigen-
values of the honest N ⇥ N -dimensional covariance matrix X⇤(t), where H(t) solves the matrix-valued SDE (5.1). In that
case, we have the following corollary of �eorem 5.3.

Corollary 8.1. In the context of �eorem 5.3, let {⇠↵(t)}↵ denote the eigenvalues of X⇤(t) realized as correlated paths on the
simplex �N . �en the eigenvalues {⇠↵(t)}↵ solve the following system of SDEs:

d⇠↵(t) =
2
p
⇠↵(t)p
N

dB↵(t) +

0

@ 1

N

X

� 6=±↵

⇠↵ + ⇠�
⇠↵ � ⇠�

+
M

N

1

A dt.(8.1)

Remark 8.2. Historically, the DBM (8.1) was computed before the DBMs given in �eorem 5.3 and 5.5, e.g. in [7].

Before we proceed with a proof of Corollary 8.1, we �rst note a similar result holds with an additional dri� term if we
instead let H(t) solve a matrix-valued Ornstein-Uhlenbeck equation. We omit the details as it will not be important for our
discussion of universality, but we make note of it here for the interested reader.

Proof. Taking �eorem 5.3 for granted, by the spectral correspondence for covariance matrices in Chapter I we derive the
SDE by applying the Ito formula to the smooth function f(x) = x2. �is gives

d⇠↵(t) = d(�↵(t))
2 = 2�↵(t)d�↵(t)(8.2)

=
2
p
⇠↵(t)p
N

dB↵(t) +

0

@�↵

N

X

0<� 6=±↵

1

�↵ � ��
+

1

�↵ + ��

1

A dt +

✓
M

N
� 1

◆
dt.(8.3)

We note the quadratic covariation term vanishes by noting the eigenvalue ⇠↵(t) is symmetric, as a function, in the variables
±�↵(t). We now study the dri� term, noting in particular the following identities:

�↵

N

X

0<� 6=±↵

1

�↵ � ��
+

1

�↵ � ��
=

1

N

X

|�| 6=|↵|

2⇠↵
⇠↵ � ⇠�

,(8.4)

�1 =
1

N

X

|�| 6=|↵|

⇠� � ⇠↵
⇠� � ⇠↵

.(8.5)

�us we see the dri� term is given by
0

@�↵

N

X

0<� 6=±↵

1

�↵ � ��
+

1

�↵ + ��

1

A dt +

✓
M

N
� 1

◆
dt =

0

@ 1

N

X

|�| 6=|↵|

⇠↵ + ⇠�
⇠↵ � ⇠�

+
M

N

1

A dt.(8.6)

�is completes the derivation of (8.1), again appealing to [2] to show the potential singularities occur with probability 0. ⇤

We conclude our treatment of the derivation of DBM for the random covariance matrix X⇤(t) by discussing the upshot
of studying �rst the DBM for the linearization X(t). We �rst note the traditional derivation of the DBM of X⇤(t), i.e. those
given in [1] and [7], involve nontrivial gymnastics in analyzing the nonlinearity in the covariance matrix X⇤(t).

�e second upshot (and �nal one in this remark) of studying the eigenvalue dynamics along the linearized stochastics is
that we may use those equations given in �eorem 5.3 to deduce the eigenvalue dynamics in Corollary 8.1. As illustrated in
the proof above, this is a consequence of the Ito formula applied to the smooth function f(x) = x2. On the other hand, to
deduce the SDEs in �eorem 5.3 from those in Corollary 8.1 in a similar fashion, we would need to apply the Ito formula to
the function f(x) =

p
x, for either choice of square root. �is function is not even di�erentiable in a neighborhood of x = 0,

so we need an a priori repulsion estimate as in Assumption 5.2. For our presentation, we only require this estimate for the
rectangular regime M > N ; in fact, for many matrix ensembles, such an estimate does not hold for M = N . �is illustrates
the weaker nature of the equations in Corollary 8.1 compared to the equations in�eorem 5.3.
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III. A Strong Local Law for Deformed Linearized Covariance Matrices

9. R������� E�������� ��� ��� S����� L���� L��

We now discuss the rigidity estimates and local law necessary in the short-range approximation for DBM. To this end we
introduce the following notion of high probability similar to the notions of high probability used in Chapters I and II.

De�nition 9.1. We say an event ⌦ holds with (⇠, ⌫)-high probability if

P
�
⌦

C
�
6 e�⌫ log

⇠ N .(9.1)

We say an event ⌦
1

holds with (⇠, ⌫)-high probability on ⌦

2

if

P
�
⌦

C
1

\ ⌦

2

�
6 e�⌫ log

⇠ N .(9.2)

Lastly, before we state the local law for X(t), we de�ne the following spectral domains:

D
1

=

�
z = E + i⌘ : E 2 IE0,qG, ⌘ 2 [N�1'L, 10]

 
,(9.3)

D
2

=

�
z = E + i⌘ : |E| 6 N5BV , ⌘ 2 [10, N10BV +1

]

 
.(9.4)

Gluing together these domains, we de�ne

DL,q = D
1

[D
2

.(9.5)

From now on, we assume X(t) solves the matrix-valued Brownian motion equation. We recall this gives the following
parameterization X(t) = X +

p
tW`. Moreover, we de�ne the following partial Stieltjes transform of X(t):

mN (z; t) =

1

2N

NX

i=1

✓
1

�i � z
+

1

��i � z

◆
,(9.6)

where the sum is taken over eigenvalues ±�i such that |�i|2 2 �(X(t)⇤X(t)). We brie�y remark that the partial Stieltjes
transform was an object of primary interest in Chapter I of this thesis.

�eorem 9.2. Suppose V is (g,G)-regular at E
0

. Let

⇠ =

A
0

+ o(1)

2

log logN(9.7)

and �x q < 1 and L > 40⇠. For any z 2 DL,q , we have

sup

t2T!

|mN (z; t)�m
fc,t(z)| 6 'C1⇠

N⌘
(9.8)

with (⇠, ⌫)-high probability and M,N su�ciently large. Here, ⌫ and C
1

are constants depending on all data involved in the
statement of this result except the dimensionM,N . �e notion ofM,N su�ciently large is in the sense of depending on all other
data involved in the statement of this theorem.

From the local law in �eorem 9.2, we deduce an optimal rigidity estimate on the location of eigenvalues relative to their
“expectation”. To state this estimate, for any time t and any eigenvalue index i, �rst recall the classical eigenvalue locations,
denoted �i,t for ⇢fc,t. We also establish the following notation: for a constant 0 < q < 1 and a time t we de�ne

Aq,t = {i : �i,t 2 IE0,qG}(9.9)

for some �xed energy E
0

. Le�ing �i,t denote the i-th largest eigenvalue of X(t), we may record the following rigidity
estimate comparing �i,t and �i,t. �is rigidity estimate is a consequence of �eorem 9.2 by standard methods in Hel�er-
Sjostrand functional calculus; for details, we refer to [17].
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�eorem 9.3. For some constants ⌫, c
4

> 0 depending on the data in�eorem 9.2, for i 2 Aq,t, we have

sup

t2T!

|�i,t � �i,t| 6 'c4⇠

N
(9.10)

with (⇠, ⌫)-high probability. In particular, if V is (g,G)-regular for G ⇣ C su�ciently large, and if kV k1 = O(1), then the
rigidity estimate (9.10) holds for all indices.

We note here the extra assumption stated at the end of �eorem 9.3 is a simple consequence of the de�nition of Aq,t.
However, we will later consider this regime for extremely regular initial data V while performing calculations in establishing
bulk universality. We discuss this assumption in more detail while studying the short-range approximation scheme.

Before we provide an outline of �eorem 9.2, we encourage the reader interested in studying the DBM equations to skip
straight through this discussion of �eorem 9.2 and to the proof of gap universality. �e ideas and methods towards the
strong local law and rigidity estimates will not be important in analyzing the DBM equations in the rest of this chapter.

9.1. Outline of �eorem 9.2. We now provide an outline of the proof of �eorem 9.2. We follow the work of [17] and
begin by using the Schur complement formula to derive a self-consistent equation for the Stieltjes transformmN mimicking
the self-consistent equation de�ning the Stieltjes transform m

fc,t up to a su�ciently small error. Using the stability of this
equation under small perturbations, we derive a weak local law, proving instead the following weaker estimate with high
probability:

|mN (z; t)�m
fc,t(z)| 6 'C1⇠

p
N⌘

.(9.11)

�e method of studying stability of the self-consistent equation will be a standard bootstrapping from ⌘ = 1 to smaller scales
with a self-improving estimate. We remark this bootstrapping techniquewill not resemble that used in Chapter I of this thesis.
For a reference, we refer to [17]. From here, we introduce a result known as the �uctuation averaging estimate, also adapted
from [17], to improve the weak local law to the strong local law. To obtain the estimate for all times, we compute the SDE
driving the Stieltjes transform mN and appeal to a standard stochastic continuity argument. �is last result on uniformity
in time is not necessary for our goal in deriving universality of local eigenvalue statistics, but we will use it for convenience,
and we record and derive it also for its own sake and possible future use.

10. T�� S����C��������� E������

�e following matrix identity will be crucial in deriving a �xed-point equation for the Stieltjes transformmN (z; t). Before
we give the statement of the result, we �rst recall the following notation for any set of indices T ⇢ {1, . . . ,M +N}.

Notation 10.1. We let X(T) denote the matrix obtained from removing the rows and columns indexed by elements of T. We let
G(T) denote the Green’s function of X(T).

Lemma 10.2. Retaining the de�nition of X(t), for any index i 2 [[1, N ]], we have with T = (i,M + i),
 

Gii Gi,M+i

GM+i,i GM+i,M+i

!
=

  
�z Vi +

p
tWii

Vi +
p
tWii �z

!
� tv⇤G(T)v

!�1

(10.1)

where

v⇤ =

 
0 0 . . . 0 W

12

W
13

. . . W
1N

W
21

W
31

. . . WM1

0 0 . . . 0

!
.(10.2)

Indeed, Lemma 10.2 follows from the Schur Complement Formula, which we record as follows for sake of completeness.

