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Abstract

This thesis is concerned with developing the tools of differential geometry and
semiclassical analysis needed to understand the the quantum ergodicity theorem
of Schnirelman (1974), Zelditch (1987), and de Verdière (1985) and the quantum
unique ergodicity conjecture of Rudnick and Sarnak (1994). The former states
that, on any Riemannian manifold with negative curvature or ergodic geodesic
flow, the eigenfunctions of the Laplace-Beltrami operator equidistribute in phase
space with density 1. Under the same assumptions, the latter states that the
eigenfunctions induce a sequence of Wigner probability measures on fibers of the
Hamiltonian in phase space, and these measures converge in the weak-∗ topology
to the uniform Liouville measure. If true, the conjecture implies that such
eigenfunctions equidistribute in the high-eigenvalue limit with no exceptional
“scarring” patterns. This physically means that the finest details of chaotic
Hamiltonian systems can never reflect their quantum-mechanical behaviors, even
in the semiclassical limit.

The main objective of this thesis is to contextualize the question of quantum
ergodicity and quantum unique ergodicity in an analytic and geometric frame-
work. In addition to presenting and summarizing numerous important proofs,
such as de Verdière’s proof of the quantum ergodicity theorem and Barnett’s
disproof of quantum unique ergodicity on the Bunimovich stadium, we perform
numerical simulations of certain billiard flows and introduce several key themes
in the modern study of quantum chaos.
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1 Introduction

Much of the research done in mathematical physics over the past few decades has concerned
itself with describing the bridge between the classical world and the quantum regime. How
does the transition from classical dynamics to quantum mechanics occur, and when is
chaotic behavior in the classical world generated by quantum effects? Investigations into
these questions have resulted in a proliferation of mathematical techniques and insights that
have deep implications not only in quantum chaos and geometric analysis, but also ergodic
theory and number theory. For instance, resolving the problem of quantum ergodicity has
aided analytic geometers in understanding the equidistribution of Laplacian eigenfunctions.
Developing a procedure for operator quantization has helped in a number of applications,
including spectral statistics and semiclassical analysis.

The field that deals with the relationship between quantum mechanics and classical
chaos has naturally been termed quantum chaos. The mathematical theory behind quantum
chaos—which has to some extent been guided by physics intuition—is surprisingly rich. In
quantum mechanics, for example, the rigorous formulation of Weyl’s functional calculus
has led to a theory of pseudodifferential operators, operators which simplify a wide range
of partial differential equations. By allowing the manipulation of operators as if they were
scalars, this functional calculus has also rigorously justified the correspondence principle in
physics through a more mathematical formulation known as Egorov’s theorem.

Common to both quantum chaos and recent trends in geometric analysis is the Laplace
operator ∆, which on the Euclidean space Rn with coordinates (x1, ..., xn), is defined as

∆ =
∑n

i=1
∂2

∂x2
i
. There is a natural analogue of ∆ on any Riemannian manifold (c.f. §1.1),

and it is well-understood that the eigenvalue spectrum of ∆ provides geometric information
about the source manifold. One of the most widely known investigations into the geometric
properties of the Laplacian dates back to Weyl, and was presented in Kac’s seminal 1966
paper in American Mathematical Monthly [Kac66]. Given the Helmholtz equation

∆ψn + k2
nψn = 0

where ψn denotes an eigenfunction of ∆ with eigenvalue k2
n (and frequency kn), Kac asked

if one could determine the geometric shape of a Euclidean domain or manifold knowing
the spectrum of ∆. Since the Helmholtz equation is a special case of the wave equation
∆ψ− c−2∂2

t ψ = 0 and the eigenfunctions of ∆ correspond to sound waves, this question has
been popularly rephased as “can one hear the shape of a drum?”

In 1964, Milnor showed that the eigenvalue sequence for ∆ does not, in general, char-
acterize a manifold completely by exhibiting two 16-dimensional tori that are distinct as
Riemannian manifolds but share an identical sequence of eigenvalues [Mil64]. A similar re-
sult was shown for the two-dimensional case in 1992, for which Gordon, Webb, and Wolpert
constructed two different regions in R2 sharing the same set of eigenvalues [GWW92]. Nev-
ertheless, it is known from a proof of Weyl’s that one can still “hear” the area of a domain
D ⊂ R2; i.e.

N(λ) ∼ Area(D)

4π
λ

in the limit λ→∞, where N(λ) is the number of eigenvalues of ∆ less than λ [Wey16]. This
observation suggests that the geometry of the underlying manifold is somehow connected
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with the spectrum of ∆, and we will devote the upcoming chapters to exploring this relation.
If we return to the Helmholtz equation, we can see an immediate connection to quantum

mechanics by taking k−1
n = ~n, where ~n is an “effective Planck’s constant,” so that we have

−~2
n

2
∆ψn =

1

2
ψn,

or the time-independent Schrödinger equation for a non-relativistic particle of unit mass
and total energy 1/2. Thus the eigenvalue k2

n can be interpreted as the energy of a particle.
We can then ask another question that relates ∆ to the behavior of quantum systems: how
are the eigenfunctions ψn of ∆ distributed in the high-energy limit? That is, if we arrange
the spectrum Spec(∆) in ascending order to get a sequence of nonnegative eigenvalues {k2

n},
does the corresponding sequence of eigenfunctions {ψn} “fill up” our underlying manifold
M uniformly as n tends towards infinity (~n → 0)? Or do the eigenfunctions localize on
some subset of M and exhibit periodic, “scarring” behavior? As an aside, we note that the
condition ~n → 0 reflects the semiclassical limit of quantum mechanics because our effective
Planck’s constant ~n reflects the degree of energy quantization in a physical system.

The question of eigenfunction distribution is what quantum ergodicity (QE) is concerned
with. If we maintain that our eigenfunctions {ψn} are L2-normalized so that they have a
natural interpretation as wavefunctions, then equidistribution in the limit ~n → 0 would
suggest that |ψn|2dν as a probability measure converges to the uniform measure. This is
fundamentally what quantum ergodicity states. On the other hand, quantum unique ergod-
icity (QUE) asserts that the induced measures converge uniquely to the uniform measure.
If in the semiclassical limit ~n → 0 a system exhibits quantum ergodicity, then there is
only a small proportion of exceptional wavefunctions—eigenfunctions that are scarring or
periodic—so that almost all the eigenfunctions and their linear combinations are equidis-
tributed. If a system exhibits quantum unique ergodicity, then there cannot exist any
sequence of exceptional eigenfunctions that do not converge to the uniform measure in the
semiclassical limit.

It turns out that if a classical system is ergodic, then the corresponding quantum system
is quantum ergodic. This result, known as the quantum ergodicity theorem, was proven by
Schnirelman (1974), Zelditch (1987), and de Verdière (1985) for manifolds without boundary
and in subsequent works for manifolds with boundary (in particular, Gérard-Leichtman in
1993 and Zelditch-Zworski in 1996) [Sch74, Zel87, dV85, GL93, ZZ96]. The analogous
statement for QUE, however, is demonstrably not true. For example, Hassell proved in
2010 that QUE does not hold for almost all Bunimovich stadiums, two-dimensional domains
composed of rectangles of arbitrary lengths capped by two semicircles [Has10]. Although
Bunimovich had demonstrated QE for his stadiums, the failure of QUE had previously been
suggested in an earlier study by Heller (1984), where he phenomenologically observed that
certain eigenfunctions localize along unstable geodesics in some Bunimovich stadiums (a
phenomenon called “strong scarring”) [Bun79, Hel84].

There could plausibly be certain cases in which QUE is true. This is rather unintuitive,
as in the classical case unique ergodicity is a very strong condition: one periodic classical
orbit is enough to make a system fail to be classically uniquely ergodic. Due to the lin-
ear superposition of eigenfunctions, however, quantum mechanics is not quite as sensitive
to individual orbits, and it is only if an orbit remains stable that a quantum system con-
centrates around it. In the case that the underlying manifold has negative curvature and
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exhibits certain arithmetic symmetries, we can actually infer more about the localization of
eigenfunctions. We may, for instance, consider arithmetic surfaces, which are quotients of
a hyperbolic space by a congruence subgroup. For these manifolds, it turns out that there
exists an algebra of Hecke operators which commute with the Laplacian, so that examining
the orthonormal eigenfunctions of Hecke operators tells us information about the eigenfunc-
tions of ∆. In 1994, Rudnick and Sarnak showed that there can be no strong scarring on
certain arithmetic congruence surfaces [RS96]. Along with numerical computations that
confirmed the plausibility of QUE on negatively curved Riemannian manifolds, Rudnick
and Sarnak proposed the now-famous quantum unique ergodicity conjecture, which roughly
states:

Conjecture. If (M, g) is a Riemannian manifold with negative curvature or ergodic geodesic
flow, then the only quantum limit measure for any orthonormal basis of eigenfunctions of
∆ is the uniform Lebesgue measure.

This conjecture, in addition to implying the absence of strong scars, claims that there is only
one measure to which the eigenfunction-induced Wigner measures converge. A positive res-
olution of this conjecture would show that in the semiclassical limit, the quantum mechanics
of strongly chaotic systems does not reflect the finest small-scale classical behavior.

Although the conjecture has been outstanding for almost twenty years, several advances
have recently been made. Aside from the aforementioned result for Bunimovich stadiums,
there have been several contributions not only in showing that certain measures can never
be quantum limits, but also in proving the QUE conjecture outright in the arithmetic case
[Ana08, Lin06]. Lindenstrauss was notably awarded the Fields Medal in 2010 for his work
leading to a proof of QUE for arithmetic manifolds, a proof which was completed in 2009
for the modular surface SL2Z/H by Soundararajan [Sou10].

Looking forward, there is much to be done in regard to proving the full conjecture.
Because of the assortment of techniques that QUE research involves, the subject is relevant
to many areas, including number theory, geometry, and analysis.

Our focus. This thesis begins by rigorously introducing the Laplace-Beltrami operator, a
second-order linear differential operator that acts on a dense subset of L2 functions. We then
introduce many fundamentals of spectral and semiclassical analysis, including the Fourier
transform, symbol quantization, pseudodifferential operators, and Weyl’s law. With a back-
ground in semiclassical analysis in hand, we rigorously formulate the foregoing ideas from
quantum chaos and prove the quantum ergodicity theorem. We conclude the exposition
with a survey of the work done in quantum unique ergodicity, and in particular we sketch
Hassell’s disproof of quantum unique ergodicity on Bunimovich stadiums.

We emphasize geometric intuition over straightforward proofs. This will be illustrated
by certain key themes that recur throughout our exposition: for example, reparameterizing
with a small constant allows us to modify familiar definitions and obtain their semiclassical
counterparts, and relating symbols to their pseudodifferential operators gives us the ability
to alternate between classical and quantum mechanics. Although these themes are intro-
duced in Section 1.3 and developed early on in our text, we will constantly illustrate how
they create a unified framework for thinking about problems related to quantum ergodicity.

6



This thesis is accessible to any student with a first course in differential geometry who
aims to understand the generalized Laplace-Beltrami operator and its associated questions,
especially as they pertain to semiclassical analysis and quantum ergodicity.

Structure. The current chapter formalizes the Laplace-Beltrami operator and the moti-
vation behind quantum ergodicity. If the reader is not familiar with the field of quantum
chaos, this exposition should be a sufficient introduction to its guiding principles.

Chapter 2 introduces the theory of semiclassical analysis, which includes Weyl quantiza-
tion and the symbol calculus. We define pseudodifferential operators with the objective of
proving Weyl’s law for the asymptotic behavior of eigenvalues of the Laplacian and Egorov’s
theorem for the correspondence principle. This chapter provides the basic notions needed
to address quantum ergodicity and quantum unique ergodicity.

Chapter 3 realizes our objective to rigorously introduce QE and QUE. With the pre-
viously developed formalism, we state the QE theorem and QUE conjecture and exhibit
Schnirelman, Zelditch, and de Verdière’s proof of the former.

Chapter 4 concludes with a survey of recent results in quantum unique ergodicity: first,
we exhibit Hassell’s proof that QUE fails on Bunimovich stadiums, and second, we briefly
discuss current research areas in QUE ranging from Barnett’s numerical computation of
billiard eigenfunctions to spectral statistics. The concepts and tools developed in Chapters
2 and 3 are indispensable for these latter accounts.

1.1 The Laplace-Beltrami Operator

Recall the notion of a spectrum: if T : V → V is a symmetric, nonnegative linear trans-
formation of inner product spaces (taken to be compact if V is infinite-dimensional),
then there exists an orthonormal basis {e1, ..., en} of eigenvectors of V with eigenvalues
0 ≤ λ1 ≤ ... ≤ λn; the set of eigenvalues {λi} is called the spectrum of T , and is denoted by
Spec(T ). From linear algebra, we remind ourselves that λ /∈ Spec(T )⇐⇒ (T −λI)−1 exists
⇐⇒ ker(T − λI) = 0, and that each eigenvalue has finite multiplicity and accumulate only
at 0 if T is compact. This definition can be extended to the case of a symmetric, unbounded
operator D acting on an infinite-dimensional Hilbert space H (c.f. Appendix I). For the
purposes of this thesis, we say that Spec(D) is the set of all λ such that D−λI has a kernel.

The spectrum of the unbounded Laplace-Beltrami operator (Laplacian) ∆ lies at the
center of our exposition. It will, however, be useful to remind ourselves of several facts be-
fore defining the Laplacian. We begin with the ideal space of functions that the Laplacian
acts on:

Definition 1.1.1. (L2 space of functions) A function f defined on a measure space (or
Riemannian manifold) (M,µ) is of class L2 if f : M → C is square-integrable, i.e.∫

M
|f |2dµ <∞.

We then write f ∈ L2(M), but note that elements of L2(M) are actually equivalence classes
of functions that differ on a set of measure zero. L2(M) is a Hilbert space with inner prod-
uct 〈f, g〉 =

∫
M fgdµ and norm ||f || = 〈f, f〉1/2 = (

∫
M |f |

2dµ)1/2.
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Introducing some geometry now allows us to define ∆ for any Riemannian manifold. We
recall that a smooth manifold M is said to be Riemannian if it is endowed with a met-
ric g, a family of smoothly varying, positive-definite inner products gx on TxM for all
points x ∈ M . Two Riemannian manifolds (M, g) and (N,h) are isometric if there
exists a smooth diffeomorphism f : M → N that respects the metric; in particular,
gx(X,Y ) = hf(x)(dxf(X), dxf(Y )) for all X,Y ∈ TxM and x ∈ M . The metric gx is a
bilinear form on TxM , so it is an element of T ∗xM ⊗ T ∗xM . Since gx must be smoothly
varying, g is a smooth section of the tensor bundle T ∗M ⊗ T ∗M and a positive-definite
symmetric (0, 2)-tensor. A local construction and partition of unity argument shows that
any manifold is metrizable. Any Riemannian manifold is naturally a measure space, with
distance function

d(x, y) = inf

{∫ b

a
||γ̇(t)||g(γ(t))dt s.t. γ : [a, b]→M is a C1 curve joining x, y ∈M

}
.

It will also be helpful to introduce local coordinates so that we can compute with our
metric g. First we take a point x ∈ M . If (x1, ..., xn) is a local coordinate chart in the
neighborhood of x for all v, w ∈ TxM , then there exist scalars αi, βi such that

v = αi
∂

∂xi
and w = βi

∂

∂xi

in Einstein notation, so that gx(v, w) = αiβjgx(∂i, ∂j) for ∂i = ∂xi := ∂
∂xi

. The metric
gx is then determined by the symmetric positive-definite matrix (gij(x)) := (gx(∂i, ∂j)).
Moreover, by unrestricting ourselves from x, we can express g in terms of the dual basis
{dxi} of the cotangent bundle as g =

∑
i,j gijdx

i ⊗ dxj . The construction above is stable
under coordinate transformation: if (hij(y)) = (g(∂yi , ∂yj )) is the matrix of g in another
coordinate chart with coordinates (y1, ..., yn), then on the overlap of the coordinate charts

we have gij =
∑

k,l
∂yk

∂xi
∂yl

∂xj
hkl.

Example 1.1.2. (Riemannian metrics) Recall that, for M = Rn and the natural iden-
tification TxRn = Rn, we can identify the standard normal basis {ei} with {∂i} so that
gx(αi∂i, βj∂j) =

∑
i αiβi. This defines the Euclidean metric with metric tensor given by

the identity, e.g. (gij) = (〈ei, ej〉) = (δij). There are also natural metrics for submanifolds,
products, and coverings of Riemannian manifolds: for example, if i : N →M is an immer-
sion of a submanifold N ⊂M , then the induced metric on N is gN = i∗gM , where gM is the
metric on M . If (M, g1) and (N, g2) are Riemannian manifolds, then their product M ×N
exhibits the metric g := g1 ⊕ g2. If (M, g) is a Riemannian manifold and π : M̃ → M is a

covering map, then g̃ := π∗g is a metric on M̃ that is preserved by covering transformations.

Now let (M, g) be a Riemannian manifold, with covariant metric tensor (gij) and contravari-
ant metric tensor (gij) := (gij)

−1. For M = Rn, it is clear that the Laplacian can be defined
as ∆ = div grad = ∂2

1 + ...+∂2
n where grad : C∞(M)→ TM and div : TM → C∞(M). ∆ is

then a second-order differential operator that takes functions to functions. We can extend
this construction to any Riemannian manifold using the musical isomorphisms, which for
coordinates {∂i} of TM , {dxi} of T ∗M , and metric tensor g = gijdx

i⊗ dxj , are defined by

[ : Γ∞(TM)→ Γ∞(T ∗M), [(X) = gijX
idxj = Xjdx

j
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for X = Xi∂i and

] := [−1 : Γ∞(T ∗M)→ Γ∞(TM), ](ω) = gijωi∂j

for ω = ωidx
i. For X = Xi∂i and Y = ∂j , [ satisfies the relation [(X)(Y ) = g(X,Y ),

since [(X)(∂j) = g(X, ∂j) = gijX
i ⇐⇒ [(Xi∂i) = gijX

idxj . Likewise, for a covector field
ω = ωidx

i, ] satisfies the relation g(](ω), Y ) = ω(Y ).
If f is a smooth function on (M, g), then the gradient of f , ∇f = gradf , is the vector

field ](df) in which the ] operator raises an index from the one-form df ; this is because ∇ is
defined by the relation g(∇f,X) = df(X)⇐⇒ ∇f = ](df) for all X ∈ TM . In other words,
∇f is the vector field associated to the one-form df via the ] operator. ∇ can therefore be
written in local coordinates on any Riemannian manifold as ∇f = gij∂if∂j .

We can define the divergence similarly. If dimM = n and the volume form (or element
if M is not oriented) on M is given by µ =

√
|g|dx1 ∧ ... ∧ dxn where |g| := det(gij), then

the divergence operator satisfies the relation div(X)µ = d(ιXµ), where ιXµ is the n − 1
form coming from the contraction of X with µ. If X = Xi∂i locally, then

div(X)µ = d(ιXi∂iµ) = d((−1)i−1Xi
√
|g|dx1∧...∧d̂xi∧...∧dxn) = ∂i(X

i
√
|g|)dx1∧...∧dxn,

and as a result div can be written in local coordinates as div(X) = (
√
|g|)−1∂i(X

i
√
|g|). The

foregoing details allow us to define the Laplacian for functions on any Riemannian manifold:

Definition 1.1.3. (Laplace-Beltrami operator) The positive Laplacian is the second-order
linear, elliptic differential operator defined on any Riemannian manifold (M, g) as

∆ : L2(M, g)→ L2(M, g), ∆ : f 7→ div grad f =
1√
|g|
∂i(
√
|g|gij∂jf).

From this expression in local coordinates, we see that ∆ and g determine each other on
any manifold. This means that every Riemannian manifold has a Laplacian, and ∆ deter-
mines the contravariant metric tensor (gij) when evaluated on a function that is locally xixj .

Remark. Since ∆ is an unbounded, closed graph operator, we must actually define it on
a dense subset of L2(M). We relegate these functional-analytic technicalities to Appendix I.

Before proceeding, we verify that ∆ is well-defined. To see this, it suffices to show that ∇
and div are well-defined under change of coordinates. In the case of div, we let (y1, ..., yn)
be another set of coordinates on some neighborhood of M , so that X = Xi∂xi = Y j∂yj .
Then

div X =
1√
|g|
∂xi(X

i
√
|g|) =

1√
|g|
∂yj (Y

j
√
|g|),

and the result for ∇ can be checked analogously. We observe that in the case M = Rn,
(gij) = (δij) =⇒ |g| = 1 for the standard orthonormal coordinates xi, so that ∆f =
(
√
|g|)−1∂i

√
|g|∂if = ∂2

i f and we recover the original Euclidean Laplacian.