Proposition 10.3. Suppose H is a Hermitian matrix of dimension N , so H may be wri�en as

H =

 
A B⇤

B C

!
,(10.3)
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where A is an m⇥m matrix, B is an (N �m)⇥m matrix, and C is an (N �m)⇥ (N �m) matrix, for some 1 6 m 6 N .
Here, B⇤ denotes the adjoint of B. If H is invertible, then for any set T of removed labels, we have

h�
HT��1

i

ij
=

⇣
(A�B⇤CB)

T
⌘�1

�

ij

(10.4)

for any i, j 62 T.

Lemma 10.2 now follows from removing all rows and columns fromX(t) except those corresponding to the indices i,M+i.

Remark 10.4. Alternatively, to derive the identity in Lemma 10.2, suppose i = 1; the case for other indices follows from a
permutation of the matrix indices. We begin with following identity whose proof is a straightforward consequence of the
Schur Complement Formula:

G
11

0

@�z � t
N�1X

k,`=1

W
1,k+1

G(T)
M�1+k,M�1+`W1,`+1

1

A

+G
1,M+1

 
V
1

+

p
tW

11

� t
M�1X

k=1

N�1X

`=1

Wk+1,1G
(T)
k,M�1+`W1,`+1

!
= 1.(10.5)

From this identity, we deduce the (1, 1)-entry of the following matrix product is 1:
 

G
11

G
1,M+1

GM+1,1 GM+1,M+1

!  
�z V

1

+

p
tW

11

V
1

+

p
tW

11

�z

!
� tv⇤G(T)v

!
.(10.6)

To compute the other entries of the above 2⇥ 2-matrix, we similarly expand the matrix product in terms of the entries of the
matrices G,G(T),W , and the parameter z and apply the entrywise formulation of the Schur complement formula. From this
calculation we deduce the desired matrix equation (10.1).

We now focus on using (10.1) to derive a �xed-point equation formN (z; t). First, we establish the following two pieces of
notation simply for convenience of presentation.

Notation 10.5. For the index k 2 [[1, N ]], we let Gkk denote the Green’s function entry GM+k,M+k . For any other index, i.e.
those not denoted by k, we retain the usual matrix entry notation. For the following calculations, we let k ! M + 1 correspond
to the �rst index larger thanM .

Notation 10.6. We denote the entries of the matrix v⇤G(T)v as in Lemma 10.2 byMij for i, j = 1, 2. �us, we have the following
formulas de�ningMij :

M
11

=

N�1X

k,`=1

W
1,k+1

G(T)
M�1+k,M�1+`W1,`+1

,(10.7)

M
12

=

M�1X

k=1

N�1X

`=1

Wk+1,1G
(T)
k,M�1+`W1,`+1

,(10.8)

M
21

=

N�1X

k=1

M�1X

`=1

W
1,k+1

G(T)
M�1+k,`W`+1,1,(10.9)

M
22

=

M�1X

k,`=1

Wk+1,1G
(T)
k` W`+1,1.(10.10)

We note that we are still focusing on the index i = 1.
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We begin with the following representation of Gkk by taking the representation of the RHS of (10.1) in terms of minors,
giving the following formula:

Gkk =

�z � tM
11

(�z � tM
11

)(�z � tM
22

) � (V
1

+

p
tW

11

� tM
12

)(V
1

+

p
tW

11

� tM
21

)

(10.11)

=

�z � tM
11

(�z � tM
11

)(�z � tM
22

) �
��V

1

+

p
tW

11

� tM
12

��2
,(10.12)

where the second equation holds by the Hermitian property of the Green’s function, which follows immediately from the
spectral representation of the Green’s function discussed in Chapter I.

We now expand the above representation ofGkk . To do so, we �rst de�ne the following control parameters, most of which
will serve as error terms in the desired self-consistent equation for mN (z; t). However, the reader is invited to skip straight
to the next result and refer back to these control parameters upon reading the derivation of the self-consistent equation.

We �rst introduce the following terms which will serve as the main terms in the self-consistent equations:

g±
1

=

1

±V
1

� z � tmN (z; t)
,(10.13)

 (T)
= mN (z; t)�m(T)

N (z; t).(10.14)

With these main terms, we de�ne the following eventual error terms:

F
1

= t2
✓
M

11

�M
22

2

◆
2

,(10.15)

F
2

=

M
11

+M
22

2

�m(T)
N (z; t),(10.16)

F±
3

= g±
1

⇣
±
p
tW

11

⌥ tA
12

� tF
2

+ t (T)
⌘
.(10.17)

Lastly, we de�ne the following accumulated error terms which will collect all error terms in the self-consistent equation:

E
1

= F+

3

+ F�
3

+ F+

3

F�
3

� g+
1

g�
1

F
1

,(10.18)

K
1

=

�t[(M
11

�m(T)
N (z; t)]�  (T)

�z � tmN (z; t)
.(10.19)

For general indices, the error parameters are de�ned by changing 1 ! i in all of the de�nitions. We de�ne, for clarity’s sake,
the following accumulated error terms for general index i to emphasize which parameters depend on the index:

Ei = F+

3

(i) + F�
3

(i) + F+

3

(i)F�
3

(i)� g+i g
�
i F1

(i),(10.20)

Ki =

�T [M
11

(i)�mT)
N (z;T )]�  (T)

�z � TmN (z;T )
.(10.21)

We now state the following result, from which we deduce a �xed-point equation formN (z; t) up to a controllable error term.
�e proof of this result amounts to a straightforward expansion of the representation (10.12) in terms of the main terms g±k
and  (T) and the error terms de�ned above.

Proposition 10.7. In the se�ing above, for indices k = M + 1, . . . ,M +N , de�ning i = k �M , we have

Gkk =

1

2

�
g+i + g�i

�
1 + Ei

1 + Ki
.(10.22)

Proof. We focus on the case k = M + 1 for simplicity; the case for other indices follows from a permutation of the rows and
entries of X(t). We �rst note the following identity controlling the �rst denominator term in (10.12):

(�z � tM
11

)(�z � tM
22

) =


�z � t

2

(M
11

+M
22

)

�
2

� F
1

.(10.23)
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We rewrite the representation (10.12) using the above identity and expand the denominator as follows:

Gkk =

�z � tM
11

�
�z � t

2

(M
11

+M
22

)

�
2 �

�
V
1

+

p
tW

11

� tM
12

�
2 � F

1

(10.24)

=

1⇣
�z � tm(T)

N + V
1

+

p
tW

11

� tM
12

� tF
2

⌘⇣
�z � tm(T)

N � V
1

�
p
tW

11

+ tM
12

� tF
2

⌘
� F

1

.(10.25)

Here, we recall we take the index set T = {1,M + 1}. Moreover, we may rewrite the above equation as follows introducing
the term  (T) and the error terms F±

3

:

Gkk =

�z � tM
11

(�z � tmN + V
1

) (1 + F+

3

) (�z � tmN � V
1

) (1 + F�
3

)� F
1

.(10.26)

�e proof of Proposition 10.7 now follows from a straightforward calculation and the de�nition of Ei,Ki. ⇤

If without the presence of the error terms (1+Ei)(1+Ki)
�1 in the refolded expansion (10.22), we would be able to simply

average over indices k and obtain the same �xed-point equation for the free convolution Stieltjes transform m
fc,t. To deal

with the error terms, we appeal to an a priori estimate which we will derive under suitable conditions. With this control on
the error terms, we derive a perturbed form of the �xed-point equation for m

fc,t, from which we deduce a local law.

A Priori Estimate 10.8. �e following uniform estimate holds with with (⇠, ⌫)-high probability:

1 + Ei

1 + Ki
= 1 +O

 s
N"

N⌘

!
.(10.27)

for z = E + i⌘ 2 DL,q and for some constant C and any " > 0.

With this a priori estimate on the error terms, we deduce the following perturbed self-consistent equation for mN .

Corollary 10.9. Assuming the upper bound (10.27), we have the following equation for all z 2 DL,q and t 2 T! :

mN (z; t) =

1

2N

NX

i=1

✓
1

Vi � z � tmN (z; t)
+

1

�Vi � z � tmN (z; t)

◆
+ O

✓
N"

N⌘

◆
.(10.28)

Here, " > 0 is an arbitrarily small, N -independent constant.

Indeed, upon averaging the identity (10.22) over indices k and using the a priori bound (10.27), we deduce

mN (z; t) =

1

2N

NX

i=1

✓
1

Vi � z � tmN (z; t)
+

1

�Vi � z � tmN (z; t)

◆ 
1 +O

 s
N"

N⌘

!!
.(10.29)

�e equation (10.28) now follows from the following short-time stability estimate particular to the matrix-valued Brownian
motion X(t). �e proof of this result mirrors the arguments of Lemma 7.5 in [17] without introducing additional technical
di�culties, so we omit it. In that paper, the estimate is derived for m

fc,t instead of mN , but since we assume the initial data
V is also (g,G)-regular, the same proof holds.

Lemma 10.10. Uniformly over z 2 DL,q , we have

1

2N

NX

i=1

✓
1

|Vi � z � tmN (z; t)| +
1

|�Vi � z � tmN (z; t)|

◆
= O(logN).(10.30)

Using Lemma 10.10, we deduce the following elementary bound on the big-Oh term upon possibly rede�ning " > 0:
������
1

2N

NX

i=1

O
⇣q

N"

N⌘

⌘

±Vi � z � tmN (z; t)

������
6 O

 s
N"

N⌘
logN

!
6 O

 s
N"

N⌘

!
.(10.31)

�e signs on the initial data terms Vi indicate a summation over signs as well. �is completes the derivation of the self-
consistent equation (10.28).
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We conclude this preliminary derivation of the self-consistent equation by recapping the arguments and calculations
presented above. First, we deduce the equation (10.28) assuming the a priori bound (10.27). �e derivation of this upper
bound will follow from an a priori estimate on the following di�erence term we ultimately want to control:

⇤(z) := |mN (z; t)�m
fc,t(z)| .(10.32)

Before we make this precise, we introduce another a priori estimate of crucial importance in exploiting the analytic structure
of the self-consistent equation (10.28). �is estimate is another stability estimate for short times t 2 T! .

A Priori Estimate 10.11. For any t 2 T! , we have the following lower bound for any small � > 0:
�����1�

t

2N

NX

i=1

1

(±Vi � z � tmN (z; t))(±Vi � z � tm
fc,t(z))

����� > N��.(10.33)

Here, the signs ± are chosen to be the same; in particular, only two possible pairs of signs are allowed.

We now make precise the use of controlling ⇤(z) to derive the bounds (10.27) and (10.33). �is result will also allow us to
begin our bootstrapping scheme at the scale ⌘ = 1.

Proposition 10.12. For any �xed z 2 DL,q , suppose either ⌘ > 1 or the following upper bound holds:

⇤(z) = O

 s
N"

N⌘

!
.(10.34)

�en with (⇠, ⌫)-high probability, the bound (10.27) holds uniformly over all indices k, and the bound (10.33) also holds.

Proof. For the proof of deducing (10.27), we refer to the proof of Lemma 7.9 in [17] which again mirrors the proof of (10.27).
We brie�y remark here that the necessary ingredients for the proof involve the Ward identity from Chapter I. Moreover, we
require the concentration of the Gaussian terms appearing in Ei and Ki. Lastly, we require the Cauchy Interlacing Lemma,
which controls  (T) for any index set T of bounded size. For a proof of the Cauchy Interlacing Lemma, we refer to [2].

To derive the bound (10.33), we �rst note it su�ces to provide a O(N��
) upper bound for the following term:

t

2N

NX

i=1

1

(±Vi � z � tmN (z; t))(±Vi � z � tm
fc,t(z))

.(10.35)

To derive this upper bound, we begin by rewriting each term in the summation as follows:

1

(Vi � z � tmN (z; t))(Vi � z � tm
fc,t(z))

=

1

(Vi � z � tm
fc,t(z))2

+

t(mN (z; t)�m
fc,t(z))

(Vi � z � tmN (z; t))(Vi � z � tm
fc,t(z))2

.(10.36)

We handle the �rst term on the RHS as follows. We cite (7.10) in Lemma 7.2 and (7.26) in Lemma 7.3 in [17] to obtain the
following O(1)-bound:

1� t

2N

NX

i=1

1

(±Vi � z � tm
fc,t(z))2

= O(1)(10.37)

We brie�y remark here that [17] is concerned with the free convolution for the Wigner matrix ensemble – however, these
arguments apply to proving the bound (10.37) as the only necessary ingredients are the regularity on the initial data and
the qualitative properties of the free convolution that hold in both the Wigner matrix ensemble and our matrix ensemble of
linearized covariance matrices. Again, the proofs mirror each other.

It now remains to bound the following term:

t2(mN (z; t)�m
fc,t(z))

2N

NX

i=1

1

(±Vi � z � tmN (z; t))(±Vi � z � tm
fc,t(z))2

.(10.38)
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�is follows from the Schwarz inequality and the following estimate uniform all indices i 2 [[1, N ]]:

t . |Vi � z � Tm
fc,t(z)| . 1,(10.39)

which, in turn, follow from the estimate Imm
fc,t(z) ⇣ 1. �ese estimates hold uniformly over z 2 DL,q and t 2 T! , which

completes the proof of Proposition 10.12. ⇤

11. A������� �� ��� S����C��������� E������

We begin our analysis of the self-consistent equation by establishing the following formula which will be the backbone
of our bootstrapping method to obtain local laws at smaller scales ⌘. �e derivation of this formula will be a consequence of
comparing the �xed-point equation satis�ed by m

fc,t and the perturbed equation (10.28) satis�ed bymN (z; t).

Lemma 11.1. Suppose z 2 DL,q and t 2 T! . �e following estimates hold with (⇠, ⌫)-high probability. Assuming the a priori
bound (10.27), we have

(mN (z; t)�m
fc,t(z))

 
1� t

2N

NX

i=1

1

(±Vi � z � tmN (z; t))(Vi � z � tm
fc,t(z))

!
= O

 s
N"

N⌘

!
.(11.1)

In particular, assuming the bound (10.33) in addition, we have, for a possibly di�erent " > 0,

⇤(z) := O

 s
N"

N⌘

!
,(11.2)

where the implied constant depends only on the equation (11.1).

Remark 11.2. �e estimate (11.2) is known as a weak local law in contrast to the strong local law in�eorem 9.2.

Proof. We note it su�ces to prove the �rst estimate, as the second estimate follows from the �rst and the lower bound in
(10.33). We take the di�erence between the �xed-point equation for m

fc,t and (10.28) to obtain the following perturbed
equation:

mN (z; t)�m
fc,t(z) =

1

2N

NX

i=1

✓
1

±Vi � z � tmN (z; t)
� 1

±Vi � z � tm
fc,t(z)

◆
+ O

 s
N"

N⌘

!
.(11.3)

Here, we appealed to the a priori bound (10.27) to derive the above equation. We now rewrite each term in the summation
on the RHS as follows:

1

±Vi � z � tmN (z; t)
� 1

±Vi � z � tm
fc,t(z)

=

t (mN (z; t)�m
fc,t(z))

(±Vi � z � tmN (z; t))(±Vi � z � tm
fc,t(z))

.(11.4)

Having rewri�en the summation term, we subtract it from both sides and obtain a O
⇣q

N"

N⌘

⌘
bound on the following term:

mN (z; t)�m
fc,t(z)�

t(mN (z; t)�m
fc,t(z))

2N

NX

i=1

1

(±Vi � z � tmN (z; t))(±Vi � z � tm
fc,t(z))

(11.5)

= (mN (z; t)�m
fc,t(z))

 
1� t

2N

NX

i=1

1

(±Vi � z � tmN (z; t))(±Vi � z � tm
fc,t(z))

!
.(11.6)

�is completes the proof of Lemma 11.1. ⇤
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11.1. �e Bootstrapping Scheme. Wemay now begin the bootstrapping estimates. Before we begin, we brie�y outline and
remark on the method behind obtaining a weak local law from Lemma 11.1. �e key idea will be to use the local-Lipschitz
property of ⇤(z) to extend the local law at a scale ⌘ to the scale ⌘ � N�4. �is provides an a priori estimate on ⇤(z), with
which we may deduce a local law at the scale ⌘ � N�4 by Lemma 11.1. We now remark that the local law obtained via
Lemma 11.1 may be taken independent of the number of iterations of this local-Lipschitz extension. Moreover, iterating this
schemeNO(1) times still yields a result that holds with (⇠, ⌫)-high probability. To obtain a weak local law uniformly over the
domainDL,q , we use the local-Lipschitz property as in Chapter I.�ese last two points rely on the following result concerning
(⇠, ⌫)-high probability events.

Lemma 11.3. Suppose ⌅
1

, . . . ,⌅NC is a collection of events, each holding with (⇠, ⌫)-high probability; here C = O(1) is a
�xed constant. �en the intersection of these events holds with (⇠, ⌫)-high probability for a possibly di�erent pair of parameters
(⇠, ⌫), i.e.

P

0

@
NC[

i=1

⌅

C
i

1

A 6 e�⌫ log

⇠ N .(11.7)

Moreover, if ⇠ � 1 in the limit of large N , then the adjusted parameter ⇠ also diverges as N grows.

As an immediate consequence of this general result it now su�ces to obtain a pointwise estimate. We now state the desired
estimate precisely in the following proposition.

Proposition 11.4. Assume the se�ing of�eorem 9.2. �en for any z 2 DL,q and any " > 0, we have

⇤(z) = O

 s
N"

N⌘

!
.(11.8)

Proof. For a �xed z 2 DL,q , we de�ne zk = E + i⌘k . Here, we have de�ned the parameters as follows:

E = Re(z), ⌘k = 1� kN�4.(11.9)

Lastly, we let K denote the maximal integer such that zK 2 DL,q ; in particular we have the bound K = NO(1). By N2-
Lipschitz continuity of the Stieltjes transforms, and thus of ⇤, to derive the weak local law at z, it su�ces to derive the weak
local law at zk for all k = 1, . . . ,K . We do so inductively in k.

We note the weak local law at z
0

holds with (⇠, ⌫)-high probability by Proposition 10.12. �is allows us to obtain the
following estimate for z

1

:

⇤(z
1

) 6 |⇤(z
1

)� ⇤(z)|+ ⇤(z) 6 N2|z
1

� z|+O

 s
N"

N⌘

!
(11.10)

6 N�4

+O

 s
N"

N⌘

!
.(11.11)

By Proposition 10.12 and Lemma 11.1, this implies

⇤(z
1

) = O

 s
N"

N⌘
1

!
.(11.12)

Continuing inductively, we see for any k 2 [[1,K]] that the weak local law holds:

⇤(zk) = O

 s
N"

N⌘

!
,(11.13)

where the implied constant is independent of the index k. �is completes the proof. ⇤
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With a similar bootstrapping method, we may also obtain an estimate of similar type for the o�-diagonal entries of the
Green’s function G. To state this estimate, we �rst de�ne the following control parameter as a function onDL,q :

⇤o(z) = max

i 6=j>M
|Gij(z)|.(11.14)

In words, the parameter ⇤o is a pseudo-maximal function for the o�-diagonal entries. To control this term, we appeal to the
following result from [18], which allows us to control ⇤o in terms of the weak local law.