There are several important properties of ∆ that make it a nice example of a second-order
elliptic differential operator. For example, Green’s second identity

∫
Ω(f∆g − g∆f)dx = 0
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for Ω ⊂M and ∂Ω = ∅ implies that ∆ is essentially self-adjoint on L2(M):

Proposition 1.1.4. (Green’s second identity) If f and g are smooth functions on M ,
∂M = ∅, and both are compactly supported, then

∫
M f∆gµ = −

∫
M 〈∇f,∇g〉µ =

∫
M g∆fµ.

Proof. div(fX) = fdiv(X) + 〈∇f,X〉, so div(f∇g) = f∆g + 〈∇f,∇g〉. The result fol-
lows from the divergence theorem since f∇g is compactly supported. �

Thus, we have
∫
M ∆fµ = 0 for f ∈ C∞c (M), the space of smooth, compactly supported

functions on M , and 〈∆f, g〉 = 〈f,∆g〉. Similarly, Green’s first identity 〈∆f, f〉 = −||∇f ||2,
along with Friedrich’s inequality ||f ||2 ≤ c||∇f ||2 for c > 0, shows that ∆ is negative-definite.

These properties of ∆ relate to its spectrum, which consists of all eigenvalues λ ∈ R
for which there is a corresponding nonzero function f ∈ L2(M) with −∆f = λf . (Note
that we have included a negative sign in the eigenvalue equation −∆f = λf to make ∆
a positive-definite operator, so that all nontrivial eigenvalues λ are also positive.) If M is
compact, then the spectrum Spec(∆) is unbounded with finite multiplicity and no accu-
mulation points; the eigenvalues of ∆ can therefore be arranged into a discrete sequence
0 = λ0 ≤ λ1 ≤ ... → ∞. The following theorem summarizes these results, in addition to
telling us when the eigenfunctions of ∆ form an orthonormal basis of L2(M) (c.f. Appendix
I and [Jos11]):

Theorem 1.1.5. (spectral theorem and eigenfunction basis of ∆) Let (M, g) be a compact
Riemannian manifold. Then the eigenvalue problem

∆f + λf = 0, f ∈ L2(M)

has countably many eigenvalue-eigenfunction pair solutions (λ, f) = (λn, fn) for which
〈fn, fm〉 = δmn and λnδ

m
n = 〈∆fn, fm〉 = −〈∇fn,∇fm〉 = λmδ

m
n . If ∂M = ∅, then the eigen-

value λ0 = 0 is attained only when its eigenfunction is a constant; otherwise all eigenvalues
are positive, and limn→∞ λn =∞. We also have

g =
∞∑
i=0

〈g, fi〉fi and 〈∆h, h〉 = −〈∇h,∇h〉 =
∞∑
i=1

λi〈h, fi〉2

for all g ∈ L2(M) and h ∈ C∞c (M).

If M is a manifold with boundary, we further assume either Dirichlet (f = 0 on ∂M) or
Neumann boundary conditions (∂~vf = 0, where ~v is normal to ∂M). The restriction of ∆
to the space of functions {f ∈ L2(M) : f |∂M = 0} will be called the Dirichlet Laplacian
∆D, and the restriction of ∆ to {f ∈ L2(M) : ∂~vf = 0 for ~v normal to ∂M} the Neumann
Laplacian ∆N . These Laplacians can be defined on Rn by the Friedrichs extension proce-
dure, but we will not deal with such functional-analytic considerations in this thesis.

Example 1.1.6. (Laplacian on S1) We note that the simplest differential operator on the
circle is d/dθ, but its spectrum is empty since it identifies with the exterior derivative. In-
stead, we consider ∆ := d2/dθ2. Since −∆einθ = n2einθ and n2 for n ∈ Z are the eigenvalues
of −∆, an orthonormal basis of eigenfunctions for L2(S1) is {einθ} for n ∈ Z. Clearly, 0
occurs with multiplicity 1 and all other eigenvalues occur with multiplicity 2. The eigenfun-
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(a) fj,k(x, y) = sin
(
jπ
a
x
)

sin
(
kπ
b
y
)

(b) fλk (r, θ) = (cos(kθ) + sin(kθ))Jk(
√
λr)

Figure 1.1 | Contour plots of Dirichlet Laplacian eigenfunctions on a square [0, 1]2 ⊂ R2 for j ∈ {1, 2, 3},
k ∈ {1, ..., 6} and the unit disk {x ∈ R2 : |x| ≤ 1} for k ∈ {0, ..., 5} and

√
λ being the first,

second, and third zeros of Jk. Lighter colors denote higher values.

ction decomposition of f ∈ L2(S1) is given by the usual Fourier decomposition:

f =
∑
n

ane
inθ =

∑
n

〈f, einθ〉einθ, where 〈f, g〉 :=
1

2π

∫
S1

f(θ)g(θ)dθ.

Example 1.1.7. (Laplacian on a rectangular domain) On a rectangle R = [0, a]× [0, b] ⊂
R2, a straightforward calculation using separation of variables shows us that, with Dirichlet
boundary conditions, the eigenfunctions of −∆ are given by

fj,k(x, y) = sin

(
jπ

a
x

)
sin

(
kπ

b
y

)
for j, k ≥ 1, with eigenvalues λj,k = (jπ/a)2+(kπ/b)2. With Neumann boundary conditions,
the eigenfunctions are

fj,k(x, y) = cos

(
jπ

a
x

)
cos

(
kπ

b
y

)
for j, k ≥ 0, with eigenvalues λj,k = (jπ/a)2 + (kπ/b)2.

Example 1.1.8. (Laplacian on D) On the unit disc D = {x ∈ R2 : |x| ≤ 1}, we have
−∆ = ∂2

r + 1
r∂r + 1

r2∂
2
θ in polar coordinates. Separating f(r, θ) = g(r)φ(θ), we see that

−∆f = λf =⇒ g′′(r)φ(θ) +
1

r
g′(r)φ(θ) +

1

r2
g(r)φ′′(θ) = λg(r)φ(θ).

This can ultimately be written in the form of Bessel’s equation x2J ′′(x) + xJ ′(x) + (x2 −
k2)J(x) = 0, for which the solutions are given by the Bessel functions

Jk(x) =
∞∑
i=0

(−1)i

(i!)Γ(k + i+ 1)

(x
2

)k+2i
.

One can verify that the general eigenfunctions of−∆ are of the form fλk (r, θ) = φk(θ)Jk(
√
λr),

where φk(θ) = ak cos(kθ) + bk sin(kθ) and the eigenvalue corresponding to fλk is λ. With
Dirichlet boundary conditions,

√
λ must be a zero of Jk; with Neumann boundary condi-

tions,
√
λ must be a zero of J ′k. Any f ∈ L2(R) can be decomposed into these eigenfunctions.
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It is apparent that the eigenfunctions of ∆ or −∆ are difficult to calculate for not-so-vanilla
manifolds, as we are limited only to separation of variables and Wentzel-Kramers-Brillouin
(WKB) approximation methods from quantum mechanics. Oftentimes, however, the in-
verse problem of describing what geometric information we can get from the eigenpairs of
∆ is more important. For instance, the semiclassical analysis we develop in Chapter 2 will
be useful for proving Weyl’s law for the asymptotic distribution of eigenvalues in the limit
λ → ∞. We will revisit the eigenvalue problem in greater depth after we introduce Weyl
quantization and the associated symbol calculus.

1.2 On Classical and Quantum Chaos

Quantum chaos deals with the quantum mechanics of classically chaotic systems. This term
is, however, a misnomer: quantum systems are usually much less sensitive to initial con-
ditions than classically chaotic systems, so instead what we refer to as quantum chaos (or
“quantum chaology”) focuses on the semiclassical limit of systems whose classical counter-
parts are chaotic [Ber03]. Qualitatively speaking, a classically chaotic Hamiltonian system
is one whose orbits exhibit extreme sensitivity to perturbations in initial conditions.

Current research in quantum chaos concentrates on roughly two areas: spectral statistics,
which compares the statistical properties of Laplacian eigenvalue (energy) distribution to the
classical behavior of the Hamiltonian, and semiclassical analysis, which relates the classical
motion of a dynamical system to its quantum mechanics. We focus on semiclassical analysis,
and give only a brief survey of spectral statistics in Chapter 4.

1.2.1 Billiard Flows and Hamiltonian Systems

We first provide some intuition by introducing a model system known as the billiard flow. A
billiard is a bounded, planar domain Ω ⊂ R2 with a smooth (possibly piecewise) boundary.
The billiard flow refers to the classical, frictionless motion of a particle in Ω in which its
angle of incidence to the boundary ∂Ω is the same as its angle of reflection off ∂Ω (Figure
1.3). Clearly, the total kinetic energy is conserved by this motion. The classical trajectory
of the particle depends largely on the shape of ∂Ω, and can itself be very complicated.

Example 1.2.1. (circular and Sinai billiard flows) Consider a particle starting some-
where on the boundary of a circular billiard, with angular coordinate ϕ0 and initial velocity
vector at an angle α0 to the circle’s tangent line (Figure 1.2a). Then the nth incident
boundary point is ϕn = (ϕ0 + 2nα0) mod 2π, and all the tangent angles are α0. Perturba-
tions affect the circular billiard linearly: if α′0 := α0 + ε, then the new incident points are
ϕ′n = (ϕn + 2εn) mod 2π, and indeed the distance |ϕ′n − ϕn| only grows linearly with n.

The flow on the Sinai billiard (Figure 1.2b), however, is both unstable and generally dif-
ficult to calculate. With the same notation as above, the orbit described by the conditions
ϕn = ϕ0 = 0, αn = α0 = π

2 is trivially periodic. If we perturb α0 by ε0, then for ϕ′0 > ε0 we
have α′0 = π

2 − (ε0 + ϕ′0). This gives ε1 = ε0 + 2ϕ′0 > 3ε0, assuming that ε0 is small enough
so that the particle collides with the circular boundary. Repeating this procedure yields
εn > 3εn−1 > ... > 3nε0, so ϕ′0 > 3nε0. Thus ϕ′n ≥ 3nε0 for all n less than any N ∈ N. The
periodic orbit we started with (ϕn = ϕ0 = 0, αn = α0 = π

2 ) is exponentially unstable, and
indeed it turns out that all orbits have this property [Bi01].
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Figure 1.2 |
Diagrams for
calculating
trajectories
on the circu-
lar and Sinai
billiards. α  = α₀

!

α₀
φ₀

φ1 1

θ

(a) ϕ1 = ϕ0 + ϑ, where ϕn is the
angular coordinate after n incidents
and α0 is the initial incident angle.
By plane geometry, ϑ = 2α0 and
α1 = α0.

φ₀  = φn

α₀ = α  = π/2n

θ

ε₀
ε1

β₀

(b) The blue trajectory is trivially periodic, but ex-
ponentially sensitive to perturbations. By perturb-
ing this trajectory by ε0 and identifying the first
incident point ϕ′0 with the angular coordinate ϑ, we
have (π/2)− β0 = ε0 + ϑ, for β0 := α′0.

(a) Rectangular stadium (b) Circular stadium (c) Bunimovich stadium

Figure 1.3 |
The billiard flow on dif-
ferent domains. Observe
that certain stadiums ex-
hibit stable, periodic tra-
jectories, while the other
stadiums are evenly filled
with unstable, “chaotic”
trajectories.

(d) Sinai stadium (e) Barnett stadium (f) Triangular stadium

In the quantum regime, billiards are described by wavefunctions ψn whose time-evolution
is given by the Schrödinger equation

i~
∂

∂t
ψn(x, t) = − ~2

2m
∆ψn(x, t),

where ∆ = ∆D is the Dirichlet Laplacian, ψn ∈ L2(Ω), ~ is Planck’s constant, and m is the
mass of the particle. We know from quantum mechanics that the time-dependent solutions
are of the form ψn(x, t) = exp(−itEn/~)φn(x), where the En are quantum energy levels

and φn satisfies the eigenvalue equation − h2

2m∆φn = Enφn. By taking λn := 2mEn/~2,
we see that the quantum-mechanical billiard flow corresponds to the eigenvalue problem
−∆ψn = λnψn. Thus the probability distributions of a particle’s position on the rectangular
or circular billiards are reflected in the contour plots of Figure 1.1; furthermore, they vary
depending on the eigenvalue—or energy—under consideration. The convergence between
the classical billiard flow and the eigenvalue problem is an example of what semiclassical
analysis deals with.
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Before discussing quantum ergodicity, we backtrack to formulate some of the mathemat-
ical notions behind classical and quantum mechanics more rigorously. We discuss classical
mechanics and symplectic geometry in this section, and briefly recall certain aspects of
quantum mechanics and its mathematical formulation as we progress in §2.

Recall that a symplectic manifold is a smooth, even-dimensional manifold M equipped
with a closed, nondegenerate two-form ω. A Hamiltonian is a smooth function H : M → R
or C. If (M,ω) is a symplectic manifold, then there is a fiberwise isomorphism ω : TM →
T ∗M by the nondegeneracy of ω. This identifies vector fields on M with one-forms on M ,
so every Hamiltonian H determines a unique Hamiltonian vector field XH on M where
the contraction ιXH (ω) with ω is the one-form dH, i.e. ω(XH , Y ) = dH(Y ) ⇐⇒ ιXHω =
dH ⇐⇒ ιXω is exact. Moreover, integrating the Hamiltonian vector field XH generates a
one-parameter family of integral curves, which represent solutions to the equations of mo-
tion. These integral curves are diffeomorphisms Φt : M →M which preserve the symplectic
form in the sense that (Φt)∗ω = ω for all t, and{

Φ0 = IdM ,

∂tΦ
t ◦ (Φt)−1 = XH .

We also remind ourselves that any Hamiltonian vector field XH preserves the Hamiltonian
in the sense that LXHH = ιXHdH = ιXH ιXHω = 0 ,where LXH denotes the Lie derivative
along XH (i.e. the commutator [XH , ·]). By analogy, we call a vector field preserving
the symplectic form ω (e.g., LXω = 0 ⇐⇒ ιXω is closed) symplectic. The first de Rham
cohomology group H1(M) measures when ιXH is closed and exact, or when a symplectic
vector field is Hamiltonian. If H1(M) = 0, then these two notions coincide globally; else
they only coincide locally on contractible open sets.

This Hamiltonian formalism allows us to describe classical systems in terms of Hamil-
tonian flows. In particular, we take a Riemannian manifold M as the configuration space
of a classical system and the cotangent bundle T ∗M as its phase space. By convention,
we set T ∗M = R2n as our symplectic manifold with the canonical symplectic structure
ω =

∑
j dxj ∧dpj , where x = (xj) and p = (pj) respectively denote position and momentum

coordinates. Φt = (x(t), p(t)) is then an integral curve of the Hamiltonian vector field XH

if Hamilton’s equations hold: {
∂txj = ∂pjH,

∂tpj = −∂xjH.

This is because if

XH =
n∑
j=1

(
∂H

∂pj

∂

∂xj
− ∂H

∂xj

∂

∂pj

)
,

then applying ιXH to ω =
∑

j dxj ∧ dpj gives

ιXHω =
n∑
j=1

ιXH (dxj ∧ dpj) =
n∑
j=1

((ιXHdxj) ∧ dpj − dxj ∧ (ιXHdpj))

=

n∑
j=1

(
∂H

∂pj
dpj +

∂H

∂xj
dxj

)
= dH.
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Example 1.2.2. (Newton’s second law) If n = 3, then Newton’s second law states that

md2x
dt2

= −∇V (x) for x = (x1, x2, x3) ∈ R3 and m the mass of a particle moving along a

curve x(t) under a potential V (x). If the momentum variables are defined as pi = mdxi
dt

and the Hamiltonian is H(x, p) = 1
2m |p|

2 + V (x), then in the phase space T ∗R3 = R6 with
coordinates (x1, x2, x3, p1, p2, p3), we have

dxi
dt

=
pi
m

=
∂H

∂pi
and

dpi
dt

= m
d2xi
dt2

= −∂V
∂xi

= −∂H
∂xi

.

So Hamilton’s equations are equivalent to Newton’s second law, and it is clear that H is
conserved by the motion.

What is the algebraic structure of Hamiltonian vector fields? First we recall that vector
fields are differential operators on functions in the sense that Xf = df(X) = LXf . We also
recall that, if the Lie bracket of two vector fields X and Y is denoted by [X,Y ] = XY −Y X
and X and Y are symplectic, then [X,Y ] is itself a Hamiltonian vector field with Hamilto-
nian function ω(X,Y ). The Lie bracket [·, ·] then endows a bilinear form on vector fields
on (M,ω), showing that they are in fact Lie algebras with the following inclusions:

(Hamiltonian vector fields, [·, ·]) ⊂ (symplectic vector fields, [·, ·]) ⊂ (vector fields, [·, ·]).

Similarly, we recall that the Poisson bracket of f, g ∈ C∞(M,R) is given by

{f, g} = ω(Xf , Xg) =
n∑
i=1

(
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
,

where (x, p) are canonical (Darboux) coordinates. This has the property that X{f,g} =
[Xg, Xf ] =⇒ X{f,g} = −[Xf , Xg]. Like the Lie bracket, the Poisson bracket is antisymmetric
and satisfies the Jacobi identity {f, {g, h}}+{g, {h, f}}+{h, {f, g}} = 0. A Poisson algebra
(P, {·, ·}) is then a commutative associative algebra with a Poisson bracket that satisfies
the Leibniz rule {f, gh} = {f, g}h + g{f, h}. If (M,ω) is a symplectic manifold, then
(C∞(M), {·, ·}) is a Poisson algebra and M is said to be a Poisson manifold.

Finally, we remind ourselves that a Hamiltonian system is specified by the data (M,ω,H),
where (M,ω) is a symplectic (Poisson) manifold and H is a Hamiltonian function. Any other
function f is said to be in involution with H if {H, f} = 0; this means that f , called a
constant of motion, remains constant (or “is conserved”) along the integral curves of the
Hamiltonian vector field XH . By the Jacobi identity, we see that if f and g are constants
of motion, then {f, g} is a constant of motion as well. A Hamiltonian system is integrable if
it admits a maximal set of independent constants of motion f1, f2, ... that are in involution
with each other. Here the functions f1, f2, ... are said to be independent if their differentials
df1, df2, ... are linearly independent on a dense subset of M . If our symplectic manifold
M is of dimension 2n, then by symplectic linear algebra we know that the “maximal set”
contains n elements.

Definition 1.2.3. (integrability) A 2n-dimensional Hamiltonian system (M,ω,H) is (com-
pletely, classically, or Liouville) integrable if it admits n independent constants of motion
H = f1, f2, ..., fn such that {fi, fj} = 0 for all i and j.
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Though there are interesting cases where dimM =∞ and an infinite number of constants
of motion exist (see, for example, the KdV hierarchy [GS06]), for the purposes of quantum
ergodicity our prototypical examples will involve Hamiltonian systems in lower finite di-
mensions. The Liouville-Arnold theorem tells us that if a system is integrable, then there is
a canonical change of variables to action-angle coordinates on M in which the Hamiltonian
flow behaves like quasiperiodic flows on tori:

Theorem 1.2.4. (Liouville-Arnold, [dS08]) Let (M, ω,H) be an integrable system of di-
mension 2n with integrals of motion f1 = H, f2, ..., fn. Let c ∈ Rn be a regular value
of F := (f1, ..., fn). The corresponding level set (or energy shell) F−1(c) is a Lagrangian
submanifold of M (i.e. a submanifold of dimension n where ω restricts to zero), and

1. If the flows of Xf1 , ..., Xfn starting at p ∈ F−1(c) are complete, then the connected
component of F−1(c) containing p is of the form Rn−k×Tk for some k where 0 ≤ k ≤ n.
With respect to this affine structure, this component has angle coordinates (α1, ..., αn)
in which the flows of Xf1 , ..., Xfn are linear.

2. There are action coordinates (β1, ..., βn) where the βi’s are integrals of motion and
(α1, ..., αn, β1, ...βn) form a Darboux chart.

In other words, the phase space of an integrable system is foliated by invariant tori, and
the Hamiltonian flow reduces to translations on these tori. If a system is “stable,” then two
similar initial conditions would correspond to points on nearby tori, and the orbits of the
Hamiltonian flow coming from these tori would correspond to translations in slightly differ-
ent directions. The trajectories will therefore separate slowly (or linearly). It should not be
surprising that integrability is a rather strong condition: the probability that a randomly
chosen system with more than one degree of freedom is integrable is zero [SVM07].

Example 1.2.5. (integrability of two-dimensional systems) Any two-dimensional Hamil-
tonian system is trivially integrable because the Hamiltonian is conserved: examples of
this include the simple pendulum and harmonic oscillator. If M = R2n with the canonical
symplectic form, then any system in which H varies only with momentum coordinates pi is
integrable, as the pi themselves are independent constants of motion in pairwise involution.