Lemma 11.5. Assume the following a priori estimate:

⇤o(z) + ⇤(z) 6 '�2⇠(11.15)

where we retain the de�nition of the control parameters ', ⇠ from the introduction of the underlying model. �en we have

sup

z2DL,q

⇤o(z) = O

 
'⇠

s
⇤(z) +O(1)

N⌘

!
(11.16)

with (⇠, ⌫)-high probability, where the implied constant is independent of z.

�e result in Lemma 11.5 is a parallel result to Lemma 3.8 in [18]. �e method of proof is analogous between the two
matrix ensembles, so we refer to the details of Lemma 3.8 in [18] for the proof of Lemma 11.5.

We may perform a similar bootstrapping scheme to estimate ⇤o, with the initial step at z = E + iNC for any C > 0. In
e�ect, we obtain the following consequence of Lemma 11.5.

Corollary 11.6. In the se�ing of�eorem 9.2, we have the following estimate uniformly over z 2 DL,q with (⇠, ⌫)-high proba-
bility:

sup

z2DL,q

⇤o(z) = O

 
'⇠

s
⇤(z) +O(1)

N⌘

!
.(11.17)

�e last weak result we discuss here is the following estimates on diagonal entries of the Green’s function. In this spirit,
we similarly de�ne a pseudo-maximal function controlling the diagonal entries as follows:

⇤d(z) = max

M+16k6M+N
|Gkk(z)|.(11.18)

On one hand, by eigenvector delocalization and the weak local law, we may bound the diagonal entries by the Stieltjes
transform up to a factor ofN" for any small " > 0, and we may compare the Stieltjes transform ofG to the Stieltjes transform
of the free convolution by the weak local law. Ultimately, this argument provides the following bound for any small " > 0:

⇤d(z) = O(N"
).(11.19)

Remark 11.7. We brie�y remark the above estimate on ⇤d may be obtained with a similar bootstrapping scheme which
allows for a sharper estimate comparing the diagonal entries to the free convolutionm

fc

. �is more precise estimate will not
be necessary in this thesis, and it requires a nontrivial extension of the bootstrapping scheme coupled with ideas from [18],
so we omit the details and refer the reader to [18].

12. T�� F���������� A�������� L���� ��� ��� S����� L���� L��

We now aim to conclude the strong local law in �eorem 9.2 from the weak local law in Proposition 11.4. To do so, we
need to appeal to a result controlling �uctuations of Green’s function entries; this is called the �uctuation averaging lemma.
�is result is ubiquitous in deriving strong local laws, as it will help us control the nonlinear terms appearing in the matrix
equation (10.1), i.e. those nonlinear terms in the Schur complement formula. For instance, we refer to [17]. To this end, we
establish the following notation.
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Notation 12.1. For a set of indices T, we de�ne the following conditional expectation and �uctuation of a random variable X
de�ned as a function of the matrix entries of X(t):

ET X := E
�
X|X(t)T

�
, QTX := X � ET X.(12.1)

Alternatively, the conditional expectation with respect to T may be thought of as a conditional expectation with respect
to those matrix entries of X(t) whose indices are not contained in T.

We now de�ne the �uctuation terms that we aim to control in the �uctuation averaging lemma. �ese terms are de�ned
as the following �uctuations of nonlinear functions of the Green’s function:

Z(1)

11

= Q
(1)

✓
GM+1,M+1

G
11

GM+1,M+1

�G
1,M+1

GM+1,1

◆
,(12.2)

Z(1)

12

= Q
(1)

✓
GM+1,1

G
11

GM+1,M+1

�G
1,M+1

GM+1,1

◆
.(12.3)

We may de�ne the more general �uctuation term replacing the labels 1 on the RHS above with any index i 2 [[1,M ]]. Sec-
ondly, we de�ne another pair of �uctuation terms; although these terms are not important in the statement of the �uctuation
averaging lemma, we use them later in deriving the strong local law:

Z(1)

21

= Q
(1)

✓
G

1,M+1

G
11

GM+1,M+1

�G
1,M+1

GM+1,1

◆
,(12.4)

Z(1)

22

= Q
(1)

✓
G

1

G
11

GM+1,M+1

�G
1,M+1

GM+1,1

◆
.(12.5)

Again, we de�ne Z(i)
k` similarly by replacing the 1-indices on the RHS with i 2 [[1,M ]].

We now state the �uctuation averaging lemma.

Proposition 12.2. Suppose ak ⇣ 1 are �xed constants, and assume the following a priori bounds for any �xed " > 0:

sup

⌘>N�1+"

sup

i 6=j>M
|Gij(E + i⌘)| 6 O

 s
N"

N⌘

!
, sup

⌘>N�1+"

sup

M+16k6M+N
|Gkk(E + i⌘)| = O(N"

).(12.6)

�en, we have, for z = E + i⌘ with ⌘ > N�1+",

1

N

NX

i=1

akZ
(k)
11

= O

✓
N"

N⌘

◆
,(12.7)

1

N

NX

i=1

akZ
(k)
12

= O

✓
Ne

N⌘

◆
(12.8)

with (⇠, ⌫)-high probability, where k = M + i.

Remark 12.3. �e a priori bounds (12.6) assumed in deriving the �uctuation averaging lemma are ful�lled in our context.

Proof. We give an outline of the proof; for details, we refer to Lemma 7.15 in [17]. In particular, Proposition 12.2 follows an
application of the Chebyshev inequality combined with the following moment bounds:

E

0

@ 1

N2p

NX

i1,...,i2p=1

2pY

j=1

akjZ
(ij)
11

1

A
= O

✓
N"

N⌘

◆
,(12.9)

and the analogous estimate replacing Z
11

with Z
12

. �is moment bound is quite technical and requires a combinatorial
analysis of words on indices. For this reason we omit the proof, but we encourage the reader to look at [17] for details. ⇤
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12.1. Proof of the Strong Local Law. We now use Proposition 12.2 to derive the strong local law uniformly over z 2 DL,q ,
but at �xed times. To this end, we de�ne the following error terms that will arise naturally from studying the matrix equation
(10.1):

R(1)

11

=

1

N
GM+1,M+1

+

1

N

NX

i=1

GM+1,kGk,M+1

,(12.10)

R(1)

22

=

1

N
G

11

+

1

N

NX

i=1

G
1,kGk,1.(12.11)

Again, we retain the notation k = M + i. We similarly de�ne R(`)
jj upon replacing ` = 1 on the RHS above with any

appropriate index ` 2 [[1, N ]]. Lastly, before we proceed directly with the proof of the strong local law, we record the
following consequence of the �uctuation averaging lemma:

sup

z2DL,q

sup

i2[[1,M ]]

sup

j=1,2
|R(i)

jj | 6 N"

N⌘
.(12.12)

Having de�ned the error terms R(i)
jj , we now rewrite the matrix equation (10.1) in the following manner, in which we extract

these error terms, along with the �uctuations Z :
 

Gii Gi,M+i

GM+i,i GM+i,M+i

!�1

=

 
�z � tm

fc,t(z) Vi

Vi �z � tm
fc,t(z)

!

+

 
t (mN (z; t)�m

fc,t(z)) 0

0 t (mN (z; t)�m
fc,t(z))

!

+ tZ(i)
+ tR(i).(12.13)

Here, the matrices Z and R are de�ned by the terms Z(i)
k` and R(i)

k` . For clarity’s sake, we note R
(i) is diagonal. For conve-

nience, we will introduce the following notation for the matrices on the RHS above:

YVi =

 
�z � tm

fc,t(z) Vi

Vi �z � tm
fc,t(z)

!
,(12.14)

Yd =

 
t (mN (z)�m

fc,t(z)) 0

0 t (mN (z)�m
fc,t(z))

!
.(12.15)

We brie�y explain the decomposition given above. �e matrix YVi detects the main terms which yield the Stieltjes transform
of the free convolution measure, containing the ingredients of the �xed-point equation de�ning the free convolution. �e
matrix Yd,i denotes the error term we want to control. �e remaining matrices Z(i) andR(i) contain the error terms that we
may control by appealing to the concentration of sub-Gaussian random variables.

We now proceed with the analysis of the rewri�en matrix equation (12.13). By the resolvent identity discussed in Chapter
I of this thesis, we have the following uniform bound for any small " > 0:

sup

i2[[1,N ]]

�����
1

N

NX

i=1

⇣
YVi � Yd + tZ(i)

+ tR(i)
⌘�1

� (YVi � Yd)
�1

������
1

6 C
N"

N⌘
.(12.16)

�is is a consequence of a straightforward application of the diagonal estimates onR(i) we obtained as well as the �uctuation
averaging lemma, both coupled with the a priori bounds in the statement of Proposition 12.2. �is allows us to Taylor expand
resolvents of matrices in (12.13) to obtain the following main term-error term decomposition of the LHS of (12.13):

1

N

NX

i=1

 
Gii Gik

Gki Gkk

!
=

1

N

NX

i=1

(YVi � Yd)
�1

+ O

✓
N"

N⌘

◆

=

1

N

NX

i=1

Y �1

Vi
� 1

N

NX

i=1

Y �1

Vi
YdY

�1

Vi
+ O

✓
N"

N⌘

◆
(12.17)
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where the big-Oh terms denote matrices with the corresponding operator bound. �e second line follows from the geometric
series expansion of the inverse of a matrix noting the o(1) estimates on ⇤,⇤o provided by the weak local law.

Remark 12.4. We note that if an inverse wri�en above does not exist, a perturbation " in the entries can be introduced and
then taken to " ! 0 in the end of this calculation. We do not fully illustrate this in detail for convenience and clarity of the
presentation of the calculation.