Example 1.2.6. (Hamiltonian nature of billiards) Billiards are Hamiltonian systems, and
certain ones are integrable. The angular momentum α0 is a constant of motion for the circu-
lar billiard, since it remains unchanged throughout the motion. Similarly, the elliptical and
rectangular billiards are integrable, as their angular momentum and linear momentum are
respectively preserved. As we may expect, the triangular, Sinai, Barnett, and Bunimovich
billiards are “chaotic” and not integrable; see [Bi01] for a more detailed discussion and proof.

With the set-up as above, we note that the level set Σc := H−1(c) carries a natural flow-
invariant measure. This is called the Liouville measure, and is constructed as follows. If
dimM = 2n, then 1

n!ω
n, where ω is the symplectic structure, is a volume form onM. Since

dH is a nonzero one-form in a neighborhood of Σc, we can locally write 1
n!ω

n = η ∧ dH for
some 2n− 1 form η. The pullback of 1

n!ω
n to H−1(c) is clearly independent of the choice of

η, and is therefore a well-defined volume form. Furthermore, this measure is preserved by
the Hamiltonian flow because ω, dH, and Σc are.
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Definition 1.2.7. (Liouville measure) The Liouville measure µcL is the flow-invariant vol-
ume form on any energy shell Σc of a Hamiltonian system. In particular, for each c ∈ [a, b],
µcL is characterized by the formula∫∫

H−1[a,b]
fdxdp =

∫ b

a

∫
Σc

fdµcLdc

for all a < b and f : T ∗M → R (or C), where M is a Riemannian manifold.

If M = R2n with the canonical symplectic form, then the Liouville measure on H−1(c) is
given by dµcL = dσ/||∇H||, where dσ is the hypersurface area element and ∇ is the metric-
induced gradient. To see this, we consider the volume element on H−1[c, c + δc] for small
δ, and note that the “thickness” of this shell is proportional to 1/||∇H|| (c.f. [Pet07]).

We need one more geometric ingredient. Recall that the geodesic flow gt on a Rieman-
nian manifold (M, g) is a local R-action on TM defined by gt(v) = γ̇v(t), where γ̇v(t) is the
unit tangent vector to the geodesic γv(t) for which γ̇v(0) = v. It is well-understood that
any geodesic flow is a Hamiltonian flow given a suitable Hamiltonian:

Theorem 1.2.8. (geodesic and cogeodesic flow, [Mil00]) Let (M, g) be a Riemannian
manifold and endow the tangent bundle T ∗M with the canonical symplectic structure
ω =

∑
i dxi∧dpi, where (x1, ..., xn, p1, ..., pn) are local coordinates in T ∗M . If H : T ∗M → R

is given by

H(x, p) =
1

2
|p|2 =

1

2
gijpipj ,

then the Hamiltonian flow of H is called the cogeodesic flow. The trajectories of the co-
geodesic flow are geodesics when projected to M , and the cogeodesic flow identifies with
the geodesic flow of H on (TM,ω) via the metric-induced isomorphism [ : TM ∼= T ∗M .
Thus the integrability of a geodesic flow is a well-defined notion.

Example 1.2.9. (geodesic integrability of surfaces of revolution, [Kiy00]) Define a surface
of revolution as a two-dimensional Riemannian manifold that admits a faithful S1-action
by isometries. Let M be a surface of revolution, X the corresponding Killing field, and
π : TM →M the canonical projection. From the classical Clairaut’s theorem, the function
f : TM → R defined by f(x, ξ) = 〈ξ,X(π(x, ξ))〉g(x) is invariant under the geodesic flow gt

generated by the vector field of H = 1
2g
ijpipj . (Explicitly, if γ(t) = (r(t), ϑ(t)) is a geodesic

on M and α(t) is the angle between γ′(t) and ∂
∂ϑ |γ(t), then the quantity F = r(t) sinα(t)

remains constant along γ.) Thus gt is integrable, with constants of motion F and H.

Other examples of surfaces with integrable geodesic flows include circular billiards, the hy-
perbolic half-plane (or any Hadamard manifold, [Bal95]), and the two-dimensional sphere
S2. Although we will not explain these examples, detailed discussions of many integrable
geodesic flows are readily available in the literature [Arn78, Mil00].

1.2.2 Fundamentals of Ergodic Theory

We briefly discuss the meaning of chaotic. If integrable systems exhibit stable trajectories,
then systems that only conserve the Hamiltonian must be the opposite: they must exhibit
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evenly distributed trajectories and be “chaotic.” Indeed, this idea is equivalent to saying
that the flow as a measure-preserving transformation is ergodic.

Definition 1.2.10. (ergodicity and mixing) Let (M,A, µ) be a measure space, A a σ-
algebra, and T : M →M a measurable, measure-preserving map. Then T is ergodic if:

1. the only T -invariant measurable sets are ∅ and M ;

2. every T -invariant function (f ◦ T = f) is constant except on a set of measure zero;

3. or almost every orbit is equidistributed, i.e. for almost all x ∈M ,

lim
N→∞

#{n ∈ N : 0 ≤ n ≤ N − 1, Tn(x) ∈ A}
N

=
µ(A)

µ(M)

for every measurable subset A ∈ A.
It is straightforward to show that these conditions are equivalent [Ste10]. T is said to be
(strong) mixing if limn→∞ µ(A∩T−n(B)) = µ(A)µ(B) for all measurable subsets A,B ∈ A.
Mixing implies ergodicity: if A is a T -invariant measurable set, then setting A = B yields
µ(A) = µ(A)2 =⇒ µ(A) = 0 or 1.

Thus we are able to discuss the ergodicity of the geodesic flow gt by taking M as the (com-
pact) energy shell Σc, µ as the Liouville measure µcL, and T as gt. gt is then an ergodic flow
if the ergodicity conditions hold for all t ∈ R, and gt is ergodic on H−1[a, b] if they hold for
all c ∈ [a, b]. As mentioned before, an immediate example of an ergodic geodesic flow is the
billiard flow on the Sinai stadium.

We take this opportunity to state a fundamental result from ergodic theory. If z =
(x1, ..., xn, p1, ..., pn) ∈ Σc and f : T ∗M → R or C, then for T > 0 we define the time
average as

〈f〉T :=
1

T

∫ T

0
f(gt(z))dt = −

∫ T

0
f(gt(z))dt,

where the slash through the second integral denotes averaging. Note that 〈f〉T depends on
z ∈ T ∗M . Our first theorem, a weaker version of Birkhoff’s ergodic theorem, relates the
time-average to the space-average:

Theorem 1.2.11. (weak ergodic theorem) If gt is ergodic on (Σc,A, µ
c
L), then

lim
T→∞

∫
Σc

(
〈f〉T −−

∫
Σc

fdµcL

)2

dµcL = 0,

for all f ∈ L2(Σc). The space-average is denoted here by −
∫

Σc
fdµcL =

∫
Σc
fdµcL/µ

c
L(Σc).

Proof. Following [Zwo12], we normalize µcL so that µcL(Σc) = 1. Let XH denote the
Hamiltonian vector field that identifies with the geodesic flow gt, and let

A = {f ∈ L2(Σc) : (gt)∗f = f ∀t}, B0 = {XHφ : φ ∈ C∞(Σc)}, and B = B0 ⊂ L2(Σc),

where wlog all functions are C-valued. We claim that B⊥0 = A, where the orthogonal
complement is in L2(Σc): if h ∈ A and f = XHφ ∈ B, then by the flow-invariance of µcL,

〈h, f〉 =

∫
Σc

hfdµcL =

∫
Σc

hXHφdµ
c
L =

∂

∂t

∫
Σc

h(gt)∗φdµcL|t=0

=
∂

∂t

∫
Σc

(g−t)∗hφdµcL|t=0 =
∂

∂t

∫
Σc

hφdµcL|t=0 = 0,
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so h ∈ B⊥0 . Likewise, for h ∈ B⊥0 , we have

0 =

∫
Σc

hXH(g−t)∗φdµcL = − ∂

∂t

∫
Σc

h(g−t)∗φdµcL = − ∂

∂t

∫
Σc

(gt)∗hφdµcL

for any φ ∈ C∞(Σc). So for all t ∈ R and φ ∈ C∞(Σc),∫
Σc

(gt)∗hφdµcL =

∫
Σc

hφdµcL,

and we take (gt)∗h = h ∈ A. Then B⊥0 = A =⇒ L2(Σc) = A⊕B. Decomposing f = fA+fB
for fA ∈ A, fB ∈ B, we see that 〈fA〉T = fA. Now to show that 〈f〉T = 〈fA〉T + 〈fB〉T → fA
in L2(Σc), it suffices to show that 〈fB〉T → 0 as T →∞ where fB ∈ B. This follows easily:∫

Σc

|〈XHφ〉T |2dµcL =
1

T 2

∫
Σc

∣∣∣∣∫ T

0

d

dt
(gt)∗φdt

∣∣∣∣2 dµcL =
1

T 2

∫
Σc

|(gT )∗φ− φ|2dµcL

≤ 4

T 2

∫
Σc

|φ|2dµcL → 0

as T →∞. So indeed we have 〈f〉T → fA in L2(Σc).
Finally, we note that the ergodicity of gt implies that A is precisely the set of constant

functions. This is because for all fA ∈ A, the set f−1
A [c,∞) is invariant under gt and has

either full or zero measure. Since functions are unique in L2(Σc) up to a set of measure
zero, fA is identically constant. Observing that the projection f 7→ fA is identical to space-
averaging w.r.t. µcL, we have 〈f〉T = fA = −

∫
Σc
fdµcL as T →∞. �

Birkhoff’s ergodic theorem tells us that in fact 〈f〉T → −
∫

Σc
fdµcL as T →∞, but we will only

use the weak ergodic theorem in Chapter 3 for proving the quantum ergodicity theorem.
Surprisingly, there are few other prerequisites we need.

One final thing that is important for understanding the quantum chaos literature is the
statement that the geodesic flow on any negatively curved Riemannian manifold is ergodic.
Though the full result requires the machinery of smooth ergodic theory and the introduction
of such notions as the Anosov property and hyperbolicity, for the sake of brevity we will only
cite the theorem as follows:

Theorem 1.2.12. (ergodicity of geodesic flow on negatively curved manifold, [Bal95]) Let
(M, g) be a compact Riemannian manifold with a C3 metric and negative sectional curva-
ture. Then the geodesic flow gt : TM → TM is ergodic.

Sketch of proof. This exact result is proved in the source cited above. The proof relies
on a Hopf argument, which uses the Birkhoff ergodic theorem, the density of continuous
functions among integrable functions, and the foliation of the tangent space into stable and
unstable manifolds to show that gt is Anosov (a chaotic property stronger than ergodicity).
It can be shown from this that all gt-invariant functions on Σc are constant w.r.t. µcL, except
on a set of measure zero. �

Since these conditions are equivalent, QE and QUE theorems in the literature assume either
the ergodicity of a manifold’s geodesic flow or the negativity of its sectional curvature.
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1.3 Key Themes in Semiclassical Analysis and Quantum Ergodicity

We conclude our introductory chapter with a broad overview of the problem at hand.
Semiclassical analysis examines how a chaotic system’s classical description is reflected in
its quantum behavior in the semiclassical ~→ 0 limit: more precisely, how does the ergodicity
of the geodesic flow on a Riemannian manifold determine the distribution of high-eigenvalue
Laplacian eigenfunctions?

As we have seen, the time evolution of any classical system on a Riemannian manifold
(M, g) is given by the Hamiltonian flow Φt on the phase space T ∗M , and the flow on the
energy shell Σc simply identifies with the geodesic flow gt on M . If (M, g) is compact
with negative curvature, then we also know that gt is ergodic with respect to the Liouville
measure µcL on Σc. The corresponding quantum dynamics is the unitary flow generated
by the Laplace-Beltrami operator on L2(M), as the quantum-mechanical time evolution is
determined by solutions to the eigenvalue problem −∆ψ = λnψ [Lan98]. We may expect
that the ergodicity of gt influences the spectral theory of the Laplacian by making its
eigenfunctions equidistributed: if the eigenpair sequence {(ψn, λn)} is ordered by increasing
eigenvalues, then as n→∞ the sequence of probability measures given by

µn(B) :=

∫
B
|ψn(y)|2dy

for B ⊂M may converge to the uniform measure over M . This is essentially what the quan-
tum ergodicity theorem states, and we will formulate this result more rigorously in Chapter 3.

Having introduced these requisite notions, we pause to reflect on certain key themes that
appear throughout the rest of our thesis. We will continue to see that these themes create
a coherent framework for thinking about problems in semiclassical analysis. Moreover, the
following comparisons are useful for readers not already familiar with the mathematical
formulation of quantum mechanics.

1. The classical-quantum correspondence.

• Classical states are points of a symplectic manifold (M, ω), where M is the
cotangent bundle of a Riemannian manifold (M, g), i.e. M = T ∗M . Quantum
states are elements in PH (the projectivization of a Hilbert space H) or CPn.
This is because both ψ and cψ for c > 0 represent the same physical state. Since
M = T ∗M in the classical case, here we take H = L2(M).

• Classical observables are functions f :M→ R (or C). As we know from quantum
mechanics, quantum observables are self-adjoint operators on H. An example of
a classical Hamiltonian H : M → C is H(x, p) = 1

2m |p|
2 + V (x), where V is a

potential function. An example of a quantum Hamiltonian is a time-independent
Schrödinger operator H = −~2

2 ∆ + V, where V : M → C is some potential.

• Classical dynamics are given by the Hamiltonian flow of the vector field XH ,
where H : M → R (or C). If we take the canonical symplectic structure ω =∑

i dxi ∧ dpi, then the flow is defined by Hamilton’s equations and preserves ω.
Quantum dynamics are given by the Schrodinger equation and the unitary flow
U t (a quantized geodesic flow) coming from the Laplacian ∆ acting on H; see
§2.3.3 and [Zel10] for a more rigorous treatment of quantum evolution.
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2. Physical intuition in the semiclassical limit. Although we can numerically take
the semiclassical limit ~ → 0, in reality we need the energies to be bounded. Our
expectation should be that, in the semiclassical regime, the asymptotic behavior of
quantum objects is governed by classical mechanics. The semiclassical limit therefore
serves as a physical passage from quantum to classical mechanics.

3. Quantization as a bridge between the categories of Hilbert spaces and sym-
plectic manifolds. To actually relate quantum and classical mechanics, we must
associate the Hilbert space H = L2(M) to the symplectic manifold M = T ∗M and
assign operators on H to functions onM. It is well-understood that a functorial pro-
cedure of doing so does not exist [Hov51], but there are certain “nice” ways in which
we can “quantize” operators. The most convenient of these is Weyl quantization. In
particular, the Weyl quantization formula uses the Fourier transform to associate the
symbol a = a(x, p) : M → C to a quantum observable (pseudodifferential operator)
A(x, hD), where x denotes position, D a differential, and h a semiclassical parameter.
How do the analytic properties of the symbol a dictate the functional-analytic prop-
erties of its quantization A? It turns out that the symbol calculus of §2.2 will give us
a framework for manipulating pseudodifferential operators.

4. The technical framework for semiclassical analysis. We use symplectic geome-
try to formalize the behavior of classical dynamical systems and the Fourier transform
to relate their position and momentum variables. Since semiclassical quantization re-
lies on a rescaled, semiclassical Fourier transform, analytic methods of calculating
integrals and Fourier transforms will prove useful. Working the semiclassical calcu-
lus out on Rn will allow an extension of its tools to coordinate patches on arbitrary
manifolds, ultimately leading to a proof of the quantum ergodicity theorem.

5. Visualizing the simple cases and understanding the interaction between
structure and randomness. As a general technique, we note that geometry is of-
tentimes based on visualization. It will therefore be instrumental to remember the
billiard flow—one of the simplest, most well-studied models in quantum chaos—as we
work out the classical-quantum correspondence in subsequent chapters. Our study
of semiclassical analysis illustrates the thematic dichotomy between classical structure
and quantum randomness, about which the mathematician Terrence Tao writes in
[Tao07]:

The “dichotomy between structure and randomness” seems to apply in circumstances
in which one is considering a high-dimensional class of objects... one needs tools
such as algebra and geometry to understand the structured component, one needs tools
such as analysis and probability to understand the pseudorandom component, and one
needs tools such as decompositions, algorithms, and evolution equations to separate
the structure from the pseudorandomness.
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2 An Introduction to Semiclassical Analysis

This chapter provides a primer in one of the most basic notions of semiclassical analysis:
that of symbol quantization. We start by defining the Fourier transform on Rn and the
quantization formulas we will use, and end by proving several results that are crucial to
quantum chaos and quantum ergodicity. These results include Weyl’s law for the asymptotic
distribution of Laplacian eigenvalues and Egorov’s theorem for the correspondence between
classical and quantum mechanics. In developing the symbol calculus, we will also describe
how certain properties of symbols relate to the properties of their quantum counterparts
and derive estimates for the asymptotic behavior of quantized operators.

2.1 Semiclassical Quantization

From elementary physics, we know that the Fourier transform allows us to convert func-
tions of the position variable x to functions of the momentum variables p in the phase space
T ∗M . Quantization is the tool that allows us to deal with both sets of variables simultane-
ously in the semiclassical limit. Functions of both x and p variables are called symbols, and
are quantized using a modified, semiclassical Fourier transform. Moreover, the pseudodif-
ferential operators (ψDOs) produced by quantization have a precise meaning as quantum
observables, the self-adjoint operators corresponding to the classical observables represented
by the symbols. We therefore start with a review of the Fourier transform before proceeding
to write down quantization formulas.

2.1.1 Distributions and the Fourier Transform

We define the Fourier transform on Rn; the following constructions are applicable to any
open subset of a smooth manifold using a partition of unity. Recall that the Fourier trans-
form is an automorphism of the Schwartz space, the function space of all smooth, rapidly
decaying functions f in the sense that the derivatives f (n) decay faster than any inverse
power of |x|.

Definition 2.1.1. (Schwartz space) Define the seminorm as ||f ||α,β := supx∈Rn |xα∂βf | for
multiindices α = (α1, ..., αn), β = (β1, ..., βn) ∈ Nn and functions f ∈ C∞(Rn), where

xα =
n∏
i=1

xαii , ∂β =
n∏
i=1

∂βi

∂xβii
.

The Schwartz space in Rn is the set S = S(Rn) = {f ∈ C∞(Rn) : ||f ||α,β <∞ ∀α, β ∈ Nn}.
With the seminorm || · ||α,β as above, we note that S is a Fréchet space over C, and say that
fj → f in S if ||fj − f ||α,β → 0 for all multiindices α and β.

Definition 2.1.2. (Fourier transform) The Fourier transform is an isomorphism of topo-
logical vector spaces (but not of Fréchet spaces) F : S 3 f 7→ F(f) ∈ S, which for a function
f ∈ S is denoted by either F(f) or f̂ and given by

F(f)(p) =

∫
Rn
e−i〈p,x〉f(x)dx

22



for x, p ∈ Rn and f ∈ S, with inverse

F−1(f)(x) = (2π)−n
∫
Rn
ei〈x,p〉f(p)dp.

Note that we will always denote the variable conjugate to x as p. The latter equation is
called the Fourier inversion formula, and combining F and F−1 leads to the identity

f(x) = (2π)−n
∫∫

Rn×Rn
ei〈x−y,p〉f(y)dydp.

Proposition 2.1.3. (Fourier transform of an exponential of a real quadratic form, [Zwo12])
Let Q be a real, symmetric, and positive-definite n× n matrix. Then

F(e−
1
2
〈Qx,x〉) =

(2π)n/2

(detQ)1/2
e−

1
2
〈Q−1p,p〉.

This example is useful as a higher-dimensional generalization of the fact that in the one-
dimensional case the Fourier transform of a Gaussian (a function of the form f(x) =
C exp(−ax2), where C, a ∈ R) remains a Gaussian. It is also important in subsequent
proofs relating quantization to the Fourier transform.

Proof. We have from a straightforward computation that

F(e−
1
2
〈Qx,x〉) =

∫
Rn
e−

1
2
〈Qx,x〉−i〈x,p〉dx =

∫
Rn
e−

1
2
〈Q(x+iQ−1p),x+iQ−1p〉e−

1
2
〈Qp,p〉dx

= e−
1
2
〈Q−1p,p〉

∫
Rn
e−

1
2
〈Qy,y〉dy = e−

1
2
〈Q−1p,p〉

∫
Rn
e−

1
2

∑n
k=1 λkw

2
kdw,

where the last equality follows by changing into an orthogonal set of variables {wk} so that
Q is diagonalized with entries λ1, ..., λn. The second factor is then given by

e−
1
2

∑n
k=1 λkw

2
kdw =

n∏
k=1

∫ ∞
−∞

e−
λk
2
w2
dw =

n∏
k=1

21/2

λ
1/2
k

∫ ∞
−∞

e−y
2
dy =

(2π)n/2

(λ1...λn)1/2
=

(2π)n/2

(detQ)1/2
,

and the desired result follows. �

Having defined the Fourier transform F , we deduce its following properties, which are
proven rigorously in standard analysis textbooks; see, for example, [SS03] and [Hör83a].

Theorem 2.1.4. (properties of F) The Fourier transform F : S → S is indeed an isomor-
phism of topological vector spaces with inverse F−1 given above. Furthermore, it possesses
the following differentiation and convolution relations for all f, g ∈ S:

(i)Dα
p (F(f)) = F((−x)αf) and F(Dα

x (f)) = pαF(f), whereDα
x := 1

i|α|
∂α = (−i∂x1)α1 ...

(−i∂xn)αn .
(ii) F(fg) = (2π)−nF(f) ∗ F(g).
(iii) 〈F(f), g〉 = 〈f,F(g)〉.
(iv) 〈f, g〉 = (2π)−n〈F(f),F(g)〉, and in particular ||f ||2 = (2π)−n||F(f)||2, where 〈·, ·〉

and || · || denote by default the L2-inner product and norm. This is Plancherel’s theorem.
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These properties result in the following useful estimates, which are stated without proof
below:

Proposition 2.1.5. (estimates of F) Let ||f ||p denote the Lp-norm of f . We have
(i) ||F(f)||∞ ≤ ||f ||1 and ||f ||∞ ≤ (2π)−n||F(f)||1.
(ii) ∃C > 0 : ∀α ∈ Nn, ||F(f)||1 ≤ C max|α|≤n+1 ||∂αf ||1.

Extending the Fourier transform to distributions now allows us to define F for a broader
range of generalized functions. Recall that a distribution on Rn is a linear functional
ϕ : C∞c (Rn) → R (or C) such that limn→∞ ϕ(fn) = ϕ(limn→∞ fn) in C∞c (Rn), where
the seminorm is the same as before and we remember that C∞c (Rn) denotes the space of
smooth, compactly supported functions on Rn. The set of all distributions generalizes and
forms a vector space dual to C∞c (Rn). For example, the Dirac delta distribution δ, which
has the property that ∫ ∞

−∞
δ(x)f(x)dx = f(0),

is given by δ : C∞c (R) 3 f 7→ 〈δ, f〉 = f(0) ∈ R, where we abuse notation by writing
δ = 〈δ, ·〉 and continue to take the L2-inner product 〈f, g〉 =

∫
Rn f(x)g(x)dx. Analogously,

the vector space of tempered distributions S ′ is defined by duality from the Schwartz space
S. Introducing tempered distributions gives, among other things, the correct vector space
for a rigorous formulation of the Fourier transforms of nonsmooth functions.

Definition 2.1.6. (tempered distributions) Let the space of tempered distributions S ′ be
the set of all continuous linear functionals ϕ : S 3 f 7→ ϕ(f) := 〈ϕ, f〉 ∈ C in the sense that
limn→∞ ϕ(fn) = ϕ(limn→∞ fn). We say that ϕj → ϕ ∈ S ′ if ϕj(f) → ϕ(f) for all f ∈ S,
and define for any multiindex α ∈ Nn:

(1) Dαϕ(f) := (−1)|α|ϕ(Dαf).
(2) (xαϕ)(f) := ϕ(xαf).

Since F : S → S is an automorphism, F also extends to S ′ by F(ϕ)(f) := ϕ(F(f)), where
ϕ ∈ S ′ and f ∈ S.

Thus the vector space S ′ generalizes the set of bounded, slow-growing, locally integrable
functions: in particular, all L2 functions and distributions with compact support are in S ′.

Example 2.1.7. (Heavyside step function) Let H : R→ R be given by H(x) = 1 if x ≥ 0,
and 0 otherwise. This definition of H gives the tempered distribution 〈H, ·〉, whose deriva-
tive is the Dirac delta. Indeed, we have 〈H ′, f〉 = −〈H, f ′〉 = −

∫∞
0 f ′(x)dx = −f(x)|∞0 =

f(0) = 〈δ, f〉.

Example 2.1.8. (Fourier transform of Dirac delta) Viewed as a tempered distribution, δ
has a Fourier transform:

〈F(δ), f〉 = 〈δ,F(f)〉 = F(f)(0) =

∫
R
f(x)dx = 〈1, f〉 =⇒ F(δ) = 1.
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On the other hand, for the Fourier transform of the constant function 1, we see that

〈F(1), f〉 = 〈1,F(f)〉 =

∫
R
f̂(x)dx = 2πf(0) =⇒ F(1) = 2πδ.

The following proposition will be used in §2.2 to show a result pertaining to the decompo-
sition of a Weyl-quantized operator.

Proposition 2.1.9. (Fourier transform of an imaginary quadratic exponential, [Zwo12])
Let Q be a real, symmetric, and invertible n× n matrix. Then

F(e
i
2
〈Qx,x〉) =

(2π)n/2e
iπ
4

sgn(Q)

|detQ|1/2
e−

i
2
〈Q−1p,p〉,

where sgn(Q) = #{positive eigenvalues of Q} −#{negative eigenvalues of Q} is called the
sign of Q. In particular, we have an extension of Proposition 2.1.3, where the phase shift
exp( iπ4 sgn(Q)) comes from the complex exponential.

Proof. First we note that the Fourier transform F(e
i
2
〈Qx,x〉) is not absolutely convergent

since ∫
Rn
|e

i
2
〈Qx,x〉−i〈x,p〉|dx =

∫
Rn
eIm(〈x,p〉)− 1

2
Im(〈Qx,x〉)dx =

∫
Rn
dx =∞,

as Q is a real matrix. To ensure absolute convergence, we perturb Q slightly so that
Qε := Q+ εiI for some ε > 0. This gives us∫

Rn
|e

i
2
〈Qεx,x〉−i〈x,p〉|dx =

∫
Rn
e−

1
2

Im(〈Qεx,x〉)dx =

∫
Rn
e−

ε
2
〈x,x〉dx <∞,

where the convergence follows from the argument used to prove Proposition 2.1.3. Rewriting

the Fourier transform of the modified exponential F(e
i
2
〈Qεx,x〉) now gives us

F(e
i
2
〈Qx,x〉) = lim

ε→0
F(e

i
2
〈Qεx,x〉) = lim

ε→0

∫
Rn
e
i
2
〈Qεx,x〉−i〈x,p〉dx

= lim
ε→0

∫
Rn
e
i
2
〈Qε(x−Q−1

ε p),x−Q−1
ε p〉e−

i
2
〈Q−1

ε p,p〉dx = e−
i
2
〈Q−1p,p〉 lim

ε→0

∫
Rn
e
i
2
〈Qεy,y〉dy,

where y := x − Q−1
ε p. As before, we diagonalize Q so that Q = (λab), where λab = λa for

a = b and λab = 0 otherwise. Moreover, we arrange the eigenvalues so that λ1, .., λm are
positive and λm+1, ..., λn are negative. Then, since∫

Rn
e−

1
2
〈Qy,y〉dy =

∫
Rn
e−

1
2

∑n
k=1 λkw

2
kdw

and Qε = Q+ εiI can be diagonalized so that

Qε =

 λ1 + εi 0
. . .

0 λn + εi

 ,

we have

lim
ε→0

∫
Rn
e
i
2
〈Qεy,y〉dy = lim

ε→0

∫
Rn
e
∑n
k=1

1
2

(iλk−ε)w2
kdw = lim

ε→0

n∏
k=1

∫ ∞
−∞

e
1
2

(iλk−ε)w2
dw.
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Figure 2.1 |
The contours Ck for
λk > 0 and λk < 0
used in the proof of
Proposition 2.1.9.

Re z

Im z

Ck

λ  < 0k

λ  > 0k

Im z = Re z

 –Im z = Re z

If 1 ≤ k ≤ m, then λk > 0 and we make the change of variables z = (ε − iλk)1/2w, where
we choose the branch of the square root for which Im((ε− iλk)1/2) < 0. This gives us∫ ∞

−∞
e

1
2

(iλk−ε)w2
dw = (ε− iλk)−1/2

∫
Ck

e−
1
2
z2
dz = (ε− iλk)−1/2

∫
Ck

e−
1
2
z2
dz,

where Ck is the contour in C shown in Figure 2.1. With z = x + iy, we also see that
e−

1
2
z2

= e
1
2

(y2−x2)−ixy. The fact that f(z) = e−
1
2
z2

is entire and x2 > y2 on Ck then allows
us to deform Ck into the real line, so that∫

Ck

e−
1
2
z2
dz =

∫ ∞
−∞

e−
1
2
x2
dx =

√
2π.

Thus, for λk > 0,

lim
ε→0

m∏
k=1

∫ ∞
−∞

e
1
2

(iλk−ε)w2
dw = (2π)m/2 lim

ε→0

m∏
k=1

(ε− iλk)−1/2 = (2π)m/2
m∏
k=1

e
iπ
4 λ
−1/2
k .

Repeating the argument above for the negative eigenvalues λk < 0 (m∗ = m + 1 ≤ k ≤ n)
and the branch of the square root where Im((ε− iλk)1/2) > 0 gives us

lim
ε→0

n∏
k=m∗

∫ ∞
−∞

e
1
2

(iλk−ε)w2
dw = (2π)

n−m
2 lim

ε→0

n∏
k=m∗

(ε−iλk)−
1
2 = (2π)

n−m
2 lim

ε→0

n∏
k=m∗

e−
iπ
4 |λk|−

1
2 .

We therefore conclude that

F(e
i
2
〈Qx,x〉) = lim

ε→0
F(e

i
2
〈Qεx,x〉) = e−

i
2
〈Q−1p,p〉 lim

ε→0

∫
Rn
e
i
2
〈Qεy,y〉dy

= e−
i
2
〈Q−1p,p〉 (2π)n/2e

iπ
4

(m−(n−m))

|λ1 · · ·λn|1/2
=

(2π)n/2e
iπ
4

sgn(Q)

|detQ|1/2
e−

i
2
〈Q−1p,p〉,

as desired. �
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The Fourier transform of tempered distributions (and in particular, L2 functions) is im-
portant in quantum mechanics. For instance, it provides the mathematical basis for the
Heisenberg uncertainty principle.

Example 2.1.10. (uncertainty principle in R, [Du09]) Consider some ψ ∈ L2(R) where
xψ and pF(ψ) ∈ L2(R). With the dispersion of ψ defined as

Dψ :=

∫
R x

2|ψ(x)|2dx∫
R |ψ(x)|2dx

,

we see by a straightforward calculation that (Dψ)(DF(ψ)) ≥ 1/4. In particular, using
integration by parts we have∫

R
|ψ(x)|2dx = x|ψ(x)|2|∞−∞ −

∫
R
xψ(x)ψ′(x)dx−

∫
R
xψ(x)ψ′(x)dx

= x|ψ(x)|2|∞−∞ − 2Re

(∫
R
xψ(x)ψ′(x)dx

)
= −2Re

(∫
R
xψ(x)ψ′(x)dx

)
,

where the last equality follows from the decay properties of functions in S. Squaring both
sides and using the Hölder inequality ||ψφ||1 ≤ ||ψ||p||φ||q for 1/p+ 1/q = 1 gives(∫

R
|ψ(x)|2dx

)2

≤ 4

(∫
R
|xψ(x)ψ′(x)|dx

)2

≤ 4

(∫
R
x2|ψ(x)|2dx

)(∫
R
|ψ′(x)|2dx

)
.

Theorem 2.1.4 (i) and (iv) give F(ψ′(x)) = ipF(ψ)(p) and ||ψ||2 = (2π)−1||F(ψ)||2, so∫
R
|ψ′(x)|2dx =

1

2π

∫
R
p2|ψ̂(p)|2dp.

Thus(∫
R
|ψ(x)|2dx

)(
1

2π

∫
R
|ψ̂(x)|2dx

)
≤ 4

(∫
R
x2|ψ(x)|2dx

)(
1

2π

∫
R
p2|ψ̂(p)|2dp

)
,

and the claim follows. What the foregoing exposition tells us is that a function ψ ∈ L2(R)
cannot be simultaneously highly localized in both its position and momentum variables; see
the discussion following Theorem 2.1.13.

This brief example provides motivation for the semiclassical Fourier transform. Since we
would like to control the degree of localization and uncertainty of F in the semiclassical
limit, we can reparameterize F using the semiclassical parameter h > 0. Theorem 2.1.13
justifies the following definition.

Definition 2.1.11. (semiclassical Fourier transform) For h > 0, the semiclassical Fourier
transform Fh : S ′ → S ′ is given by

Fh(f)(p) := F(f)
(p
h

)
=

∫
Rn
e−

i
h
〈x,p〉f(x)dx,
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with inverse

F−1
h (f)(x) = h−nF(f)

(x
h

)
= (2πh)−n

∫
Rn
e
i
h
〈x,p〉f(p)dp.

We can scale appropriately to derive properties similar to those of the usual Fourier trans-
form F above. In particular, we have the following:

Theorem 2.1.12. (useful properties of Fh) Like Theorem 2.1.4, we have
(i) (hDp)

αFh(ϕ) = Fh((−x)αϕ) and Fh((hDx)αϕ) = pαFh(ϕ).
(iii) ||ϕ|| = (2πh)−n/2||Fh(ϕ)||.
Proof. We have (hDp)

αFh(ϕ)(f) = (hDp)
αϕ(Fh(f)) = (−1)|α|ϕ((hDp)

αFh(f)) =
ϕ(Fh((−x)αf)) = Fh((−x)αϕ(f)). The other statements follow similarly. �

Theorem 2.1.13. (generalized uncertainty principle, [Mar02, Zwo12]) For j = 1, ..., n and
f ∈ S ′,

h

2
||f || · ||Fh(f)|| ≤ ||xjf || · ||pjFh(f)||.

Proof. From Theorem 2.1.12 (i), we have pjFh(f)(p) = Fh(hDxjf). We also have the
following commutation relation:

[xj , hDxj ]f =
h

i
[〈xj , ∂jf〉 − ∂j(xjf)] = ihf.

Rewriting the right hand side of the equality we wish to prove, we observe that ||xjf || ·
||pjFh(f)|| = ||xjf || · ||Fh(hDxjf)|| = (2πh)n/2||xjf || · ||hDxjf ||. But

(2πh)n/2||xjf || · ||hDxjf || ≥ (2πh)n/2|〈hDxjf, xjf〉| ≥ (2πh)n/2|Im〈hDxjf, xjf〉|,

and we can rewrite this with the commutation relation as (2πh)n/2|Im〈hDxjf, xjf〉| =
1
2(2πh)n/2|〈[xj , hDxj ]f, f〉| = 1

2(2πh)n/2h||f ||2 = h
2 ||f || · ||Fh(f)||. �

The foregoing theorem generalizes Example 2.1.10 to the n-dimensional semiclassical case:
we can retrieve the former by taking n = 1 and h = 1/2. Suppose that, in general,
we have a function ψ ∈ L2(Rn) where 1 = ||ψ|| = (2πh)−n/2||Fh(ψ)||. As above, the
localization of ψ relative to x = 0 can be gauged by ||xjψ|| for j = 1, ..., n. If for exam-
ple we have ψ(x) = h−|ρ|/2φ(x1/h

ρ1 , ..., xn/h
ρn) for some n-tuple ρ where 0 ≤ ρj ≤ 1,

|ρ| = ρ1 + ... + ρn, φ ∈ S, and ||φ|| = 1, then ψ is “localized” in x to the region
Nh(ε) := [−hρ1−ε, hρ1−ε]× ...× [−hρn−ε, hρn−ε]. Namely, for any ε > 0,∫

Rn−Nh(ε)
|ψ(x)|2dx = O(h∞)

and ||xjψ|| ' hρj for all j. On the other hand, the semiclassical Fourier transform gives us
Fh(ψ)(p) = h|ρ|/2F(ψ)(p1/h

1−ρ1 , ..., pn/h
1−ρn), which implies that (2πh)−n/2||pjFh(ψ)|| '

h1−ρj . We see again that localization in x is matched by delocalization in p, and vice-versa.
What is different about this semiclassical formulation is that we can also vary the parameter
h to attain any desired degree of localization.
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2.1.2 Quantization Procedures

We are now ready to write down quantization formulas, which are equations involving
modified semiclassical Fourier transforms that assign symbols (classical observables) to h-
dependent linear operators (quantum observables) acting on functions ϕ(x) ∈ S(Rn).

Definition 2.1.14. (symbols and quantization) Let any function a = a(x, p) ∈ S(R2n) be
called a symbol. The Weyl quantization Opw : S(R2n)→ Hom(S(Rn)) of a is given by

Opw(a)(ϕ)(x) = (2πh)−n
∫∫

Rn×Rn
e
i
h
〈x−y,p〉a

(
x+ y

2
, p

)
ϕ(y)dydp,

where ϕ ∈ S(Rn). In general, if 0 ≤ t ≤ 1, then the t-quantization Opt is given by

Opt(a)(ϕ)(x) = (2πh)−n
∫∫

Rn×Rn
e
i
h
〈x−y,p〉a(tx+ (1− t)y, p)ϕ(y)dydp.

Note that Opw(a) = Op1/2(a), and the left and right quantizations are given by Opl(a) =

Op1(a) and Opr(a) = Op0(a), respectively. The left quantization Opl(a) is oftentimes
referred to as the standard quantization. Any operator of the form Opt(a) is called a semi-
classical pseudodifferential operator, and to show its dependence on both x and hD we will
oftentimes write Opt(a)(x, hD).

We see from the definition above that the Weyl quantization “splits the difference” be-
tween the right and left quantizations by virtue of being defined as Op1/2(a). Although
the left (standard) quantization is simpler to calculate since it can be rewritten with the
semiclassical Fourier transform as Opl(a)(ϕ)(y) = F−1

h (a(x, y)Fhϕ(y)), we will work pre-
dominantly with the Weyl quantization Opw since it has many useful properties. For ex-
ample, Opw sends real-valued functions to symmetric operators. If a is real-valued, then
〈Opw(a)(ψ1), ψ2〉 = 〈ψ1, Op

w(a)(ψ2)〉 because∫
Opw(a)(ψ1)(x)ψ2(x)dx =

∫∫∫
e
i
h
〈x−y,p〉a

(
x+ y

2
, p

)
ψ1(y)ψ2(x)dxdydp

∫∫∫
e
i
h
〈y−x,p〉a

(
x+ y

2
, p

)
ψ1(y)ψ2(x)dxdydp =

∫
ψ1(y)Opw(a)(ψ2)(y)dy.

We now exhibit several examples of symbol quantization.

Example 2.1.15. (quantizing a p-dependent symbol) If a(x, p) = pα for a multiindex
α ∈ Nn, then Opt(a)(ϕ)(x) = a(x, hD)ϕ(x) = (hD)αϕ(x), where again hD is a semiclas-
sical scaling of the usual differential operator Dα := i−|α|∂α. Furthermore, if a(x, p) =∑
|α|≤N aα(x)pα, then clearly a(x, hD)ϕ(x) =

∑
|α|≤N aα(x)(hD)αϕ(x). Thus we see why

the operators created by quantization maps are called “pseudodifferential”: if the symbol a
is a polynomial in p, then we obtain a “normal” differential operator.

Example 2.1.16. (quantizing an inner product) If a(x, p) = 〈x, p〉, then by definition we
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have Opt(a)(ϕ) = (1 − t)〈hD, xϕ〉 + t〈x, hDϕ〉. In particular, Opw(a)(ϕ) = h
2 (〈D,xϕ〉 +

〈x,Dϕ〉).

Example 2.1.17. (quantizing an x-dependent symbol, [Zwo12]) If a(x, p) = a(x), then
Opt(a)(ϕ) = aϕ. To see this, we take the derivative with respect to t of Opt(a)(ϕ):

∂tOpt(a)(ϕ) = (2πh)−n
∫∫

Rn×Rn
e
i
h
〈x−y,p〉〈∂ta(tx+ (1− t)y), x− y〉ϕ(y)dydp

=
h

i
(2πh)−n

∫
Rn

divp

(∫
Rn
e
i
h
〈x−y,p〉∂ta(tx+ (1− t)y)ϕ(y)dy

)
dp

=
h

i
(2πh)−n

∫
Rn

divp

(
e
i
h
〈x,p〉F(ψ(p))

)
dp,

where ψ(y) := ∂ta(tx+(1−t)y)ϕ(y). The last expression vanishes by rapid decay (F(ψ)(p)→
0 as |p| → ∞), so indeed Opt(a)ϕ does not depend on t and Opt(a)ϕ = Op1(a)ϕ = aϕ for
all 0 ≤ t ≤ 1.

Example 2.1.18. (quantizing a linear symbol, [Mar02]) Let a(x, p) = 〈x, x∗〉 + 〈p, p∗〉,
where (x∗, p∗) ∈ R2n. Then, from the derivations above, Opt(a) = 〈x, x∗〉+ 〈hD, p∗〉 for all
0 ≤ t ≤ 1. We call a a linear symbol, and identify it with the point (x∗, p∗) ∈ R2n.

We conclude this brief section by stating several theorems that will be helpful in §2.2. The
first theorem, whose proof is omitted, tells us how quantization transforms the Schwartz
space and the space of tempered distributions.