We now take a partial trace of both sides of the last matrix equation (12.17). In particular, we sum over diagonal entries
with index larger than M . �is gives us the following equation:

1

N

NX

i=1

Gkk =

1

N

NX

i=1

�z � tm
fc,t(z)

(�z � tm
fc,t(z))2 � V 2

i

� (mN (z; t)�m
fc,t(z))

t

N

NX

i=1

TrY �2

Vi

+ O

✓
N"

N⌘

◆
.(12.18)

We now study the trace equation (12.18), noting the term on the LHS is exactlymN , and the �rst term on the RHS is exactly
m

fc,t. A straightforward rearrangement of the above trace equation now implies the following estimate:

(mN (z; t)�m
fc,t(z)) (1 + Et) = O

✓
N"

N⌘

◆
,(12.19)

where we de�ned

Et =

t

N

NX

i=1

TrY �2

Vi
.(12.20)

�us, to derive the strong local law for a �xed point z 2 DL,q , it su�ces to derive a constant lower bound on 1 + Et. To this
end we appeal to (7.10) in Lemma 7.2 and (7.26) in Lemma 7.3, both in [17]. �is completes the proof of the strong local law.

13. S��������� C��������� �� ��� S����� L���� L��

We conclude this discussion of the strong local law with a stochastic continuity argument that will allow us to deduce a
high-probability result uniformly in time. We reiterate that this result is unnecessary in studying universality, but may be of
interest and potential use in its own right.

13.1. Stochastic Dynamics of the Stieltjes Transform. �e backbone of this discussion rests on the following calculation
with the Ito formula. In e�ect, it computes the stochastic dynamics of the Stieltjes transform under the matrix-valued Brow-
nian motion dynamics on X(t). Before we give the result, we recall that the eigenvalue dynamics under the matrix-valued
Brownian dynamics are given by the following system of SDEs:

d�↵(t) =

1p
N

dB↵(t) +

1

2N

0

@
(±↵)X

� 62⇣t(X)

1

�↵ � ��
+

X

�2⇣t(X)

1

�↵ � ��

1

A dt(13.1)

We also recall the Brownian motions B↵(t) are jointly independent. With these eigenvalue dynamics, an application of the
Ito formula will give the following Stieltjes transform dynamics. To suggest the suitable interpretation of these dynamics, we
write the integral equation instead of the di�erential equation.
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Proposition 13.1. Suppose {�↵(t)}↵ solves the system of SDEs given in (13.1), and let mN (z; t) denote the Stieltjes transform
of X(t). Moreover, suppose ⌘ = Im(z) > 0. �en, for any times 0 6 t

0

6 t
1

, we have

mN (z; t
1

)�mN (z; t
0

) =

X

�↵ 6⌘0

1p
N

t1w

t0

1

(�↵ � z)2
dB↵(t)

+

0

@ 1

N

X

�↵ 6⌘0

1

(�↵ � z)3
+

1

2N

X

�↵ 6⌘±��

�↵ + �� � 2z

(�↵ � z)2(�� � z)2
+

M �N

�↵

1

A dt.(13.2)

Proof. Because the Brownian motions B↵(t) are jointly independent, they are also orthogonal, i.e.

dh�↵(t),��(t)i =

�↵�
N

dt.(13.3)

From this, by the Ito formula, at least formally we have

mN (z; t
1

)�mN (z; t
0

) =

X

�↵ 6⌘0

t1w

t0

@�↵mN (z; t)d�↵ +

1

2N

X

�↵ 6⌘0

@(2)�↵
mN (z; t) dt.(13.4)

From here, it su�ces to calculate the derivatives of mN with respect to the nontrivial eigenvalues �↵ 6⌘ 0; because mN is
nonsingular at z = E + i⌘ 2 C

+

, the following derivative identities hold rigorously as well:

@�↵ mN (z; t) =

X

�↵

� 1

(�↵ � z)2
,(13.5)

@(2)�↵
=

1

2

X

�↵

1

(�↵ � z)3
.(13.6)

Lastly, we remark that the calculation with Ito’s formula holds rigorously at z = E+i⌘ 2 C
+

, a point at whichmN is smooth
as a function of the real eigenvalues �↵. ⇤

We remark that the equation (13.2) removes the direct dependence on the eigenvalue gaps for the dynamics of the Stieltjes
transform. �is is a consequence of averaging over eigenvalues in the spectral representation of the Stieltjes transform; this
observation is crucial in deriving su�cient estimates to run a stochastic continuity argument.

Remark 13.2. As will be noted later in this thesis in a more detailed context and fashion, the problem of tracking eigenvalue
gaps along the SDE (13.1) is a di�cult problem. Moreover, this thesis will only address a partial result along these lines, as
the optimal result on eigenvalue gaps for linearized covariance matrices is, for now, out of reach.

We now study the SDE (13.2) and extract a short-time stability estimate. �is will conclude our analysis of the SDE in
this thesis. �e proof of this short-time stability estimate will require a general result in stochastic analysis that controls the
concentration of Ito integrals of bounded functions. To state this result, we recall that a sub-exponential random variable X
is one whose decay at in�nity is bounded as follows:

P (|X| > ⇤�) 6 C
0

e�⇤

1/✓

.(13.7)

In particular, sub-exponential random variables satisfy the following high-probability concentration phenomenon.

Proposition 13.3. Suppose (ai)i2I and (bi)i2I are independent families of centered random variables with variance �2 and
sub-exponential decay in the following sense:

P (|ai| > x�) + P (|bi| > x�) 6 C
0

e�x1/✓

,(13.8)

where C
0

> 0 and ✓ > 1 are constants uniform over i 2 I . Suppose Ai, Bij 2 C are deterministic constants. �en, for some
constants a

0

> 1, A
0

> 10, and C
1

> 1 depending on ✓, C
0

, for any parameter a
0

6 ⇠ 6 A
0

log logN and ' = log

C1 N , we
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have the following concentration inequalities:

P

0

@
�����

NX

i=1

Aiai

����� > '⇠�

 
NX

i=1

|Ai|2
!

1/2
1

A 6 e� log

⇠ N ,(13.9)
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i=1
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NX
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�2Bii
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NX
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1/2
1

A 6 e� log

⇠ N ,(13.10)
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������
> '⇠�
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@
X

i 6=j

|Bij |2
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A
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1

CA 6 e� log

⇠ N ,(13.11)
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B@

������

NX
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aiBijbj

������
> '⇠�
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@
NX

i,j=1

|Bij |2
1

A
1/2
1

CA 6 e� log

⇠ N .(13.12)

We now present a general result in stochastic calculus which states that Ito integrals of bounded functions are indeed
sub-exponential.

Proposition 13.4. Let t > 0 be a positive time and assume f(x) 2 C2

(R) is bounded, adapted and measurable. Suppose Xt is
given by the following Ito integral:

Xt =

tw

0

f(Xs) dBs.(13.13)

�en supt6T Xt is sub-exponential, and thus with (⇠, ⌫)-high probability

sup

t6T
|Xt| 6 C�T(13.14)

for some constant C = O(1). Here, �T is the standard deviation of XT .

Remark 13.5. We warn the reader that this stability estimate will deteriorate linearly in time for long-time evolutions and
in�nitesimally small scales ⌘, though this will not present itself as an issue in our application.

Roughly speaking, the proof of Proposition 13.4 is a consequence of the Ito formula to obtain bounds on the even moments
of the Ito integral Xt. �e sub-exponential decay is then deduced from these moment bounds and Cherno�’s inequality.

Proposition 13.4 allows us to control the martingale term in the Stieltjes transform dynamics. �e precise result is given
as follows.

Lemma 13.6. Suppose 0 6 t
0

6 t
1

are two times. �en we have uniformly over z 2 DL,q the following bound with (⇠, ⌫)-high
probability:

sup

t2[t0,t1]

|mN (z; t)�mN (z; t
0

)| = O

✓
(t

1

� t
0

)

✓
1

⌘3
+

NBV

⌘4
+N5BV

+ 1 +

1

⌘4

◆◆
.(13.15)

Proof. We �rst consider the dri� term in the SDE (13.2). Suppose z 2 D
1

, so that the dri� term is bounded as follows:
������
1

N

X

�↵ 6⌘0
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(�↵ � z)3
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1

2N

X

�↵ 6⌘±��
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= O

✓
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NBV

⌘4
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◆
.(13.16)

For z 2 D
2

, we note the �rst two dri� terms are decreasing as ⌘ increases, and the third dri� term is z-independent. �us,
we may assume ⌘ = 10, in which case we have the bound

������
1

N

X

�↵ 6⌘0

1

(�↵ � z)3

������
+

������
1

2N

X

�↵ 6⌘±��
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������
+

����
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�↵

���� 6 O
�
1 +N5BV

�
.(13.17)
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Here, we use the a priori repulsion from the origin in bounding the singular eigenvalue term M�N
�↵

. �is provides the
appropriate bound for the dri� terms.

It remains to bound the di�usion terms with high probability. Because the di�usion terms are bounded, adapted and
measurable, by Proposition 13.3 we have the following estimate uniformly over z 2 DL,q with (⇠, ⌫)-high probability:

sup

t2[t0,t1]

������

X

�↵ 6⌘0

1p
N

tw

t0

1

(�↵ � z)2
dB↵(t)

������
6 C E

 
t1w
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dB↵(t)

!
2

.(13.18)

We compute the RHS with Ito’s L2-isometry to obtain the following bound for the martingale term:

sup

t2[t0,t1]

������

X

�↵ 6⌘0

1p
N

tw

t0

1

(�↵ � z)2
dB↵(t)

������
= O

✓
t
1

� t
0

⌘4

◆
.(13.19)

�is completes the proof of Lemma 13.6. ⇤

13.2. Free Convolution Estimates and Stochastic Continuity. Before we may implement a stochastic continuity argu-
ment, we need an estimate on the short-time evolution of the Stieltjes transform of the free convolution. �is result is a
consequence of either straightforward estimates from classical calculus or the bootstrapping iteration scheme used for a
�xed-point equation with a perturbation in time. Nevertheless, the methods are straightforward, so we omit the details for
the proof.