Theorem 2.1.19. (properties of quantization)
(i) If a ∈ S(R2n), then Opt(a) is a continuous map from S ′(Rn)→ S(Rn) ∀t ∈ [0, 1].
(ii) If a ∈ S ′(R2n), then Opt(a) is a continuous map from S(Rn)→ S ′(Rn) ∀t ∈ [0, 1].
(iii) If a ∈ S(R2n), then the adjoint of Opt(a) is Op1−t(a), and in particular the Weyl

quantization of a real symbol is self-adjoint.

Theorem 2.1.20. (relation of quantization to commutators, [GS12, Zwo12]) We have
(i) Opw(Dxja) = [Dxj , Op

w(a)]
(ii) hOpw(Dpja) = −[xj , Op

w(a)]
Proof. Let ϕ ∈ S. Then

Opw(Dxja)(ϕ) = (2πh)−n
∫∫

Rn×Rn
Dxja

(
x+ y

2
, p

)
e
i
h
〈x−y,p〉ϕ(y)dpdy

= (2πh)−n
∫∫

Rn×Rn
(Dxj +Dyj ) a

(
x+ y

2
, p

)
e
i
h
〈x−y,p〉ϕ(y)dpdy

= (2πh)−1

(∫∫
Rn×Rn

Dxja

(
x+ y

2
, p

)
e
i
h
〈x−y,p〉ϕ(y)dpdy

+

∫∫
Rn×Rn

a

(
x+ y

2
, p

)
e
i
h
〈x−y,p〉

(pj
h
−Dyj

)
ϕ(y)dpdy

)
= DxjOp

w(a)(ϕ)−Opw(a)(Dxjϕ) = [Dxj , Op
w(a)]ϕ.

Assertion (ii) follows similarly. �
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Theorem 2.1.21. (conjugation by the semiclassical Fourier transform) We have

F−1
h Opw(a)(x, hD)Fh = Opw(a)(hD,−x).

Since the proof of this last theorem follows by the definitions of Opw and Fh, we will not
write it out explicitly.

2.2 Pseudodifferential Operators and Symbols

Having seen the motivation and definition of quantization in §2.1, we proceed to understand
the analytic and algebraic characteristics of the resulting semiclassical ψDOs.

2.2.1 Semiclassical Pseudodifferential Operators and their Algebra

For simplicity, we shall deal only with the Weyl quantization in this section. Let us consider
the equation

Opw(a)Opw(b) = Opw(c),

where a, b, and c are symbols. We want to know under which conditions this holds, and how
to compute the symbol c := a#b for the Weyl product operator #. The general procedure
for answering this question involves writing the Weyl quantization of an arbitrary symbol
as an expression in the quantizations of complex exponentials of linear symbols. Recall that
linear symbols take on the form l(x, p) := 〈x, x∗〉 + 〈p, p∗〉, where (x∗, p∗) ∈ R2n, and that
we can identify the symbol l with the point (x∗, p∗) ∈ R2n.

We first require two lemmas, one of which deals with quantizating the complex exponen-
tials of linear symbols and the other of which relates the Weyl quantization to the Fourier
transform.

Lemma 2.2.1. (quantizing an exponential of a linear symbol, [Zwo12]) Let l(x, p) =

〈x, x∗〉+ 〈p, p∗〉 be a linear symbol. If a(x, p) = e
i
h
l(x,p), then

Opw(a)(x, hD) = e
i
h
l(x,hD),

where l(x, hD) = Opw(l)(x, hD) = 〈x, x∗〉 + 〈hD, p∗〉 and e
i
h
l(x,hD)ϕ(x) := e

i
h
〈x,x∗〉 +

e
i

2h
〈x∗,p∗〉ϕ(x+ p∗). Furthermore, if l and m are both linear symbols (identified as points on

R2n), then

e
i
h
l(x,hD)e

i
h
m(x,hD) = e

i
2h
σ(l,m)e

i
h

(l+m)(x,hD),

for σ((x, p), (y, q)) = 〈p, y〉 − 〈x, q〉 being the symplectic form on Rn × Rn.
Proof. Let us consider the PDE with boundary condition{

ih∂tv + l(x, hD)v(x, t) = 0

v(x, t = 0) = u(x),

for u ∈ S and t ∈ R. Its unique solution is given by v(x, t) = e
it
h
l(x,hD)u for t ∈ R, while

the equation above defines the operator e
it
h
l(x,hD) (whose action on u is given by the time-

evolution of the PDE above). Now if l(x, hD) = Opw(l)(x, hD) = 〈x, x∗〉 + 〈hD, p∗〉, then
it follows that

v(x, t) = e
it
h
〈x,x∗〉+ it2

2h
〈x∗,p∗〉u(x+ tp∗),
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which gives e
i
h
l(x,hD)ϕ(x) = e

i
h
〈x,x∗〉 + e

i
2h
〈x∗,p∗〉ϕ(x+ p∗). We can then compute

Opw(e
i
h
l)(u) = (2πh)−n

∫∫
Rn×Rn

e
i
h
〈x−y,p〉e

i
h

(〈p,p∗〉+〈x+y
2
,x∗〉)u(y)dydp

= (2πh)−ne
i

2h
〈x,x∗〉

∫∫
Rn×Rn

e
i
h
〈x−y+p∗,p〉e

i
2h
〈x∗,y〉u(y)dydp

= (2πh)−ne
i

2h
〈x,x∗〉

∫∫
Rn×Rn

e
i
h
〈x−y,p〉e

i
2h
〈x∗,y+p∗〉u(y + p∗)dydp

= e
i
h
〈x,x∗〉+ i

2h
〈x∗,p∗〉u(x+ p∗),

since rescaling the Fourier inversion formula applied to Example 2.1.8 gives δxy = (2πh)−n∫
Rn e

i
h
〈x−y,p〉dp in S ′, the space of tempered distributions. Thus we have our first identity

Opw(e
i
h
l)(x, hD) = e

i
h
l(x,hD).

Now suppose l(x, p) = 〈x, x∗〉 + 〈p, p∗〉 and m(y, q) = 〈y, y∗〉 + 〈q, q∗〉. From the equation

above, we have e
i
h
m(x,hD)u(x) = e

i
h
〈x,y∗〉+ i

2h
〈y∗,q∗〉u(x+ q∗), which implies that

e
i
h
l(x,hD)e

i
h
m(x,hD)u(x) = e

i
h
〈x,x∗〉+ i

2h
〈x∗,p∗〉e

i
h
〈y∗,x+p∗〉+ i

2h
〈y∗,q∗〉u(x+ p∗ + q∗).

Since e
i
h

(l+m)(x,hD)u(x) = e
i
h
〈x∗+y∗,x〉+ i

2h
〈x∗+y∗,p∗+q∗〉u(x+ p∗ + q∗), we have

e
i
h

(l+m)(x,hD)u(x) = e
i

2h
(〈x∗,q∗〉−〈y∗,p∗〉)e

i
h
l(x,hD)e

i
h
m(x,hD)u(x).

This gives us the desired equation e
i
h
l(x,hD)e

i
h
m(x,hD) = e

i
2h
σ(l,m)e

i
h

(l+m)(x,hD). �

Thus, the lemma above tells us that the Weyl quantization of an exponential of a linear
symbol is itself an exponential of the same linear symbol, with the difference that p is con-
verted into the differential operator hD in the exponential. We also need the following:

Lemma 2.2.2. (Fourier decomposition of Opw(a)) Let us write

F(a)(l) :=

∫∫
Rn×Rn

e−
i
h
l(x,p) a(x, p)dxdp,

where a ∈ S and l(x, p) = 〈x, x∗〉+ 〈p, p∗〉 is a linear symbol, identified as a point (x∗, p∗) ∈
R2n. The following decomposition formula for Opw(a) holds:

Opw(a)(x, hD) = (2πh)−2n

∫∫
Rn×Rn

F(a)(l)e
i
h
l(x,hD)dl.

Proof. From the Fourier inversion formula, we have

a(x, p) = (2πh)−2n

∫∫
Rn×Rn

e
i
h
l(x,p)F(a)(l)dl,

and applying the previous lemma gives the result. �
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We are now ready to address the problem at the beginning of this section. The following
theorem, proved using the lemmas above, shows that the product of two pseudodifferen-
tial operators is a pseudodifferential operator. This fact implies that these operators form a
commutative algebra, similar to how the algebra of classical observables is also commutative.

Theorem 2.2.3. (quantization composition theorem, [DS99]) If a, b ∈ S, thenOpw(a)Opw(b) =
Op(a#b)w, where

(a#b)(x, p) := eihA(D)(a(x, p)b(y, q))|y=x,q=p

for A(D) := 1
2σ(Dx, Dp, Dy, Dq), and σ((x, p), (y, q)) = 〈p, y〉 − 〈x, q〉 being the symplectic

form on Rn × Rn.
Proof. Let m and l be linear symbols. Using the Fourier decomposition formula, we

have:

Opw(a)(x, hD) = (2πh)−2n

∫∫
Rn×Rn

â(l)e
i
h
l(x,hD)dl,

Opw(b)(x, hD) = (2πh)−2n

∫∫
Rn×Rn

b̂(m)e
i
h
m(x,hD)dm.

Then, according to Lemma 2.2.1,

Opw(a)(x, hD)Opw(b)(x, hD) = (2πh)−4n

∫∫
R2n×R2n

â(l)b̂(m)e
i
h
l(x,hD)e

i
h
m(x,hD)dmdl

=
1

(2πh)4n

∫∫
R2n×R2n

â(l)b̂(m)e
i

2h
σ(l,m)e

i
h

(l+m)(x,hD)dmdl =
1

(2πh)2n

∫
R2n

ϕ̂1(r)e
i
h
r(x,hD)dr,

where ϕ̂1(r) := (2πh)−2n
∫
l+m=r â(l)b̂(m)e

i
2h
σ(l,m)dl is obtained from a change of variables

setting r = m+l. Let us now show that ϕ1 = ϕ = a#b as defined above. Rewriting with z =

(x, p), w = (y, q), we have ϕ(z) = e
ih
2
σ(Dz ,Dw)a(z)b(w)|w=z = e

i
2h
σ(hDz ,hDw)a(z)b(w)|w=z,

and

a(z) = (2πh)−2n

∫
R2n

e
i
h
l(z)â(l)dl, b(w) = (2πh)−2n

∫
R2n

e
i
h
m(w)b̂(m)dm.

Since l(z) = 〈l, z〉 and m(w) = 〈m,w〉, we have exp( i
2hσ(hDz, hDw)) exp( ih(l(z) +m(w))) =

exp( ih(l(z) +m(w)) + i
2hσ(l,m)), which implies that

ϕ(z) = (2πh)−4n

∫∫
R2n×R2n

e
i

2h
σ(hDz ,hDw) e

i
h

(l(z)+m(w))
∣∣∣
z=w

â(l)b̂(m)dldm

= (2πh)−4n

∫∫
R2n×R2n

e
i
h

(l(z)+m(z))+ i
2h
σ(l,m)â(l)b̂(m)dldm.

Taking the semiclassical Fourier transform of ϕ yields

Fh(ϕ) = (2πh)−2n

∫∫
R2n×R2n

(2πh)−2n

(∫
Rn
e
i
h

(l+m−r)(z)dz

)
e
i

2h
σ(l,m)â(l)b̂(m)dldm

= (2πh)2n

∫
l+m=r

e
i

2h
σ(l,m)â(l)b̂(m)dl = ϕ̂1(r),

where the penultimate equality follows since δ(l +m = r) ∈ S ′ is the term inside the paren-
theses. Thus we have ϕ1 = ϕ = a#b as given. �
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The Weyl product a#b of two symbols also admits an integral representation, as given in
Theorem 2.2.5. Before discussing this, however, we require the following lemma:

Lemma 2.2.4. (quantizing exponentials of quadratic forms, [Zwo12]) Let Q be an invertible
and symmetric n× n matrix.
(i) If a = a(x) ∈ S(Rn), then

e
ih
2
〈QD,D〉a(x) =

|detQ|−1/2

(2πh)n/2
e
iπ
4

sgn(Q)

∫
Rn
e−

i
2h
〈Q−1y,y〉a(x+ y)dy.

(ii) If a = a(x, y) ∈ S(R2n), then

eih〈Dx,Dy〉a(x, y) = (2πh)−n
∫∫

Rn×Rn
e−

i
h
〈x1,y1〉a(x+ x1, y + y1)dx1dy1.

(iii) If a = a(z, w) ∈ S(R4n), then

eihσ(Dz ,Dw)a(z, w) = (2πh)−2n

∫∫
R2n×R2n

e−
i
h
σ(z1,w1)a(z + z1, w + w1)dz1dw1.

Proof. From Proposition 2.1.9, we have

F(e
i
2
〈Qx,x〉) = (2π)n/2e

iπ
4

sgn(Q)| detQ|−1/2e−
i
2
〈Q−1p,p〉.

In the semiclassical case,

(2πh)−n
∫
Rn
e
i
h
〈w,p〉e

i
2h
〈Qp,p〉dp = F−1

h (e
i

2h
〈Qp,p〉)(w) =

|detQ|−1/2

(2πh)n/2
e
iπ
4

sgn(Q)e−
i

2h
〈Q−1w,w〉.

We see from a brief computation that

e
ih
2
〈QD,D〉f(x) = e

i
2h
〈QhD,hD〉f(x) = (2πh)−n

∫∫
Rn×Rn

e
i
h
〈x−y,p〉e

i
2h
〈Qp,p〉f(y)dydp

= Ce
iπ
4

sgn(Q)

∫
Rn
e−

i
2h
〈Q−1(x−y),x−y〉f(y)dy = Ce

iπ
4

sgn(Q)

∫
Rn
e−

i
2h
〈Q−1y,y〉f(x+ y)dy,

with C = | detQ|−1/2(2πh)−n/2 as desired. This gives (i). For (ii) and (iii), let us write

A =

(
I

I

)
and B =

(
−J

J

)
,

where I denotes the n×n identity matrix and J is the 2n×2n complex structure. The argu-
ment for (ii) is similar to that of (i), with 2n instead of n and Q = A. Here Q is symmetric,
Q−1 = Q, | detQ| = 1, sgn(Q) = 0, and Q(x, y) = (y, x), so that 1

2〈Q(x, y), (x, y)〉 = 〈x, y〉.
Since D = (Dx, Dy),

1
2〈Q

−1D,D〉 = 〈Dx, Dy〉 and (ii) follows. The argument for (iii)
is the same, but with 4n instead of n and Q = B. In particular, if (z, w) ∈ R4n for
z = (x, p), w = (y, q), then Q(z, w) = (−Jw, Jz). Q is also symmetric, with the properties
Q−1 = Q, |detQ| = 1, and sgn(Q) = 0. Since 1

2〈Q(z, w), (z, w)〉 = 〈Jz, w〉 = σ(z, w) and
D = (Dz, Dw) = (Dx, Dp, Dy, Dq),

1
2〈Q

−1D,D〉 = σ(Dx, Dp, Dy, Dq) and (iii) follows. �
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Theorem 2.2.5. (integral representation formula for composed symbols) If a, b ∈ S, then

(a#b)(x, p) = (πh)−2n

∫∫
R2n×R2n

e−
2i
h
σ(w1,w2)a(z + w1)b(z + w2)dw1dw2,

where z = (x, p).
Proof. We apply (iii) in the lemma above, with h/2 instead of h. �

From both Theorems 2.2.3 and 2.2.5, we see that

(a#b)(x, p) := eihA(D)(a(x, p)b(y, q))|y=x,q=p

= (πh)−2n

∫∫
R2n×R2n

e−
2i
h
σ(w1,w2)a(z + w1)b(z + w2)dw1dw2,

for z = (x, p), A(D) := 1
2σ(Dx, Dp, Dy, Dq), and σ((x, p), (y, q)) = 〈p, y〉 − 〈x, q〉. Since

these expressions for a#b may be difficult to evaluate explicitly, it is fruitful to ask whether
we can write down an approximation that is valid to any order. This is the content of the
semiclassical expansion theorem, whose statement below should come as no surprise. It is
proved in Appendix II.

Theorem 2.2.6. (semiclassical expansion [Mar02, UW10, Zwo12]) Let a, b ∈ S. Then for
all N ,

a#b(x, p) =
N∑
k=0

(ih)k

k!
A(D)k(a(x, p)b(y, q))|y=x,q=p +OS(hN+1),

where h → 0, A(D) = 1
2σ(Dx, Dp, Dy, Dq), and the notation ϕ = OS(hk) means that for

all multiindices α and β, |ϕ|α,β := supRn |xα∂βϕ| ≤ C(α, β)hk in the limit h → 0. In
particular, a first-order approximation of a#b is given by

a#b = ab+
h

2i
{a, b}+OS(h2)

and [Opw(a)(x, hD), Opw(b)(x, hD)] = h
iOp

w({a, b})(x, hD)+OS(h3). If supp(a)∩supp(b) =
∅, then a#b = OS(h∞).

Here we begin to recognize the significance of the classical-quantum correspondence: in
the equation [Opw(a)(x, hD), Opw(b)(x, hD)] = h

iOp
w({a, b})(x, hD) + OS(h3) above, we

note that the commutator [Opw(a), Opw(b)] of a and b relates to the Poisson bracket {a, b}.
While the former is a quantum-mechanical construct, the latter is a classical one. We point
out again that, by the middle equation, the Poisson bracket {a, b} also factors into the
first-order approximation of a#b.

The tools that we have developed thus far will be generalized in the following section
for symbol classes, and used in §2.4 to prove two essential prerequisites to the quantum
ergodicity theorem. To summarize, in the current section we have defined quantization
procedures, shown that the resulting quantized, pseudodifferential operators form a com-
mutative algebra, and seen that any Weyl product can be arbitrarily approximated.
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2.2.2 Generalization to Symbol Classes

It will oftentimes be helpful to categorize a symbol a = a(x, p) into symbol classes, which
allows us to extend the symbol calculus to symbols that can depend on h and have varying
behavior as (x, p) → ∞. The notion of symbol classes was first defined by Hörmander in
analyzing PDEs and ψDOs. The following presentation is adapted from [DS99] and [Zwo12],
which present a simpler case of Hörmander’s Weyl calculus [Hör83c].

We only describe the basic definition of symbol classes for the purposes of this section,
since what we have already proved for Schwartz functions will be enough to motivate the
following proofs. We refer the reader to a more detailed treatment of symbol classes in
[Mar02] and [Hör83c].

Definition 2.2.7. (order function) A measurable function m : R2n → R>0 is called an
order function if there are constants C and N such that m(w) ≤ C〈z − w〉Nm(z) for all
w, z ∈ R2n, where 〈z〉 := (1 + |z|2)1/2.

Trivial examples of order functions are m(z) = 1 and m(z) = 〈z〉. It is also clear that
m(z) = 〈x〉a〈p〉b are order functions for any a, b ∈ R and z = (x, p). Finally, if m1,m2 are
order functions, then by definition m1m2 is an order function as well.

Definition 2.2.8. (symbol class) Let m(z) be an order function. The symbol class of m(z)
is given by S(m) := {a ∈ C∞(R2n) : ∀α ∈ N2n, ∃C = C(α) ∈ R : |∂αa| ≤ Cm}. Likewise,
for 0 ≤ δ ≤ 1/2, we have the (h, δ)-dependent symbol class

Sδ(m) := {a ∈ C∞(R2n) : ∀α ∈ N2n, ∃C = C(α) ∈ R : |∂αa| ≤ Ch−δ|α|m}.

Note that S0(m) = S(m). These symbol classes provide the natural space in which an
asymptotic symbol decomposition exists.

Definition 2.2.9. (asymptotic symbol decomposition) Let aj ∈ Sδ(m) for all j ∈ N.

a ∈ Sδ(m) is asymptotic to
∑∞

j=0 h
jaj if for any N , a−

∑N−1
j=0 hjaj = OSδ(m)(h

N ), i.e.∣∣∣∣∣∣∂α
a− N−1∑

j=0

hjaj

∣∣∣∣∣∣ ≤ ChN−δ|α|m
for all multiindices α ∈ N2n and C = C(α,N). Note that, by itself, the formal series
can diverge; the conditions above only stipulate that the expression a −

∑N−1
j=0 hjaj and

its derivatives vanish fast enough in the limit h → 0. If the above holds, then we write
a ∼

∑∞
j=0 h

jaj and call a0 the principal symbol of the complete symbol a. The notion of
principal symbol will be useful in later sections.

Borel’s theorem, which we will not prove, assures us that we can always construct an asymp-
totic decomposition of symbols.

Theorem 2.2.10. (Borel, [Zwo12]) If aj ∈ Sδ(m) for all j ∈ N, there ∃a ∈ Sδ(m) : a ∼∑∞
j=0 h

jaj in Sδ(m). Furthermore, if F(a) ∼
∑∞

j=0 h
jaj , then a−F(a) = OS(m)(h

∞).
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One of the main benefits of extending our formulation to symbol classes is that all of our
previous results are preserved. Noting that S(R2n) ⊂ S(m) for any order function m, it can
be shown that the Weyl quantization of symbols in Sδ(m) is also a continuous linear map
S(Rn)→ S(Rn) in the spirit of Theorem 2.1.19.

Theorem 2.2.11. (properties of quantization for symbol classes) If a ∈ Sδ(m) with
0 ≤ δ ≤ 1/2, then Opw(a)(x, hD) : S(Rn)→ S(Rn) and Opw(a)(x, hD) : S ′(Rn)→ S ′(Rn)
are continuous linear transformations.

We also retain both the semiclassical expansion and the quantization composition theorems,
which we will not prove in this generalized context:

Theorem 2.2.12. (semiclassical expansion for symbol classes, [Mar02, Zwo12]) Let Q be
an invertible, symmetric n × n matrix, and set B(D) = 1

2〈QD,D〉. If 0 ≤ δ < 1/2, then
the operator on Schwartz spaces exp(ihB(D)) : S(Rn) → S(Rn) extends uniquely to an
operator on symbol classes exp(ihB(D)) : Sδ(m)→ Sδ(m), and

eihB(D)a ∼
∞∑
k=0

(ih)k

k!
(B(D))ka

for all a ∈ Sδ(m).

Theorem 2.2.13. (quantization composition for symbol classes, [DS99, Zwo12]) If a ∈
Sδ(m1) and b ∈ Sδ(m2) for 0 ≤ δ < 1/2, then a#b ∈ Sδ(m1m2) and Opw(a)Opw(b) =
Opw(a#b). An approximation for a#b is given by

a#b = ab+
h

2i
{a, b}+OSδ(m1m2)(h

1−2δ),

and furthermore we have another equation relating the commutator [·, ·] to the Poisson
bracket {·, ·}: [Opw(a)(x, hD), Opw(b)(x, hD)] = h

iOp
w({a, b})(x, hD)+OSδ(m1m2)(h

3(1−2δ)).

Let us remind ourselves that in quantum mechanics, we are mainly concerned with the L2

space of functions. It turns out that we can say even more about the Weyl quantization in
this setting: Opw(a) becomes a bounded operator, and is compact assuming certain decay
conditions on the order function m. Recall that an operator A : L2 → L2 is said to be
bounded if there exists a c ≥ 0 such that ||A(f)|| ≤ c||f || for all f ∈ L2, where we set

||A||L2→L2 := supf 6=0
||A(f)||
||f || (c.f. Appendix I). We end this section by stating the following:

Theorem 2.2.14. (L2 boundedness and compactness for symbol classes) If a ∈ S, then
Opw(a)(x, hD) : L2(Rn) → L2(Rn) is bounded independently of h. Moreover, if a ∈ Sδ(1)
for 0 ≤ δ ≤ 1/2, then Opw(a)(x, hD) is bounded with estimate

||Opw(a)(x, hD)||L2→L2 ≤ C
∑
|α|≤Mn

h|α|/2 sup
Rn
|∂αa|,

whereM and C are constants. Finally, if a ∈ S(m) and lim(x,p)→∞m = 0, thenOpw(a)(x, hD) :
L2(Rn)→ L2(Rn) is a compact operator.
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2.2.3 Inverses, Estimates, and G̊arding’s Inequality

We now revisit our original goal of understanding the analytic and algebraic characteris-
tics of semiclassically quantized ψDOs given relevant information about the symbols. Our
answer to this question comprises both a theorem about the inverses of quantized ψDOs
and a form of G̊arding’s inequality, which gives a lower bound for the bilinear form induced
by the Weyl quantization of any symbol. This section will complete our exposition of the
basic symbol calculus, after which we shall prove Weyl’s law on Rn and extend the symbol
calculus to any smooth manifold.

To help us consider the inverses of Weyl-quantized operators, we first define the notion
of ellipticity for symbols. As the proof of Theorem 2.2.16 shows, this condition is important
for showing that an inverse to any given ψDO exists.

Definition 2.2.15. (elliptic symbols) A symbol a is elliptic in the symbol class S(m) if
there is a real number c = c(a) > 0 such that |a| ≥ cm.

Theorem 2.2.16. (inverses for elliptic symbols, [Mar02, Zwo12]) Let a ∈ Sδ(m) for
0 ≤ δ < 1/2 be elliptic in S(m). If m ≥ 1, then there exist h0 > 0 and C > 0 such
that

||Opw(a)(x, hD)(ϕ)|| ≥ C||ϕ||

for all ϕ ∈ L2(Rn) and 0 < h < h0. Furthermore, if m = 1, then there exists some h0 > 0
where Opw(a)(x, hD)−1 is a well-defined bounded linear operator on L2(Rn) for 0 < h ≤ h0.

Sketch of Proof. We set b := 1/a ∈ Sδ(1/m), so that by Theorem 2.2.13 we have{
a#b = 1 + r1

b#a = 1 + r2,

where r1, r2 ∈ h1−2δSδ are remainder terms coming from the Weyl product. Quantizing each
of these symbols gives A = Opw(a)(x, hD), B = Opw(b)(x, hD), R1 = Opw(r1)(x, hD), R2 =
Opw(r2)(x, hD), and {

AB = I +R1

BA = I +R2,

with the condition that the operator norms of R1 and R2 decay with h. In particular,

||R1||L2→L2 = O(h1−2δ) ≤ 1/2, ||R2||L2→L2 = O(h1−2δ) ≤ 1/2

for 0 < h ≤ h0 and some suitable h0. Now if m ≥ 1, then for all ϕ ∈ L2(Rn) there exists a
constant C such that

||ϕ|| = ||(I +R2)−1BAϕ|| ≤ C||Aϕ||

by a combination of Theorem 2.2.14 and the fact that b ∈ S(1/m) ⊂ S(1) is bounded on
L2. Finally, if m = 1, then B serves as both an approximate left and right inverse to A,
and applying Theorem I.5 we conclude that the inverse A−1 = Opw(a)(x, hD)−1 exists for
small enough h. �

We now obtain an analytic bound on the operator Opw(a) with the assumption that the
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corresponding symbol a is nonnegative. This bound is given by both the weak and sharp
versions of G̊arding’s inequality, for which we prove only the former:

Theorem 2.2.17. (weak G̊arding’s inequality, [DS99]) Let a ∈ S, and suppose that there
is a constant c with a ≥ c > 0 on R2n. Then for all ε > 0, there exists a constant
h0 = h0(ε) > 0 such that

〈Opw(a)(x, hD)(ϕ), ϕ〉 ≥ (c− ε)||ϕ||2

for all 0 < h ≤ h0 and ϕ ∈ L2(Rn).
Proof. We first apply the previous theorem to see that the inverse (a− λ)−1 is in S for

any λ < c− ε. If b := (a− λ)−1, then by Theorem 2.2.13 we have

(a− λ)#b = 1 +
h

2i
{a− λ, b}+OS(h2) = 1 +OS(h2).

Quantizing this equation gives us

(Opw(a)(x, hD)− λ)(Opw(b)(x, hD)) = I +OL2→L2(h2),

and we see that Opw(b)(x, hD) is an approximate right inverse of Opw(a)(x, hD)− λ. Re-
peating this argument tells us that Opw(b)(x, hD) is an approximate left inverse as well,
and so Opw(a)(x, hD)−λ is invertible for all λ < c−ε. By the spectral theorem (Appendix
I),

Spec(Opw(a)(x, hD)− λ) ⊂ [c− ε,∞).

It follows from Theorem I.2 that 〈Opw(a)(x, hD)(ϕ), ϕ〉 ≥ (c− ε)||ϕ||2, as desired. �

Theorem 2.2.18. (sharp G̊arding’s inequality, [DS99]) If a ∈ S and a ≥ 0 on R2n, then
there are constants c ≥ 0 and h0 > 0 such that

〈Opw(a)(x, hD)(ϕ), ϕ〉 ≥ −ch||ϕ||2

for all 0 < h ≤ h0 and ϕ ∈ L2(Rn).

These variants of G̊arding’s inequality tell us that the bilinear form induced by the Weyl
quantization of a nonnegative symbol as applied to a function is greater than the L2-norm of
that function. In particular, given that the symbol a is nonnegative, the quantized operator
Opw(a) is “essentially positive.” A stronger flavor of G̊arding’s inequality is the Fefferman-
Phong inequality, which was proved in 1979 [Mar02]; nonetheless, we will use only the weak
and sharp G̊arding’s inequality for remainder of this thesis.

Over the last two sections, we have extended our symbol calculus to symbol classes and
derived inverses and analytic statements about Weyl-quantized ψDOs. Our goal now is to
prove Weyl’s law and Egorov’s theorem (c.f. §1.1 and §2.3), two assertions that will be
useful for our proof of the quantum ergodicity theorem in §3.2. For ease of exposition, we
will only prove Weyl’s law in Rn before extending our symbol calculus to manifolds and
proving Egorov’s theorem in a more general context.
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2.3 Weyl’s Law and Egorov’s Theorem

This section focuses singularly on the proofs of Weyl’s law and Egorov’s theorem, two
insightful results that relate the semiclassical tools we have developed in §2.2 back to the
eigenvalue spacing statistics of the Laplacian and the correspondence between classical and
quantum mechanics. These statements will also be useful for the proof of the quantum
ergodicity theorem in §3.

2.3.1 Weyl’s Law in Rn

We begin with a real-valued potential function V ∈ C∞(Rn) and define the Hamiltonian
symbol ξ(x, p) := |p|2 + V (x) along with the corresponding Schrödinger operator in n
dimensions

Ξ(h) := Ξ(x, hD) = −h2∆ + V (x),

where ∆ is the Laplacian on Rn as defined in §1.2. Note that Opw(ξ)(x, hD) = Ξ(h). Our
goal is to understand how properties of the symbol ξ influence the asymptotic distribution
of the eigenvalues of its quantization Ξ(h) as h→ 0.

Let us first consider the potential V (x) = x2 of a one-dimensional simple harmonic
oscillator (SHO), so that we have h = 1 and Ξ := −∂2

x + x2. From elementary quantum
mechanics, we know that the creation and annihilation operators A := Dx + ix and A† :=
Dx − ix have the property that A∗ = A†, (A†)∗ = A, and Ξ = AA† + 1 = A†A − 1
[Gri95]. Recall as well that we can solve for the eigenfunctions of the SHO with the Hermite
polynomials Hn(x) := (−1)n exp(x2) dn

dxn exp(−x2). In particular, we have

1. 〈Ξψ,ψ〉 ≥ ||ψ||2 =⇒ Ξ ≥ 1 for all ψ ∈ C∞c (Rn);

2. the function ϕ0(x) := exp(−x2/2) is an eigenfunction of Ξ corresponding to the small-
est eigenvalue of 1;

3. if ϕn := Anϕ0 for all n ∈ N, then Ξϕn = (2n + 1)ϕn, and setting ψn := ϕn/||ϕn|| ∈
L2(Rn), we see that ψn(x) = Hn(x) exp(−x2/2);

4. 〈ψn, ψm〉 = δmn , and the collection of eigenfunctions {ψn}∞n=0 is complete in L2(Rn).

Generalizing this result to the case of an n-dimensional harmonic oscillator scaled by the
semiclassical parameter h, we see that for Ξ(h) := −h2∆ + |x|2 and α ∈ Nn,

ψα(x, h) = h−n/4
n∏
i=1

Hαi(xih
−1/2) exp

(
−|x|

2

2h

)
with corresponding eigenvalue Eα(n) = (2|α| + n)h. Thus the eigenvalue equation can be
written in this context as Ξ(h)ψi(x, h) = Ei(h)ψi(x, h) after reindexing.

Theorem 2.3.1. (Weyl’s law for the SHO, [Zwo12]) For 0 ≤ a < b <∞, we have

#{E(h) : a ≤ E(h) ≤ b} = (2πh)−n(|{a ≤ |x|2 + |p|2 ≤ b}|+ o(1)),

where E(h) is any eigenvalue of Ξ(h) and |{a ≤ |x|2 + |p|2 ≤ b}| denotes the volume in R2n

of the set of (x, p) where a ≤ |x|2 + |p|2 ≤ b.
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Proof. We follow the exposition in [Zwo12]. Without loss of generality, let a = 0. Since
E(h) = (2|α|+ n)h for some multiindex α ∈ Nn,

#{E(h) : 0 ≤ E(h) ≤ b} = #{α ∈ Nn : 0 ≤ 2|α|+ n ≤ b/h} = #{α ∈ Nn : |α| ≤ c},

where c := (b− nh)/2h. This implies that

#{E(h) : 0 ≤ E(h) ≤ b} = |{x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n and x1 + ...+ xn ≤ c}|+ o(cn)

= (n!)−1cn + o(cn),

where the last equality holds as c → ∞ since the volume of {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤
n and x1 + ...+ xn ≤ 1} is (n!)−1. Thus #{E(h) : 0 ≤ E(h) ≤ b} = bn

n!(2h)n + o(h−n) in the
limit h→ 0.

Now observe that |{|x|2 + |p|2 ≤ b}| = bnV (2n), where V (k) := πk/2(Γ(k/2 + 1))−1 is
the volume of the unit ball in Rk. Since V (2n) = πn(n!)−1, we have

#{E(h) : 0 ≤ E(h) ≤ b} =
bn

n!(2h)n
+ o(h−n) = (2πh)−n|{|x|2 + |p|2 ≤ b}|+ o(h−n),

as desired. �

Let us now use the previous result to prove Weyl’s law in greater generality. Suppose that
V ∈ C∞(Rn) satisfies {

|∂αV (x)| ≤ C〈x〉k ∀α ∈ Nn, C = C(α) ∈ R
V (x) ≥ c〈x〉k |x| ≥ R,

for positive constants k, c, R ∈ R. If these properties hold, then we say that V is an admis-
sible potential function. The only black box we will require in the proof of Weyl’s law is the
following proposition:

Proposition 2.3.2. (products of projection and quantized operators) Let a = a(x, p) be a
symbol in S, and suppose that supp(a) ⊂ {|x|2 + |p|2 < R} for some suitable R ∈ R. With
Ξ(h) : L2(Rn) → L2(Rn) given by Ξ(h) := −h2∆ + |x|2, let Π denote the projection in L2

onto span{ψ(x, h) : Ξ(h)ψ(x, h) = E(h)ψ(x, h), E(h) ≤ R}. Then

Opw(a)(x, hD)(I −Π) = OL2→L2(h∞) and (I −Π)Opw(a)(x, hD) = OL2→L2(h∞).

This tells us that there is no essential difference between an arbitrary function in L2(Rn)
and its projection onto the span of L2 eigenfunctions of Ξ(h) for small h, at least in terms of
their corresponding Weyl quantizations. For a proof of this proposition, we refer the reader
to [DS99] and [Zwo12].

Theorem 2.3.3. (Weyl’s law for Rn) Suppose that V is an admissible potential function,
and that E(h) denotes an arbitrary eigenvalue of the operator Ξ(h) = −h2∆ + V (x). Then

#{E(h) : a ≤ E(h) ≤ b} = (2πh)−n(|{a ≤ |p|2 + V (x) ≤ b}|+ o(1))

for all a < b in the limit h→ 0.
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Proof. We again follow the proof in [Zwo12]. Let N(λ) := #{E(h) : E(h) ≤ λ}, and
choose a χ ∈ C∞c (R2n) such that

χ(x, p) :=

{
1 if ξ(x, p) ≤ λ+ ε

0 if ξ(x, p) ≥ λ+ 2ε,

so that in the following a will be elliptic. Indeed, for large enough M , we have the bound

a(x, p) := ξ(x, p) +Mχ(x, p)− λ ≥ γm,

where m := 〈x〉m + 〈p〉2 and γ = γ(ε) > 0. This bound implies that a is elliptic, and from
Theorem 2.2.16 we know that Opw(a)(x, hD) is invertible for small enough h.

Claim 1: We first wish to show that

〈(Ξ(h) +MOpw(χ)− λ)ϕ,ϕ〉 ≥ γ||ϕ||2

for some γ > 0 and all ϕ ∈ H(Rn) where H(Rn) := {ϕ ∈ S ′ : (I − h2∆ + 〈x〉k)(ϕ) ∈
L2(Rn)}. A straightforward application of Theorem I.6 tells us that H(Rn) is in the domain
of Ξ(h). To prove Claim 1, we start by taking some b ∈ S(m1/2) where b2 = a. Then by
Theorem 2.2.13, b2 = b#b+ r0 where r0 ∈ hS(m). By Theorem 2.2.16, the right inverse of
Opw(b)(x, hD) exists and

Opw(b)−1Opw(r0)Opw(b)−1 = OL2→L2(h),

which implies that

Opw(a) = Opw(b)Opw(b) +Opw(r0) = Opw(b)(1 +Opw(b)−1Opw(r0)Opw(b)−1)Opw(b)

= Opw(b)(1 +OL2→L2(h))Opw(b).

Thus, for small enough h > 0 we have

〈(Ξ(h) +MOpw(χ)− λ)ϕ,ϕ〉 = 〈Opw(a)(x, hD)ϕ,ϕ〉
≥ ||Opw(b)(x, hD)(ϕ)||2(1−O(h))

≥ γ||ϕ||2

for some γ > 0, again by Theorem 2.2.16.

Claim 2: We next claim that there exists a bounded linear operator Q where

Opw(χ)(x, hD) = Q+OL2→L2(h∞) and rank(Q) ≤ (2πh)−n(|{ξ(x, p) ≤ λ+ 2ε}|+ δ)

for all δ > 0. To prove this, we first cover the set {ξ(x, p) ≤ λ + 2ε} with a set of N balls
{Bj}Nj=1 of radius r2

j centered at (xi, pj), denoted by Bj := B((xj , pj), r
2
j ). Note that this

set of balls has the property that
∑N

j=1 |Bj | ≤ |{ξ(x, p) ≤ λ+ 2ε}|+ δ
2 .

Next, we set a SHO shifted by (xj , pj) as Ξj(h) := |hDx− pj |2 + |x− xj |2, and Π as the
orthogonal projection in L2 onto

V = span{ϕ : Ξj(h)ϕ = Ej(h)ϕ,Ej(h) ≤ rj for 1 ≤ j ≤ N}.
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Observe that
(I −Π)Opw(χ)(x, hD) = OL2→L2(h∞),

which is justified as follows: by setting χ =
∑N

j=1 χj for supp(χj) ⊂ B((xj , pj), r
2
j ) and Πj

to be the orthogonal projection in L2 onto the span of {u : Ξj(h)u = Ej(h)u,Ej(h) ≤ rj},
we can apply Proposition 2.3.2 to see that (I −Π)Opw(χ)(x, hD) = O(h∞). Noting as well
that Π(Πj) = Πj , we have

(I −Π)Opw(χ) =
N∑
j=1

(I −Π)Opw(χj) =
N∑
j=1

(I −Π)(I −Πj)Op
w(χj) = OL2→L2(h∞).

It follows that

Opw(χ)(x, hD) = ΠOpw(χ)(x, hD) + (I −Π)Opw(χ)(x, hD) = Q+OL2→L2(h∞)

where the bounded linear operator we desire is defined as Q := ΠOpw(χ)(x, hD). To show
that Q is indeed bounded, we note that its rank is bounded. In particular,

dim(im(Q)) ≤ dim(im(Π)) ≤
N∑
j=1

#{Ej(h) : Ej(h) ≤ rj} = (2πh)−n

 N∑
j=1

|Bj |+ o(1)


≤ (2πh)−n(|{p ≤ λ+ 2ε}|+ δ/2 + o(1)),

where the penultimate inequality comes from Theorem 2.3.1 and the last inequality comes
from the fact that

∑N
j=1 |Bj | ≤ |{ξ(x, p) ≤ λ+ 2ε}|+ δ

2 . Thus we have proven Claim 2.

Combining the two claims above, we see that

〈Ξ(h)ϕ,ϕ〉 ≥ (λ+ C)||ϕ||2 −M〈Qϕ,ϕ〉 −O(h∞)||ϕ||2 ≥ λ||ϕ||2 −M〈Qϕ,ϕ〉,

where Q is bounded as above. Applying Theorem I.7, we get

N(λ) ≤ (2πh)−n(|{ξ(x, p) ≤ λ+ 2ε}|+ δ + o(1)),

and since this holds for all ε and δ > 0, as h→ 0 we have the bound

N(λ) ≤ (2πh)−n(|{ξ(x, p) ≤ λ}|+ o(1)).

Claim 3: We prove the opposite inequality. If Bj ⊂ {ξ(x, p) < λ} and Vj := span{ϕ :
Ξj(h)ϕ = Ej(h)ϕ,Ej(h) ≤ rj}, then for each ϕ ∈ Vj we wish to show that

〈Ξ(h)ϕ,ϕ〉 ≤ (λ+ ε+O(h∞))||ϕ||2.