Proposition 13.7. Fix � > 0 and suppose 0 < t
1

< t
2

are times satisfying

t
1

+ t
2

6 CN��(13.20)

for some �xed constant C > 0. Suppose V is (g,G)-regular at E
0

, and let 0 < q < 1. �en, uniformly over z 2 DL,q , we have

|m
fc,t2(z)�m

fc,t1(z)| = O

✓
(t

2

� t
1

)

✓
1

⌘
+

1

⌘2

◆◆
.(13.21)

Proof. We brie�y note here that the Stieltjes transform solves the following PDE:

@t mfc,t(z) =

1

2

@z [mfc,t(z) (mfc,t(z) + z)] .(13.22)

⇤

With Lemma 13.6 and Proposition 13.7, we may now deduce a local law uniformly in time. We �rst partition the time
interval T! into a set of time intervals with small gaps as follows:

T! = T!,1 [ . . . [ T!,K : sup

16j6K
|T!,j | 6 N�5BV �4, supT!,i 6 inf T!,i+1

.(13.23)

We note that, if BV is �xed, that K = O(1). With (⇠, ⌫)-high probability, by the pointwise (in time) local law in �eorem
9.2, the strong local law holds for the NO(1) set of times {inf T!,j}. For notational convenience, we establish the following:

tj := inf T!,j .(13.24)

On the other hand, by Lemma 13.6 and Proposition 13.7, we have the following estimates for any �xed j 2 [[1,K]]:
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fc,t(z)| 6 sup
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t2T!,j

sup

z2DL,q

��mN (z; tj)�m
fc,tj (z)

��

+ sup

t2T!,j

sup

z2DL,q

��m
fc,tj (z)�m

fc,t(z)
��(13.25)

6 O

✓
N�4

✓
1 +

1

⌘
+

1

⌘2
+

1

⌘3
+

1

⌘4

◆
+

N"

N⌘

◆
.(13.26)

�is completes the stochastic continuity argument and in particular implies that on the event where the strong local law
holds for the times {tj}, the strong local law also holds uniformly in time.
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IV. Short-Range Approximation and Gap Universality

14. S�����R���� A������������

We now exploit the local structure of the DBM equations by introducing a scheme known as short-range approximation.
To provide a brief summary, the short-range approximation is composed of the following steps:

• We begin le�ing the DBM equations run for a short-time t0 to local equilibrium. At this point, the corresponding
Stieltjes transforms of the particles {�i(t0)} exhibit a strong local law and rigidity phenomena.

• We then introduce cuto�s for the interaction terms. �is will approximate the di�usion processes d�i(t) by a di�usion
process blind to eigenvalues beyond a microscopic distance from �i(t).

Before we give the construction, we brie�y motivate it by introducing a short-range approximation for Wigner matrices. To
state this result, we refer to [16] and [17] and introduce the DBM equations for Wigner matrices:

dzi(t) =

r
2

N
dBi,W(t) +

1

N

X

j 6=i

1

zi(t)� zj(t)
dt.(14.1)

Here, the Brownian motions Bi,W(t) are jointly independent with suitable initial data zi(0) as will be made precise later. We
now introduce the short-range approximation result quite informally. �is result is Lemma 3.7 in [16].

Proposition 14.1. Suppose zi(t) solves (14.1)with initial data either deterministic with a (g,G)-regular potential, or distributed
as the eigenvalues of a GOE matrix. �en if ẑi(t) denotes the solution to the cuto� equation that will be described below for
linearized covariance matrices, then the following estimate holds with (⇠, ⌫)-high probability for constants !0,!1,!A,!` and
time t0 to be determined:

sup

06t6t1

sup

i
|ẑi(t0 + t)� zi(t0 + t)| 6 N"t1

✓
N!A

N!0
+

1

N!`
+

1p
NG

◆
.(14.2)

Before we proceed, we �rst note the estimate in Proposition 14.1 includes a time-shi� by t0 as to allow for rigidity to hold.
We now begin the short-range approximation scheme by introducing the following parameters:

0 < !1 < !` < !A <
!0

2

.(14.3)

14.1. Time-Shi� and Regularization. We now renormalize the the DBM equations in time. To this end we de�ne two time
scales: the natural time scale of the DBM �ow and the scale for which we allow the DBM to evolve a�erwards.

t0 := N�1+!0 , t1 := N�1+!1 .(14.4)

�is motivates the following time-scale re-shi�:

dzi(t) := d�i(t0 + t).(14.5)

As alluded to previously, we may now assume the particles zi(t) exhibit a rigidity phenomenon.

14.2. Short-Range Cuto�. We now introduce the cuto� in the dri� term. To this end, we �rst de�ne the following which
will help regularize the DBM. For a �xed energy E contained in the interior of the support of the free convolution, we de�ne
the following classical location minimizing the distance from E:

�E(t) := arginf

�i,t

|E � �i,t| .(14.6)

We recall here that the in�mum is over classical locations of the free convolution law. For notational convenience, we let
k(E) denote the index of the above minimizer, so that we have

�E(t) = �k(E),t.(14.7)
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With this, we de�ne the following index set collecting eigenvalues for whichwe approximate by only short-range interactions:

IE,!A := {j : |j � k(E)| < N!A} .(14.8)

We also approximate the interval qG on which the initial data is regular by classical locations of the free convolution law:

Cq := {j : �j 2 IE,qG} .(14.9)

We now de�ne the short-range cuto� for an individual eigenvalue zi(t) by collecting nearby eigenvalues via the set

Aq := {(i, j) : |i� j| 6 N!`}
[

{(i, j) : ij > 0, i, j 62 Cq} .(14.10)

We brie�y remark that the second set de�ning Aq serves to regularize the dynamics for eigenvalues outside the range of
regularity for the potential V de�ned byIE,qG. �is will be made precise in the derivation of the short-range approximation.

Before we introduce the short-range cuto�s, we establish the following notation to state the short-range cuto� more
conveniently.

Notation 14.2. For a �xed index i, de�ne the following summation operators:

Aq(i)X

j

:=

X

j:(i,j)2Aq

,

Aq(i)
C

X

j

:=

X

j: (i,j)2A C
q

.(14.11)

Here, the superscript C denotes a set-theoretic complement.

We now apply a deterministic shi� to the DBM system as follows:

ezi(t) := zi(t) � �E(t).(14.12)

�is deterministic shi� is another regularization operator as it will be important in controlling the main error term in the
short-range approximation. We note this shi� is both deterministic and the same for all indices, so that local eigenvalue
statistics should be preserved. By the inverse function theorem and di�erentiating the quantile representation of �E(t), we
compute the derivative of �E(t) as follows:

@t�E(t) = �Re (mfc,t(�E(t))) � 1

2

�E(t).(14.13)

�e RHS in the derivative identity above is understood in the principal value sense; this is where we require E lives in the
interior of the support or completely separated from the support of the free convolution law. �us, by the Ito formula we
immediately deduce the following perturbed DBM equations for the shi�ed eigenvalues:

dezi(t) =

1p
N

dBi(t) +

0

@ 1

2N

(±i)X

j 62⇣t(X)

1

ezi(t)� ezj(t)
+

M �N

Nezi(t)
+ Re (mfc,t(�E(t))) +

1

2

�E(t)

1

A dt.(14.14)

14.3. Short-Range Equations. We now de�ne the short-range DBM equations as follows. For those indices i 2 IE,!A , we
de�ne the following short-range interaction equations:

dẑi(t) :=

1p
N

dBi(t) +

1

2N

Aq(i)X

j

1

ẑi(t)� ẑj(t)
dt.(14.15)

For those indices i outside the interval IE,!A , we de�ne the following dynamics instead:

dẑi(t) :=

1p
N

dBi(t)

+

0

@ 1

2N

Aq(i)X

j

1

ẑi(t)� ẑj(t)
+

1

2N

Aq(i)
C

X

j

1

ezi(t)� ezj(t)
+ Re (mfc,t(�E(t))) +

1

2

�E(t)

1

A dt.(14.16)

Although not explicit, the summations in the dri� term avoid the index i. To give initial conditions, for all indices we stipulate

ẑi(0) = ezi(0) = �i(t0)� �E(t0).(14.17)
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We now derive and bound the error term in approximating the true DBM ezi(t) by the short-range dynamics ẑi. �e following
result shows that the error term is given byN�1�� for small � > 0. �is error is smaller than the scaling for eigenvalue gaps
and thus suggests the local eigenvalue statistics for the true DBM and short-range DBM coincide in the limit of large N . We
return to this point later, however, and proceed with the short-range approximation.

Proposition 14.3. In the se�ing of the short-range approximation, for any �xed " > 0 we have the following estimate with
(⇠, ⌫)-high probability for su�ciently large N � 1:

sup

t2[0,t1]

sup

i
|ẑi(t)� ezi(t)| 6 N"t1

✓
N!A

N!0
+

1

N!`
+

1p
NG

◆
.(14.18)

Here, we recall G is the regularity parameter of the initial data, i.e. the scale on which rigidity holds.

Before we proceed with the proof of Proposition 14.3, we discuss both the result itself and its consequences. First, we
deduce the following consequence which follows from Proposition 14.3 combined with Proposition 14.1. �e result also gives
a rough idea of the proof of gap universality; we return to this idea shortly.

Corollary 14.4. With (⇠, ⌫)-high probability for N � 1 su�ciently large, we have the following estimate:

sup

t2[0,t1]

sup

i2IE,!A

|�i(t0 + t) � �W,i(t0 + t)| < N�1��,(14.19)

where � > 0 is a small parameter depending on the parameters !0,!1,!A,!`.

Indeed, Corollary 14.4 follows from the following eigenvalue SDEs for Wigner matrices of dimension 2N along short-time
matrix-valued Brownian motion �ows:

d�W,i(t) =

r
2

2N
dBi(t) +

1

2N

(i)X

j

1

�W,i(t)� �W,j(t)
dt.(14.20)

Here, the equation gives the honest dynamicswithout the short-range cuto�. �us, with the respective cuto�s, the eigenvalues
�W,i and �i solve the same SDEs. �us, we obtain the estimate (14.19) with the bound on the RHS coming from the short-range
approximation bounds in Proposition 14.1 and Proposition 14.3, respectively.

Moreover, in the same spirit we deduce the following reduction of the proof of gap universality, which states that it su�ces
to prove gap universality for the short-range dynamics.

Corollary 14.5. In the context of Proposition 14.1 and Proposition 14.3, suppose the gap universality estimate holds for the
short-range eigenvalues ˆ�. �en the gap universality estimate holds for the full-range bulk eigenvalues �.

We now record the following corollary of Proposition 14.3 which provides a weak form of level repulsion. �is is a
consequence of comparing the short-rangeDBMof linearized covariancematrices to the short-rangeDBMofWignermatrices,
i.e. (14.19), as well as level repulsion estimates for Wigner matrices. Although this estimate is too weak for us to use in this
thesis, we record it for possible future use.

Corollary 14.6. Suppose �i(t) solves the DBM equations for linearized covariance matrices. �en with (⇠, ⌫)-high probability,
we have the following weak level repulsion for some small � > 0 and any index i such that the classical location �i,t is bounded
away independent of N from the boundary of the support of the free convolution %fc,t:

|�i+1(t)� �i(t)| 6 N�1+".(14.21)

We brie�y remark that an optimal level repulsion estimate seems to require analysis of the underlying matrix ensemble
and exploiting its Gaussian component, which is the approach taken to obtain optimal level repulsion estimates for Wigner
matrices. For a reference concerning level repulsion for Wigner matrices, see [17].

We remark that the upper bound on the RHS of (14.18) is heavily sensitive to the choice of parameters !0,!1,!A,!`.
In particular, Proposition 14.3 is robust in the sense that the parameters are freely adaptable with di�erences by only small
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powers ofN . However, the robustness of (14.18) is limited by the quick deterioration of anN�1�� estimate into a ⇣ N�1+�

estimate.
Before we provide a proof of Proposition 14.3, we will �rst make the assumption that G ⇣ 1 is su�ciently large. In

particular, the initial data is very regular, and rigidity holds for all eigenvalues. �e proof for weaker regularity on the initial
data, although possible, requires a technical and ad hoc argument in applying the strong local law and rigidity estimates.
However, focusing on the ensemble of bipartite graphs, the local law in Chapter I of this thesis allows us to assume G is
su�ciently large. In other words, with (⇠, ⌫)-high probability, normalized adjacency matrices of bipartite graphs are (g,G)-
regular with G ⇣ 1 large. For details concerning initial potentials with less regularity, see Lemma 3.3 in [16].

Proof. (of Proposition 14.3).
�e key observation is the following dynamics for the di�erence term wi(t) := ẑi(t)� ezi(t):

d
dt
wi(t) =

1

2N

Aq(i)X

j

Bij(t) (wj(t)� wi(t)) + Ei.(14.22)

Here, the coe�cients Bij(t) and the error terms Ei(t) are given as follows:

Bij(t) =

1

(ẑi(t)� ẑj(t))(ezi(t)� ezj(t))
,(14.23)

Ei(t) = 1i2IE,!A

2

4� 1

2N

Aq(i)
C

X

j

1

ezi(t)� ezj(t)
+ Re (mfc,t(�E(t)))

3

5(14.24)

�us, by the Duhamel formula, we have

!i(t) = etB(t)!i(0) +

tw

0

e(t�s)B(t�s)Ei(s) ds.(14.25)

Noting the dynamics of the di�erence terms wi are given by the dynamics of a jump process, B(t) denotes the associated
semigroup. Because our initial condition !i(0) vanishes by construction, we have

!i(t) =

tw

0

e(t�s)B(t�s)Ei(s) ds.(14.26)

BecauseB is the generator of a jump process on a discrete state space, it is a contraction on `1 of the state space. �is implies

k!i(t)k`1 6
tw

0

ke(t�s)B(t�s)Ei(s)k`1 ds 6 t sup

s2[0,t]

kEi(s)k`1 .(14.27)

�us, it remains to obtain an `1 estimate on the error terms Ei. To this end, we use the explicit representation of the error
terms via the eigenvalue di�erences. In particular for i 2 IE,!A , we �rst rewrite the error term as follows:

Ei(t) =

2

4� 1

2N

Aq(i)
C

X

j

1

ezi(t)� ezj(t)
+

w

IE,t(i)C

%fc,t(x)

ezi(t)� x
dx

3

5(14.28)

+

2

4
w

IE,t(i)C

%fc,t(x)

ezi(t)� x
dx �

w

IE,t(i)C

%fc,t(x)

�i,t � x
dx

3

5(14.29)

+ [Re (mfc,t(�E(t))) � Re (mfc,t(�i,t))] + [�i,t � �E(t)](14.30)

+

w

IE,t(i)

%fc,t(x)

�i,t � x
dx(14.31)

= F1(t) + F2(t) + F3(t) + F4(t).(14.32)

Here, the integral in de�ning the error term F4(t) is understood in the sense of principal values, as are the Stieltjes transform
terms de�ning the error term F3(t). It is now our goal to bound each of the error terms above.
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For the �rst error term, we use the strong local law which holds with (⇠, ⌫)-high probability for all times:

F1(t) =

w

IE,t(i)C

1

ezi(t)� x

0

@%fc,t(x) � 1

2N

X

�2�(X(t))

�(x� �)

1

A dx + O(N�1+�
)(14.33)

6 C
w

IE,t(i)C

1

ezi(t)� x+ iN!`�1��

0

@%fc,t(x) � 1

2N

X

�2�(X(t))

�(x� �)

1

A dx + O(N�1+�
).(14.34)

Here, � is an arbitrarily small but �xed constant. We note the big-Oh term comes from rigidity of eigenvalues whose cor-
responding classical locations are with N�1+� of the boundary of IE,t(i). �e second inequality is taken in the sense of
absolute values. �is inequality also follows from rigidity, since ezi(t) is separated from the boundary of IE,t(i) by a distance
bounded below by N!`�1�� , upon possibly rede�ning � > 0. With this, the strong local law implies, for some " > 0,

F1(t) 6 N"

N!`
.(14.35)

We now estimate the second error term similarly using rigidity:

F2(t) =

w

IE,t(i)C

%fc,t(x)
�i,t � ezi(t)

(ezi(t)� x)(�i,t � x)
dx(14.36)

6 N1+"

N!`

w

IE,t(i)C

%fc,t(x)
N�1+"

|ezi(t)� x|+ iN!`�1��
dx(14.37)

6 N"

N!`

w

IE,t(i)C

%fc,t(x)

|ezi(t)� x|+ iN!`�1��
dx.(14.38)

To estimate this last term, because %fc,t has compact support, it su�ces to estimate the Stieltjes transform of the free convo-
lution for large energy. To this end we use a general result for Stieltjes transforms of compactly supported measures:

|mfc,t(E + i⌘)| 6 C log(N)

C
sup

⌘0>⌘
Im (mfc,t(E + i⌘0)) .(14.39)

Here, C > 0 is a �xed constant. For a proof of this result, we refer to Lemma 7.1 in [17].
By the �xed-point equation de�ning the free convolution, the RHS is bounded by C log(N)

C . �us, we deduce the fol-
lowing bound on the second error term for some possibly adapted constant " > 0:

|F2(t)| 6 C
N"

N!`
.(14.40)

We now estimate the third error term with the following bound for an arbitrarily small but �xed � > 0:

|F3(t)| 6 C

✓
N!A

N!0
+

N!A

N

◆
.(14.41)

�is follows from bounding the following time-derivative of the Stieltjes transform given in Lemma 3.3 in [16]:
����
@

@z
mfc,t0+t(z)

���� 6 C

t0
⇣ C

N�1+!0
.(14.42)

Indeed, by construction, we know |�i,t � �E(t)| is bounded by N!A�1 up to a constant independent of N . We note this
estimate does not require rigidity as there is no randomness in the classical locations of the free convolution. In any case, this
gives the desired estimate:

|F3(t)| 6 C

✓
N!A�1

N!0�1
+

N!A

N

◆
.(14.43)

It remains to bound the last error term. To this end, we �rst note the interval IE,t(i) is almost symmetric by de�nition. To
elaborate, if IE,t(i) were symmetric about �i(t), then the error term F4(t) would be bounded by the C1-norm of the free
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convolution law up to a constant by the classical regularization procedure of the principal value. However, we instead have
the estimate

|F4(t)| =

������

w

IE,t(i)

%fc,t(x)

�i,t � x
dx

������
6 Ckr%fc,tkC0

+ C
N!`

Nt0
.(14.44)

Indeed, the �rst term comes from regularizing the integral on some small symmetric interval centered at �i,t contained in
IE,t(i), and the second term follows from a simple bound using the following estimate on classical locations which in turn
follows from the derivative estimate (14.42):

�i+k,t0+t � �i,t0+t = (�i�k,t0+t � �i,t0+t)

✓
1 +O

✓
k

Nt0

◆◆
.(14.45)

We may also bound the derivative norm by applying the inverse Stieltjes transform to (14.42). �is implies

|F4(t)| 6 C
N!`

N!0
.(14.46)

Combining the bounds for all the error terms, we immediately deduce the desired estimate (14.18). ⇤

Before we proceed, we note our above estimates did not produce a term on the order of (NG)

�1/2. �is is because we
assumed high regularity, i.e. G ⇣ 1, so a direct application of the strong local law and rigidity cannot see this term. We note,
however, this missing error term appears naturally in handling the error term F1 assuming li�le regularity on the initial
data. For details we again refer to Section 3 in [16].