To do this, we choose a symbol a ∈ C∞c (R2n) with a = 1 on {ξ(x, p) ≤ λ} and supp(a) ⊂
{ξ(x, p) ≤ λ+ ε/2}. Setting c := 1− a, we see that

ϕ−Opw(a)(x, hD)(ϕ) = Opw(c)(x, hD)(ϕ) = OL2(h∞)

by Proposition 2.3.2, since supp(c) ∩Bj = ∅. Now let

Opw(b) := Ξ(h)Opw(a)(x, hD),
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so that ξ(x, p) ∈ S(m) and a ∈ S(m−1). This implies that b = ξ(x, p)a + OL2(h) ∈ S, and
it is also clear that Opw(b) is a bounded operator. Then b ≤ λ+ ε/2 =⇒ Opw(b)(x, hD) ≤
λ+ 3ε/4 =⇒

〈Ξ(h)Opw(a)(x, hD)(ϕ), ϕ〉 = 〈Opw(b)(x, hD)(ϕ), ϕ〉 ≤ (λ+ 3ε/4)||ϕ||2,

and since Opw(a)(x, hD)(ϕ) = ϕ+O(h∞), we have

〈Ξ(h)ϕ,ϕ〉 ≤ (λ+ ε+O(h∞))||ϕ||2,

which proves Claim 3.

To finish the proof of Theorem 2.3.3, we pick a set of disjoint balls Bj ⊂ {ξ(x, p) < λ}
such that |{ξ(x, p) < λ}| ≤

∑N
j=1 |Bj | + δ, and set V = V1 + ... + VN , where as before

V = span{ϕ : Ξj(h)ϕ = Ej(h)ϕ,Ej(h) ≤ rj for 1 ≤ j ≤ N}. Although Vi and Vj are not
orthogonal for i 6= j, the disjointness of Bi, Bj implies with Proposition 2.3.2 that

〈ϕ,ψ〉 = O(h∞)||ϕ||||ψ||

for all ϕ ∈ Vi and ψ ∈ Vj with i 6= j. Furthermore, since each Vj has an orthonormal basis of
eigenvectors, Claim 3 holds for ϕ ∈ Vj , and the approximate orthogonality estimate above
gives

〈Ξϕ,ϕ〉 ≤ (λ+ δ)||ϕ||2

for all ϕ ∈ V . Thus, for small enough h, an application of Theorem 2.3.1 yields

dimV =
N∑
j=1

dimVj =
N∑
j=1

#{Ej(h) ≤ rj} = (2πh)−n

 N∑
j=1

|Bj |+ o(1)


≥ (2πh)−n(|{ξ(x, p) < λ}| − δ + o(1))

Applying Theorem I.7, we have

N(λ) ≥ (2πh)−n(|{ξ(x, p) < λ}| − δ + o(1)),

which by the previous bound N(λ) ≤ (2πh)−n(|{ξ(x, p) ≤ λ}|+ o(1)) and the definition of
N(λ) implies that

#{E(h) : a ≤ E(h) ≤ b} = (2πh)−n(|{a ≤ |p|2 + V (x) ≤ b}|+ o(1)),

as desired. �

Weyl’s law may be physically interpreted as an approximation of the number of energy
states less than a fixed energy E0, i.e. #{E(h) : 0 ≤ E(h) < E0}, by the number of “Planck
cells” hn which fit into an accessible phase-space volume of the corresponding classical sys-
tem. The generalization presented in the next section will allow us to estimate the number
of energy states on any smooth manifold.

44



2.3.2 Extension of Symbols and ψDOs to Manifolds

In this section, we briefly detail how our formulation of symbol calculus applies to arbitrary
smooth manifolds. Although the intuition from §2.1 and §2.2 remains the same, we require
this extension to state a manifold version of Weyl’s law and prove a generalized Egorov’s
theorem. We will nonetheless rely on our prior intuition to justify omitting some rather
uninsightful proofs.

Let M be a smooth Riemannian manifold of dimension n, and assume that all manifolds
in the remainder of this chapter are compact. Let γ : M ⊃ Uγ → Vγ ⊂ Rn be a C∞ dif-
feomorphism of open sets, and denote the set of all C∞ diffeomorphisms of M as Diff(M).
To formulate the symbol calculus and quantization operators on M , we start by defining
distributions on M .

Definition 2.3.4. (distributions on M) Let ϕ : C∞(M)→ C be a linear map, and set

Σ(f) := ϕ(γ∗(χf)),

where γ ∈ Diff(M), χ ∈ C∞c (Vγ), and f ∈ S(Rn). If Σ ∈ S ′(Rn), then ϕ is a distribution on
M , and we write ϕ ∈ D′(M).

Definition 2.3.5. (differential operators on M) If P =
∑
Xi1 ...Xik , where Xij : M → TM

is a smooth vector field for all j and 1 ≤ k ≤ m, then P is a differential operator on M of
order at most m.

Due to the mapping properties of vector fields, we see that any differential operator P maps
C∞(M)→ C∞(M), C∞c (M)→ C∞c (M), and D′(M)→ D′(M).

Let us now turn to defining ψDOs and quantization on manifolds. For any smooth manifold
M , we may think that it is straightforward to use the standard pseudodifferential calcu-
lus on Rn and a partition of unity argument to define quantization operators on M . This
construction, however, depends on the choice of local coordinates and the partition of unity.

Thus, a natural question to begin with is determining which symbols are invariant un-
der some diffeomorphism κ : Rn → Rn: namely, if the symbol class S(m) is defined by the
condition that ∀α ∈ Nn, ∃C = C(α) ∈ R : |∂αa| ≤ Cm, then it may not be true that the
pullback of a by the lift of κ−1 to the contangent bundle T ∗Rn satisfies the same inequality.
It turns out that the appropriate invariant class of symbols is obtained by choosing the
order function 〈p〉m for m ∈ Z, which yields the so-called Kohn-Nirenberg symbols ([Zwo12]
is the first and only source to give the symbol class this name, but we also follow this
nomenclature). We refer the reader to [DS99, GS12] for a rigorous treatment of invariance
issues and a proof of Propositions 2.3.7 and 2.3.8.

Definition 2.3.6. (Kohn-Nirenberg symbols) The Kohn-Nirenberg symbol class of order
m ∈ Z is defined as

Sm(R2n) := {a ∈ C∞(R2n) : ∀α, β ∈ Nn, ∃C = C(α, β) ∈ R : |∂αx ∂βp a| ≤ C〈p〉m−|β|}.
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Proposition 2.3.7. (invariance of Kohn-Nirenberg symbols under diffeomorphisms) Let
κ : Rn → Rn be a C∞ diffeomorphism satisfying the inequalities |∂ακ| ≤ C and |∂ακ−1| ≤ C
for C = C(α) and any α ∈ Nn. Then for each symbol a ∈ Sm(R2n), the pullback
b(x, p) := a(κ−1(x), ∂κ(κ−1(x)) · p) under the lift of κ−1 is in Sm.

Proposition 2.3.8. (Kohn-Nirenberg symbol composition) Let a ∈ Sm1 , b ∈ Sm2 . Then
Opw(a)Opw(b) = Opw(c) for c ∈ Sm1+m2 as given in Theorem 2.2.3. Furthermore, as in
Theorem 2.2.6, c admits the decomposition

c(x, p) =
N∑
k=0

(ih)k

k!
A(D)k(a(x, p)b(y, q))|y=x,q=p +OSm1+m2−N−1(hN+1),

where A(D) = 1
2σ(Dx, Dp, Dy, Dq).

Our definition of the Kohn-Nirenberg symbols allows us to define the relevant class of ψDOs
on any smooth manifold.

Definition 2.3.9. (ψDOs on M) A linear map A : C∞(M)→ C∞(M) is called a pseudod-
ifferential operator on M of order m if it can be written on each coordinate patch Uγ ⊂M
as

ϕA(ψf) = ϕγ∗Opw(aγ)(x, hD)(γ−1)∗(ψf),

where γ ∈ Diff(M), ϕ,ψ ∈ C∞c (Uγ), f ∈ C∞(M), and the symbol aγ is in the Kohn-
Nirenberg class Sm(R2n) for some order m. If A is a ψDO of order m on M , then we write
A ∈ Ψm(M).

We similarly define symbols on T ∗M by pullback.

Definition 2.3.10. (symbols on T ∗M) Let a ∈ C∞(T ∗M), γ ∈ Diff(M), and φ : Vγ ×
Rn → T ∗Uγ be the natural identification between the open set Vγ ⊂ M and Rn. If
φ∗a ∈ Sm(Vγ × Rn), then a is a symbol of order m on T ∗M , and we write a ∈ Sm(T ∗M).

The definitions above provide the natural language in which to formulate corresponding
versions of previous theorems for smooth manifolds. Building on the intuition developed in
§2.2, we state the following theorems without proof:

Theorem 2.3.11. (quantization on M , [DS99, Mar02, Zwo12]) If Ψm(M) denotes the image
of Sm(T ∗M) underOpw, then there exist linear maps σ : Ψm(M)→ Sm(T ∗M)/hSm−1(T ∗M)
and Opw : Sm(T ∗M)→ Ψm(M) defined by

σ(A1A2) = σ(A1)σ(A2) and σ(Opw(a)) = [a] ∈ Sm(T ∗M)/hSm−1(T ∗M),

where [a] denotes the equivalence class of a in Sm(T ∗M)/hSm−1(T ∗M), i.e. the principal
symbol. a = σ(A) is then the (principal) symbol of the pseudodifferential operator A.
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Theorem 2.3.12. (boundedness and compactness of ψDOs) If A ∈ Ψ0(M), then A :
L2(M) → L2(M) is bounded. Moreover, if A ∈ Ψm(M) for m < 0, then A : L2(M) →
L2(M) is compact.

Sketch of Proof. Use a partition of unity argument and apply Theorem 2.2.14. �

In practice, explicit computations for symbol quantization on manifolds can be achieved by
pulling back to Rn, but working these calculations out for any given diffeomorphism γ is
oftentimes too complex. We will avoid these calculations in the remainder of this thesis,
keeping at the back of our mind that what is true in the Rn case (§2.2) holds also for M .

Let us conclude this section by relating our manifold formulation back to Weyl’s law.
With a choice of local coordinates, we consider the Schrödinger operator Ξ(h) := −h2∆ +
V (x) on the compact Riemannian manifold (M, g), where ∆ is the metric-induced Laplacian
on M and V ∈ C∞(M) is real-valued. Based on the examples in §2.1.2, the symbol of Ξ(h)
(an operator in Ψ2(M)) is given by

σ(Ξ(h)) = ξ(x, p) := |p|2gx + V (x) = gij(x)pipj + V (x).

We note that with V = 0 and h = 1, Ξ(h) just becomes the usual (negative) Laplacian as
seen in §1.2. We state the following important theorems without proof; c.f. [Jos11, Mar02,
Zwo12] and Appendix I:

Theorem 2.3.13. (eigenfunctions of Ξ(h)) The pseudodifferential operator Ξ(h) : C∞c (M)
→ C∞c (M) as defined above is essentially self-adjoint. Furthermore, for each h > 0, there ex-
ists an orthonormal basis {ψj(h)}∞j=1 of L2(M) with the property that each ψj(h) ∈ C∞(M)
is an eigenfunction of Ξ(h), i.e. Ξ(h)ψj(h) = Ej(h)ψj(h) for j ∈ N+, where the eigenvalues
R 3 Ej(h)→∞ as j →∞.

The previous theorem is analogous to Theorem 1.1.5, but is adapted to the generalized case
of Schrödinger operators.

Theorem 2.3.14. (generalized Weyl’s law) Let (M, g) be a compact Riemannian manifold,
V ∈ C∞(M), Ξ(h) := −h2∆ + V (x) as before, and E(h) be an arbitrary eigenvalue of the
operator Ξ(h). Then for all a < b,

#{E(h) : a ≤ E(h) ≤ b} = (2πh)−n(VolT ∗M{a ≤ |p|2gx + V (x) ≤ b}+ o(1))

as h→ 0.

The proof of Theorem 2.3.14 is similar to that of Theorem 2.3.3, but we must develop and
use the functional calculus for the Schrödinger operator Ξ(h) on M . This is done explicitly
in [DS99], [Mar02], and [Zwo12].

Corollary 2.3.15. (Weyl’s law for a domain Ω ⊂ R2) Let Ω ⊂ R2 be a planar domain
equipped with the usual metric. If V = 0, h = 1, and Ξψj = Ejψj where Ξ := Ξ(h) = −∆
and ψj ∈ L2(Ω), then

N(λ) := #{j : Ej < λ} ∼ Area(Ω)

4π
λ
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in the limit λ→∞.
Proof. Taking n = 2, V = 0, and h = 1 in Theorem 2.3.14 above, we see that

N(λ) = #{E(h) : 0 ≤ E(h) ≤ λ} = (2π)−2(VolR4{0 ≤ p2 ≤ λ}+ o(1)).

The result follows after noting that the volume expression is simply the product of the area
of Ω in position space and the area of a ball of radius

√
λ in momentum space. �

2.3.3 Egorov’s Theorem

Egorov’s theorem asserts that the quantum-mechanical time evolution of a Weyl-quantized
operator can be well-approximated by transporting the operator’s symbol along the classical
flow generated by the (principal) symbol of the Hamiltonian operator. It therefore provides
an insightful correspondence between classical and quantum mechanics.

We start formulating the theorem as follows. Let V be a smooth, real-valued potential
on the compact Riemannian manifold (M, g), and with a choice of local coordinates on M
we consider again the Hamiltonian ξ(x, p) := |p|2gx + V (x), where (x, p) ∈ T ∗M . Let us
denote the Hamiltonian flow (c.f. §1.2.1) of ξ as

Φt = exp(tXξ),

where Xξ is the Hamiltonian vector field determined by ξ (c.f. §1.1). (We write Φt instead
of gt to remind ourselves of the flow’s Hamiltonian nature.) By Theorem 1.2.8, we see
that Φt identifies with the geodesic flow on the tangent bundle TM under the canonical
isomorphism T ∗M ∼= TM and the condition V := 0.

From the functional analysis reviewed in Appendix I, by Stone’s theorem (Theorem I.4)
we know that self-adjoint operators are the infinitesimal generators of unitary groups of
time evolution operators. So let us denote the unitary group on L2(M) generated by the
(essentially) self-adjoint operator Ξ(h) as F (t) = exp(−itΞ(h)/h). If A ∈ ∩m∈ZΨm(M) is
another ψDO, then its quantum evolution is given by A(t) := F−1(t)AF (t) for all t ∈ R;
this agrees with the Heisenberg picture of quantum mechanics. We state and prove the
following formulation of Egorov’s theorem:

Theorem 2.3.16. (Egorov, [Ego69, Zwo12]) Let Φt denote the Hamiltonian flow of ξ(x, p) :=
|p|2gx + V (x) and at(x, p) := a(Φt(x, p)) for some a ∈ S−∞(T ∗M). If A = Opw(a)(x, hD)

and Ã(t) := Opw(at)(x, hD), then for any fixed T > 0 and 0 ≤ t ≤ T ,

||A(t)− Ã(t)||L2→L2 = O(h)

uniformly. Note that we need a ∈ S−∞(T ∗M) to guarantee that at is in the same symbol
class. If a ∈ S(T ∗M), then the symbol class is not preserved by ϕ∗t due to the fact that the
flow of ξ is faster at higher frequencies.

Proof. First we note that ∂tat = {ξ, at}, where {ξ, at} = Xξat is the Poisson bracket on
T ∗M . If σ(P ) denotes the symbol of a ψDO P , then

σ

(
i

h
[Ξ(h), B]

)
= {ξ, σ(B)}
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for any B ∈ ∩m∈ZΨm(M). This can be checked in local coordinates with Proposition 2.3.8.
An application of Theorems 2.3.11 and 2.3.12 then yields

∂tÃ(t) =
i

h
[Ξ(h), Ã(t)] + E(t)

for E(t) ∈ hΨ−∞(M), with ||E(t)||L2→L2 = O(h). Applying the time-evolution operator on
∂tÃ, we have

∂t(e
− itΞ(h)

h Ã(t)e
itΞ(h)
h ) = e−itΞ(h)/h(∂tÃ(t)− (i/h)[Ξ(h), Ã(t)])eitΞ(h)/h

= e−itΞ(h)/h((i/h)[Ξ(h), Ã(t)] + E(t)− (i/h)[Ξ(h), Ã(t)])eitΞ(h)/h

= e−itΞ(h)/hE(t)eitΞ(h)/h = OL2→L2(h).

Integrating both sides of this equality then gives ||e−itΞ(h)/hÃ(t)e−itΞ(h)/h − A||L2→L2 =
O(h), which implies that

||Ã(t)−A(t)||L2→L2 = ||Ã(t)− eitΞ(h)/hAe−itΞ(h)/h||L2→L2 = O(h)

uniformly for all t ∈ [0, T ]. �

Egorov’s theorem will be useful for proving the quantum ergodicity theorem of Schnirelman,
Zelditch, and de Verdière in the next chapter.
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3 Semiclassical Analysis and Quantum Ergodicity

In this chapter, we accomplish our goal of proving the quantum ergodicity (QE) theorem
using the semiclassical, geometric, and analytic tools we have developed thus far. Our
proof of the QE theorem will naturally lead us into a discussion about quantum unique
ergodicity (QUE). In particular, we examine in §3.3 both the similarities and differences of
each statement, and motivate why the problem of QUE is substantially more difficult.

3.1 Quantum Ergodicity

Let (M, g) be a compact Riemannian manifold. Recall the following setup from §1.3: if H
is a Hamiltonian function that specifies the integrable system (M,ω,H) with geodesic flow
gt, then the level sets of M are denoted Σc := H−1(c) for c ∈ [a, b] ∈ R. By Definition
1.2.7, the Liouville measure µcL is an invariant measure on each fiber Σc. We can discuss the
ergodicity of gt by viewing it as a transformation on the measure space (Σc, µ

c
L) determined

by the “energy shell” (level set) Σc, and checking that gt satisfies the ergodicity conditions
given in Definition 1.2.10. If gt is ergodic, then by the weak ergodic theorem we know that

lim
T→∞

∫
Σc

(
〈f〉T −−

∫
Σc

fdµcL

)2

dµcL = 0

for all f ∈ L2(Σc), and furthermore by Birkhoff’s ergodic theorem that

〈f〉T = lim
T→∞

1

T

∫ T

0
f(gt(z))dt = −

∫
Σc

fdµcL.

Recall as well the Hamiltonian symbol ξ : T ∗M → R, ξ(x, p) := |p|2 +V (x) for V ∈ C∞(M)
and its Weyl quantization Ξ(h) = −h2∆ + V (x) from §2.3.1. We will take ξ to be our
Hamiltonian H in the previous paragraph, and use the generalization Ξ(h) of our usual
Laplacian ∆ for the statement of Theorem 3.1.3.

We begin by stating a historical form of the QE theorem, which incidentally is one of
the clearest. Translated from the original French in de Verdière’s 1985 manuscript, this
statement reads as follows:

Theorem 3.1.1. (quantum ergodicity, Schnirelman and de Verdière, [dV85]) Let M be a
compact Riemannian manifold. If the geodesic flow on M is ergodic, then there exists a
subsequence {λki}i∈N of density 1 of the spectrum of the Laplacian −∆ such that, for any
pseudodifferential operator A of order zero with principal symbol a, we have

lim
i→∞
〈Aϕki , ϕki〉 =

∫
Σc

adµcL,

where ϕki is an eigenfunction of −∆ with eigenvalue λki . Here the density of a set S ⊆
Spec(−∆) is defined as

D(S) = lim
λ→∞

#{λk ∈ S : λk ≤ λ}
#{λk ≤ λ}

.
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We remind ourselves that by a theorem of Hopf’s (Theorem 1.2.12), the geodesic flow on any
compact, negatively-curved Riemannian manifold is ergodic. There are variants of Theorem
3.1.1 in the literature where the hypothesis is that M is negatively curved.

Corollary 3.1.2. (density of eigenfunctions) With the notation as above, we have

lim
i→∞

∫
S
|ϕki |

2 =
Vol(S)

Vol(M)
,

where S is an open subset of M .

We will in fact state and prove a more general statement than Theorem 3.1.1, involving not
just the eigenfunctions of ∆ but also the eigenfunctions of the pseudodifferential operator
Ξ(h). First, several remarks are in order:

• Let us keep in mind the notation ∆ϕn + λnϕn = 0. In particular, we will use ϕ to
denote an eigenfunction of the positive Laplacian ∆, and index the set of all eigen-
functions and eigenvalues by n. We will also set λn = h−2

n when appropriate.

• The quantity 〈Aϕn, ϕn〉 denotes the expectation value of the self-adjoint operator
(quantum observable) A. Theorem 3.1.1 most simply states that in the high-energy
limit, the expectation value of a quantum observable is just the space-average of its
corresponding classical symbol.