15. G�� U�����������: P���� �� ���M��� T������

We now use the short-range approximation in Proposition 14.3 to derive gap universality. �e method here is taken from
the proof of gap universality for the Wigner ensemble given in [17]. We begin by introducing the coupled Dyson Brownian
Motions matching the process ˆ�i(t) with GOE eigenvalue dynamics. To this end, recall that ˆ�i(t) denotes the solutions to
the following short-range DBM equations:

dˆ�i(t0 + t) =

1p
N

dBi(t0 + t) +

1

2N

Aq(i)X

j

1

ˆ�i(t0 + t)� ˆ�j(t0 + t)
dt.(15.1)

We emphasize the short-range interactions in the dri� term contain at most one contribution from each pair of totally anti-
correlated eigenvalues (±�i) in the spectrum of X(t).

15.1. �e Coupled Gaussian Dynamics. We now �x an energy E in the bulk of the linearized Marchenko-Pastur law and
an index i 2 IE,!A . We now de�ne the following matrix:

W (t0) = a0W + b0, a0 =

%sc(µi)

%fc,t0(�i,t0)
, b0 = �i,t0 � a0µi.(15.2)

We now de�ne the DBM �ow for the eigenvalues of a GOE matrix with initial data given by the eigenvalues of W (t0). We
�rst de�ne the short-range DBM denoted by ⌫̂(t) given by the following system of SDEs for i 2 IE,!A :

d⌫̂i(t0 + t) =

1p
N

dBi(t0 + t) +

1

2N

Aq(i)X

j

1

⌫̂i(t0 + t)� ⌫̂j(t0 + t)
dt.(15.3)

Here, the Brownian motions de�ning (15.3) are the same Brownian motions driving the short-range process ˆ�(t).
We now de�ne the full-range DBM with initial data is the full spectrum ofWa,b(t0). We will not study the analysis of the

full-range DBM in detail, as it will only be necessary in knowing the global structure of the eigenvalue system. We de�ne
this full-range DBM though the following SDEs:

d⌫i(t0 + t) =

1p
N

dBi(t0 + t) +

1

2N

(i)X

j

1

⌫i(t0 + t)� ⌫j(t0 + t)
dt.(15.4)
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Because the Gaussian data is invariant under the full-range DBM equations above, we deduce the system ⌫(t) gives the
spectrum of a sub-linear Gaussian perturbation ofW (t0). �is may be realized as processes at and bt with initial data a0 and
b0 de�ned above; this is the desired global data mentioned in introducing the full-range DBM.

15.2. Gap Universality. We now use the coupled short-range GOE dynamics ⌫̂(t) to deduce gap universality for the lin-
earized covariance matrix ensemble. By Proposition 14.3 we have the following raw gap estimates for the short-range dy-
namics with (⇠, ⌫)-high probability:

sup

t2[0,t1]

���
⇣
ˆ�i(t0 + t)� ˆ�i+k(t0 + t)

⌘
� (⌫̂i(t0 + t)� ⌫̂i+k(t0 + t))

��� < N�1�".(15.5)

Here, " > 0 is a small, �xed constant. Because %fc,t0 ⇣ 1 in the bulk, the same gap estimate holds multiplying the LHS
by %fc,t0(�i,t0), upon possibly adjusting the constant " > 0. �is gives the following preliminary estimate upon a possible
readjustment of the parameter " > 0:

sup

t2[0,t1]

���%fc,t0(�i,t0)
⇣
ˆ�i(t0 + t)� ˆ�i+k(t0 + t)

⌘
� %fc,t0(�i,t0) (⌫̂i(t0 + t)� ⌫̂i+k(t0 + t))

��� < N�1�".(15.6)

�is, although close, is not the desired bound fromwhich wemay deduce gap universality from a �rst-order Taylor expansion.
�rough perturbative methods, however, we may deduce the desired bound from (15.6); in particular we aim to perturb the
free convolution factors and the classical locations in time, which requires a time- and energy- derivative estimate on the free
convolution. We make this more precise shortly.

Lemma 15.1. In the context of the short-range dynamics ˆ�(t) and ⌫̂(t), we have

sup

t2[0,t1]

����%fc,t(�i,t)
⇣
ˆ�i(t0 + t)� ˆ�i+k(t0 + t)

⌘
� %sc(µi)

at
(⌫̂i(t0 + t)� ⌫̂i+k(t0 + t))

���� < N�1�".(15.7)

Proof. To replace this free convolution factor at t0 by the free convolution at time t0 + t, we appeal to the following simple
estimate:

|%fc,t(�i,t) � %fc,t0(�i,t0)| 6 |%fc,t(�i,t) � %fc,t(�i,t0)| + |%fc,t(�i,t0) � %fc,t0(�i,t0)|(15.8)

6 C
N!1

logN

N!0
+ |%fc,t(�i,t0) � %fc,t0(�i,t0)| .(15.9)

Here, the second inequality follows from an energy-derivative estimate on the free convolution density given by applying
the Stieltjes inversion formula to (14.42) and bounding the time derivative of the classical location computed in (14.13) by
logN . It remains to bound the second term in the inequality above. We do so by bounding the time-derivative of the free
convolution density. Indeed, we may obtain the following time-derivative bound by computing the time-derivative of its
Stieltjes transform via its �xed-point equation and applying the Stieltjes inversion formula. �is method yields the following
estimate; for a reference, see Lemma 7.6 in [17]:

|@t%fc,t0(E)| 6 C

t0
=

C

N�1+!0
.(15.10)

Because t� t0 6 t1 = N�1+!1 , we ultimately deduce

|%fc,t(�i,t) � %fc,t0(�i,t0)| 6 C
N!1

N!0
(logN + 1) 6 1

N!2
,(15.11)

for some �xed constant !2 > 0. Combining our estimates thus far, we have the following bound with (⇠, ⌫)-high probability
uniformly over all times t 2 [t0, t0 + t1]:

����%fc,t(�i,t) (�i � �i+k) � %sc(µi)

a0
(⌫i � ⌫i+k)

���� 6 N�1�",(15.12)

upon possibly rede�ning " > 0. Here, we keep the o(N�1
) estimate on the RHS by appealing to the following bound which

holds by rigidity:

|%fc,t(�i,t) � %fc,t0(�i,t0)| (�i � �i+k) 6 N�!2N�1+� 6 N�1�".(15.13)
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Here, � > 0 is arbitrarily small and " > 0 is �xed. However, because eigenvalues di�erences change at most linearly upon
linear perturbations of the underlying matrix, we deduce the simple bound |at � a0| 6 Ct. �is implies the following
time-adapted bound on the event on which the upper bound (15.12) holds:

����%fc,t(�i,t) (�i � �i+k) � %sc(µi)

at
(⌫i � ⌫i+k)

���� 6 N�1�".(15.14)

�is follows from the constraint that we stipulate t 6 t1, which concludes the proof. ⇤

We nowmake the following observation; by construction the gaps a�1
t (⌫i�⌫i+k) are distributed as the gaps of a standard

GOE matrix. Moreover, by applying the proof of Lemma 15.1 iteratively n times for any n = O(1), we also deduce the
following multi-gap estimate with (⇠, ⌫)-high probability:

sup

k2[0,n]

sup

t2[0,t1]

����%fc,t(�i,t)
⇣
ˆ�i(t0 + t)� ˆ�i+k(t0 + t)

⌘
� %sc(µi)

at
(⌫̂i(t0 + t)� ⌫̂i+k(t0 + t))

���� < N�1+".(15.15)

From here, to deduce gap universality we Taylor expand our test function O 2 C1
c (Rn

) on the event on which (15.15) holds.
In particular, by a �rst-order Taylor expansion on this event we deduce the following straightforward estimate:

O (N%fc,t(�i,t)(�i � �i+i1), . . . , N%fc,t(�i,t)(�i � �i+in))

� O (N%sc(µi)(�i � �i+i1), . . . , N%sc(µi)(�i � �i+in)) .kOkC1 ,n N�",(15.16)

where " > 0 is the same exponent in the estimate (15.14).
On the complement of the event on which (15.14) holds, we may apply the following crude bound which follows from the

spectral bound on the initial data V :

O (N%fc,t(�i,t)(�i � �i+i1), . . . , N%fc,t(�i,t)(�i � �i+in))

� O (N%sc(µi)(�i � �i+i1), . . . , N%sc(µi)(�i � �i+in)) .kOkS ,n NC(15.17)

for any C = O(1). However, because (15.14) holds with (⇠, ⌫)-high probability, by taking expectations we deduce

EX(t)
[O (N%fc,t(�i,t)(�i � �i+i1), . . . , N%fc,t(�i,t)(�i � �i+in))]

� EGOE
[O (N%sc(µi)(�i � �i+i1), . . . , N%sc(µi)(�i � �i+in))] 6 N�"

+ NCe�⌫ log⇠ N .(15.18)

Because ⇠ � 1, appealing to Corollary 14.5, this completes the proof of�eorem 3.1.
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Notations

(1) [[a, b]], a, b 2 R: Discretization of the interval [a, b]: [a, b] \ Z.

(2) [E], E a graph: �e vertex set of the graph E.

(3) vv0, v, v0 2 [E]: �e edge determined by vertices v, v0.

(4) MM⇥N (R): �e space of M ⇥N matrices with real entries.

(5) ↵ = ��1: �e limiting dimension ratio lim
N!1

M
N .

(6) �(X), X a matrix: �e spectrum of the matrix X .

(7) P(⌅), ⌅: an event of a probability space. �e probability of the event ⌅.

(8) PF (⌅), F and �-algebra and ⌅ an event: �e conditional probability of ⌅ with respect to F .

(9) E(X), X a random variable: �e expectation of the random variable X .

(10) EF (X), F a �-algebra and X a random variable: �e conditional expectation of X with respect to F .

(11) @ijF (X), X = (Xij) a matrix: �e partial derivative of F with respect to the entry Xij .
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