• We can immediately see how the intuition behind this theorem, as given in the In-
troduction and Chapter 1, follows. In more qualitative terms, Theorem 3.1.1 and
Corollary 3.1.2 tell us that a density 1 set of Laplacian eigenfunctions induces a mea-
sure on the set of functions which converges to the uniform measure. Though we have
already seen this measure in §1.3, we will define it more rigorously as needed in §3.3.

• The convergence of measures above is meant in the weak-∗ sense. Again, we relegate a
rigorous definition of weak-∗ convergence to §3.3, and use only the working definition
of convergence above.

• The physical and intuitive interpretation of Theorem 3.1.1 is that wavefunctions (L2-
eigenfunctions of ∆) on a negatively-curved compact domain equidistribute in the
high-energy limit. If the classical mechanics as described by the geodesic flow of a
system is ergodic, then even in the semiclassical limit hn → 0 (λn → ∞) do most
eigenfunctions of the system fail to localize in phase space.

de Verdière proves Theorem 3.1.1 in a manner similar to our proof of Theorem 3.1.5 below,
so let us proceed to stating that theorem.

Definition 3.1.3. (uniform symbol) A symbol a is uniform if for all c ∈ [a, b],

α := −
∫

Σc

σ(A)dµL

assumes the same value, i.e. the averages of a over each level surface ξ−1(c) are equal to
some constant α. A ψDO is uniform if its principal symbol is. Note that we will use lower-
case Roman letters for both real numbers and symbols, and draw the distinction by context.
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Although this uniformity condition is not standard in the literature, it is useful for our
particular statements of the QE theorem below. We remark that, luckily, any symbol b can
be made uniform by applying the correct projection to the set of uniform symbols. This
projection U is defined as follows. Assuming that |∂ξ| > γ on ξ−1([a, b]), we also have
|∂ξ| > γ/2 on ξ−1([a− δ, b− δ]) for some small enough δ > 0. If for β = ξ(x, p)

U(b(x, p)) := b(x, p)−−
∫

Σβ

bdµβL,

then for any c ∈ [a, b] we have

−
∫
ξ−1(c)

U(b)dµcL = 0.

Setting χ ∈ C∞c (ξ−1((a− δ, b+ δ))) = 1 near ξ−1([a, b]), we define U by finding

U(χb) = χb(x, p)−−
∫

Σβ

χbdµβL.

Then U : C∞(T ∗M)→ C∞c (T ∗M) is idempotent, since −
∫
ξ−1(β) U(b)dµβL = 0 implies

U2(χb) =

(
χb(x, p)−−

∫
Σβ

χbdµβL

)
−

(
−
∫

Σβ

U(χb)dµβL

)
= χb(x, p)−−

∫
Σβ

χbdµβL = U(χb).

Note that the equation −
∫
ξ−1(c) U(β)dµcL = 0 holds for any choice of the symbol b. Thus,

U maps arbitrary symbols to uniform symbols with zero average. In terms of ψDOs, we
can also find a set of uniform Weyl-quantized operators B with an arbitrary average α by
taking

B := Op(U(b)) + αOp(χ) +Op((1− χ)b),

where b is any symbol and χ ∈ S(T ∗M) is defined to be 1 near ξ−1([a, b]).

As mentioned before, the following two theorems deal with the more general Ξ(h) operator
instead of ∆. We will also denote the eigenfunctions and eigenvalues of Ξ(h) by ϕk and λk
respectively, so that Ξ(h)ϕk(h) = λk(h)ϕk(h).

Theorem 3.1.4. (quantum ergodicity, Zelditch and Zworski, [ZZ96]) Let M be a compact
Riemannian manifold with ergodic geodesic flow. If A ∈ Ψ(M) is uniform with principal
symbol σ(A), then

(2πh)n
∑

a≤λk≤b

∣∣∣∣∣〈Aϕk, ϕk〉 − −
∫
{a≤ξ(x,p)≤b}

σ(A)dxdp

∣∣∣∣∣
2

→ 0.

as h→ 0 for all λk ∈ {a ≤ λ ≤ b : λ ∈ Spec(Ξ(h))} and eigenfunctions ϕk.

We remark that in the case h = 1 and Ξ(h) = −∆, Theorem 3.1.4 can be modified to imply
Theorem 3.1.1 and weaker QE theorems in the literature [Zel87, Sch74]. In particular, we
would have to drop the uniformity assumption and argue for a finer energy localization
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[HMR87]. The following version of the QE theorem, which incorporates eigenfunction den-
sities, is stated by Zworski in [Zwo12]:

Theorem 3.1.5. (quantum ergodicity, density version, [Zwo12]) Let M be a compact
Riemannian manifold with ergodic geodesic flow. If A ∈ Ψ(M) is uniform with principal
symbol σ(A), then there exists a family of subsets Λ(h) ⊂ {a ≤ λk ≤ b} such that

#Λ(h)

#{a ≤ λk ≤ b}
→ 1 and 〈Aϕk, ϕk〉 → −

∫
{a≤ξ(x,p)≤b}

σ(A)dxdp

as h→ 0 for all λk ∈ Λ(h) and eigenfunctions ϕk.

The QE theorems given above directly imply the equidistribution of Laplacian eigenfunc-
tions, as noted in §1.

Example 3.1.6. (equidistribution of Laplacian eigenfunctions) Let (M, g) be a compact
Riemannian manifold with ergodic geodesic flow, and consider again the eigenfunction equa-
tion ∆ϕk + λkϕk = 0 where ∆ = ∆g, ϕk ∈ L2(M), and k ∈ N. Theorem 3.1.5 then tells us
that there is a subsequence ki → ∞ of density 1, i.e. limN→∞

1
N#{i : ki ≤ N} = 1, such

that ∫
M
|ϕki |

2fdx→
∫
M
fdx

for all f ∈ C∞c (M).

One can also say that the probability measure |ϕki |2dx induced by the eigenfunctions {ϕki}
converges as ki → ∞ to the uniform measure on M , and again we will make this no-
tion more precise in §1.3. It is important to note that this remark is the starting point
of quantum unique ergodicity: that is, under the hypothesis of Theorem 3.1.5, do these
eigenfunction-induced probability measures always converge to the uniform measure?

Although the QE theorems may seem difficult to prove at first glance, they follow readily
from a few applications of Weyl’s law, Egorov’s theorem, and the weak ergodic theorem
proved earlier in this thesis.

3.2 Proof of the Quantum Ergodicity Theorem

This section is focused singularly on the proofs of Theorems 3.1.4 and Theorem 3.1.5 above.
The proofs we present are motivated by the ones in [dV85] and [Zwo12], though we endeavor
to elucidate certain steps of our argument more naturally. We start by stating two lemmas
without proof, one in the form of an analytic bound of Weyl-quantized operators and the
other in the form of a generalized Weyl’s law:

Lemma 3.2.1. (L2 quantization bound) Suppose a ∈ S and A = Opw(a)(x, hD). Then

||A||L2→L2 ≤ C sup
R2n

|a|+O(h1/2)

as h→ 0, where C is a constant.
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Lemma 3.2.2. (generalized Weyl’s law) Let B ∈ Ψ(M). Then

(2πh)n
∑

a≤λk≤b
〈Bϕk, ϕk〉 →

∫∫
{a≤ξ(x,p)≤b}

σ(B)dxdp

as h→ 0.

Lemma 3.2.1 is directly analogous to Theorem 2.2.14, while Lemma 3.2.2 is a further gen-
eralization of Theorem 2.3.14 (we obtain the latter by taking B = I in the former). For
proofs of these lemmas, we refer the reader to [Zwo12].

Proof of Theorem 3.1.4. The main idea of the proof is to proceed as follows:

1. First, we replace the given pseudodifferential operator A with another suitable pseu-
dodifferential operator B with a uniform average of zero.

2. Next, we apply Weyl’s law (Lemma 3.2.2), time-evolve this pseudodifferential opera-
tor, and take the time-average to rewrite its expectation value 〈Bϕk, ϕk〉 in terms of
the time-average of the operator B.

3. Then, we approximate the expectation value with the time-average of an analogous
classically-evolved operator by applying Egorov’s theorem (Theorem 2.3.21).

4. Finally, we use the weak ergodic theorem (Theorem 1.2.11) and the ergodicity of the
geodesic flow to obtain the desired bound.

In particular, let C∞c (T ∗M) 3 χ = 1 near ξ−1([a, b]), α = −
∫

Σc
σ(A)dµL, and B := χ(Ξ)(A−

αI). Since A is uniform, we have ∫
Σc

σ(B)dµcL = 0

for all c ∈ [a, b]. For any operator C and its adjoint C∗, we have |〈Cϕk, ϕk〉|2 ≤ 〈C∗Cϕk, ϕk〉
by the Cauchy-Schwarz inequality, which along with Lemma 3.2.1 tells us

(2πh)n
∑

a≤λk≤b
|〈(1− χ(Ξ))Aϕk, ϕk〉|2 ≤ (2πh)n

∑
a≤λk≤b

〈A∗(1− χ(Ξ))2Aϕk, ϕk〉 → 0

as h→ 0. Thus we can substitute B for A in the statement of Theorem 3.1.4: if

ε(h) = (2πh)n
∑

a≤λk≤b
|〈Bϕk, ϕk〉|2,

then it suffices to show that ε(h) → 0 as h → 0 to obtained the desired result. Because
Ξϕk = λkϕk, applying the time evolution operator (c.f. §2.3.3) gives us

〈Bϕk, ϕk〉 = 〈B, e−itλk/hϕk, e−itλk/hϕk〉 = 〈Be−itΞ(h)/hϕk, e
−itΞ(h)/hϕk〉

= 〈eitΞ(h)/hBe−itΞ(h)/hϕk, ϕk〉 = 〈B(t)ϕk, ϕk〉

for all t ∈ R. Taking the time average, we have

〈Bϕk, ϕk〉 =

〈(
−
∫ T

0
B(t)dt

)
ϕk, ϕk

〉
= 〈〈B〉Tϕk, ϕk〉,
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where we recall that

〈B〉T =
1

T

∫ T

0
B(t)dt = −

∫ T

0
B(t)dt.

Along with the fact that ||ϕk||2 = 1, this implies that |〈Bϕk, ϕk〉| = |〈〈B〉Tϕk, ϕk〉| ≤
||〈B〉Tϕk||2 = 〈〈B∗〉T 〈B〉Tϕk, ϕk〉, and we can therefore rewrite ε(h) as

ε(h) ≤ (2πh)n
∑

a≤λk≤b
|〈〈B∗〉T 〈B〉ϕk, ϕk〉|.

Applying Egorov’s theorem (Theorem 2.3.21), we see that

〈B〉T = 〈B̃〉T +OL2→L2(h, T ) and 〈B̃〉T := −
∫ T

0
B̃(t)dt

where B̃(t) ∈ Ψ(M), σ(B̃(t)) = (gt)∗σ(B), and

σ(〈B̃〉T ) = −
∫ T

0
σ(B) ◦ gtdt = 〈σ(B)〉T .

Since 〈B〉T = 〈B̃〉T +OL2→L2(h, T ), we can approximately replace the time-evolved operator
eitΞ(h)/hBe−itΞ(h)/h by the “geodesically-evolved” B̃. But then Lemma 3.3.2 and the bound
for ε(h) above imply that

lim sup
h→0

ε(h) ≤ lim sup
h→0

(2πh)n
∑

a≤Ej≤b
〈〈B̃∗〉T 〈〈B̃〉, uj〉+OL2→L2(h, T )


=

∫∫
{a≤ξ≤b}

σ(〈B̃∗〉T 〈B̃〉T )dxdp =

∫∫
{a≤ξ≤b}

|σ(〈B〉T )|2dxdp.

This is because the symbol map σ is multiplicative (c.f. §2) and the quantization of complex
conjugate symbols are adjoint. Finally, applying the weak ergodic theorem (Theorem 1.2.11)
with f = σ(B) gives us ∫

ξ−1[a,b]
|〈σ(B)〉T |2dxdp→ 0

as T →∞, and taking the T →∞ limit above gives

lim sup
h→0

ε(h) = lim
T→∞

lim sup
h→0

ε(h) = lim
T→∞

∫
ξ−1[a,b]

|〈σ(B)〉T |2dxdp = 0,

as desired. �

We now prove Theorem 3.1.5 in two installments:

Proof of Theorem 3.1.5, part 1. First, we show that there exists a family of subsets
Λ(h) ⊂ {a ≤ λk ≤ b} satisfying the criteria of the theorem, where Λ(h) also depends on the
given pseudodifferential operator A. We will use Theorem 3.1.4 to do this.
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Let B be given as before, with B := χ(Ξ)(A− αI), so that again we have∫
{a≤ξ≤b}

σ(B)dxdp = 0 and ε(h) := (2πh)n
∑

a≤λk≤b
|〈Bϕk, ϕk〉|2 → 0,

where the latter assertion is precisely the content of Theorem 3.1.4. Then, for

Γ(h) := {a ≤ λk ≤ b : |〈Bϕk, ϕk〉|2 ≥ ε(h)1/2},

we have (2πh)n#Γ(h) ≤ ε(h)1/2. We will define our desired subset Λ(h) by removing Γ(h)
from the bounded part of Spec(Ξ), namely

Λ(h) := {a ≤ λk ≤ b}\Γ(h).

This choice of Λ(h) gives us the appropriate set: indeed, if λk ∈ Λ(h), then we have

|〈Bϕk, ϕk〉| ≤ ε(h)1/4 =⇒ |〈Aϕk, ϕk〉 − α| ≤ ε(h)1/4,

and
#Λ(h)

#{a ≤ λk ≤ b}
= 1− #Γ(h)

#{a ≤ λk ≤ b}
.

Then an application of Weyl’s law (Theorem 2.3.14 and Lemma 3.2.2) yields

#Γ(h)

#{a ≤ λk ≤ b}
=

(2πh)n#Γ(h)

Vol({a ≤ ξ(x, p) ≤ b}) + o(1)
≤ Cε(h)1/2 → 0,

as h→ 0 for some suitable constant C. Thus Λ(h) saturates {a ≤ λk ≤ b}, as desired. �

Proof of Theorem 3.1.5, part 2. Our proof proceeds as follows:

1. By defining an appropriate density-1 eigenvalue subset Λ∞(h) as the limit of all Λl(h)’s
in any enumeration {Al}∞l=1 of ψDOs, we show by a simple density argument that
Λ∞(h) is the density-1 subset we seek in the statement of the theorem.

2. We construct an appropriate set of ψDOs {Al}∞l=1 which satisfy the theorem, with
the additional criterion that {Al}∞l=1 is dense in the set of uniform ψDOs. By another
density argument, we can show that the theorem holds for any ψDO.

In particular, let {Al}∞l=1 ⊂ Ψ(M) be any family of uniform pseudodifferential operators,
each with average αl. From part 1 above, we can define some appropriate Λl(h) correspond-
ing to Al so that

#Λl(h)

#{a ≤ λk ≤ b}
→ 1 and 〈Alϕk, ϕk〉 → −

∫
{a≤ξ(x,p)≤b}

σ(Al)dxdp

as h→ 0, for all λk ∈ Λl(h) and eigenfunctions ϕk. From {Al}∞l=1 and {Λl(h)}∞l=1 as defined,
we wish to construct a set Λ(h) so that the conditions above are satisfied by an arbitrary
pseudodifferential operator A; in other words, we wish to remove the dependency of Λ(h)
on A from above.
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We start by observing that, since Λl(h) and Λm(h) both have density 1 in the bounded
spectrum of Ξ, their intersection Λl(h)∩Λm(h) also has density 1. Thus, we may order the
sets Λl(h) so that Λl+1(h) ⊂ Λl(h) for all l. For each l, we shall choose h = h(l) > 0 small
enough so that

#Λl(h)

#{a ≤ λk ≤ b}
≥ 1− 1

l

for 0 < h < h(l). Taking h(l) > h(l + 1)→ 0 as l →∞, we define Λ∞(h) := liml→∞ Λl(h),
where h(l + 1) ≤ h < h(l). (In other words, Λ∞(h) is defined to be the “smallest” set of
{Λl(h)}∞l=1, where the semiclassical parameter h for Λ∞(h) is bounded appropriately.) Then

#Λ∞(h)

#{a ≤ λk ≤ b}
≥ 1− 1

l

for all 0 < h < h(l), and taking l→∞ =⇒ h(l)→ 0 gives us

lim
h→0

#Λ∞(h)

#{a ≤ λk ≤ b}
= 1.

Now we observe that, for any pseudodifferential operator Al in our set above, we have

〈Alϕk, ϕk〉 → −
∫
{a≤ξ(x,p)≤b}

σ(Al)dxdp

as h → 0, where λk ∈ Λ∞(h). This is because the fact that Λl+1(h) ⊂ Λl(h) for all l and
the definition of Λ∞ implies that Λ∞(h) ⊂ Λl(h) for h < h(l), and the above limit holds for
λk ∈ Λl(h).

Let us now choose a set {Al}∞l=1 which is dense in A = {A ∈ Ψ−∞(M) : −
∫

Σc
σ(A)dµcL =

α independently of c ∈ [a, b]}. By dense in A, we mean that for any A ∈ Ψ−∞(M) and
ε > 0, there are choices of l and h0 such that the time-average of the difference of the ψDOs
are small:

−
∫
{a≤ξ(x,p)≤b}

|σ(Al −A)|dxdp < ε and ||Al −A||L2→L2 < ε.

for 0 < h < h0. As we shall see, finding such a set {Al}∞l=1 with this property implies the
result.

To find the desired {Al}∞l=1, note that by Lemma 3.2.1 and the weak ergodic theorem,
we have

||A−Al||L2→L2 ≤ ||σ(A)− σ(Al)||L∞(T ∗M) + Ch1/2

for C = C(a, al), and thus

−
∫
a≤ξ(x,p)≤b

|σ(A−Ak)|dxdp ≤ C||σ(A)− σ(Al)||L∞(T ∗M).

In terms of symbols, we must therefore find the set {al}∞l=1 ⊂ S−∞(T ∗M) satisfying (inde-
pendently of c ∈ [a, b])

−
∫

Σc

al(x, p)dµ
c
L = α,
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so that for an arbitrary choice of a ∈ S−∞(T ∗M) and all ε > 0, there is a choice of l such
that

||a− al||L∞(T ∗M) < ε.

Another way to think of this problem is that we need to find

{al ∈ C∞c (T ∗M) satisfying the above bound}

dense in the space

C0(T ∗M) := {continuous functions vanishing at ∞ and satisfying the above bound}.

The means for this construction is provided by the uniformity projection U given in §3.1:
since U is continuous, taking a dense set of bl’s in both C∞c (R2n) and C0(R2n) and setting
al = U(bl) gives a set {al}∞l=1 of zero-average symbols that is also dense in C0(T ∗M). Adding
αχ for C∞c (R2n) 3 χ = 1 near ξ−1([a, b]) to al then produces a symbol with average α.

Thus, we have found a set {Al}∞l=1 which is dense inA = {A ∈ Ψ−∞(M) : −
∫

Σc
σ(A)dµcL =

α independently of c ∈ [a, b]}. Along with the fact that

〈Alϕk, ϕk〉 → −
∫
{a≤ξ(x,p)≤b}

σ(Al)dxdp

as h→ 0 for λk ∈ Λ∞(h), we see that for all λk ∈ Λ∞(h),∣∣∣∣∣lim sup
h→0

(
〈Aϕk, ϕk〉 − −

∫
{a≤ξ(x,p)≤b}

σ(A)dxdp

)∣∣∣∣∣ < 2ε

and ∣∣∣∣∣lim inf
h→0

(
〈Aϕk, ϕk〉 − −

∫
{a≤ξ(x,p)≤b}

σ(A)dxdp

)∣∣∣∣∣ < 2ε.

These bounds yield the desired result for arbitrary A ∈ Ψ−∞(M). To extend this result
to arbitrary A0 ∈ Ψ(M), we replace A ∈ Ψ−∞(M) above with η(Ξ)A0 ∈ Ψ−∞(M), where
A0 ∈ Ψ(M) and C∞c (R) 3 η = 1 on [a, b]. Running the argument back with A = η(Ξ)A0

and using the multiplicative properties of ψDOs developed in §2, we see that the desired
result holds for any A0 ∈ Ψ(M). �

3.3 Quantum Unique Ergodicity

Let us pause the mathematical exposition for a brief dialogue. Generally speaking, the
quantum ergodicity theorems answer a question pertaining to the asymptotics of Lapla-
cian eigenfunctions when the geodesic flow gt is ergodic or chaotic: namely, how does the
chaotic dynamics of the classical geodesic flow translate to quantum-mechanical eigenfunc-
tions, which by Egorov’s theorem must converge to the classical limit as the energy levels
become infinite? The QE theorems particularly examine the quantities 〈Aϕk, ϕk〉, where
A is a semiclassical ψDO or quantum observable with principal symbol σ(A) = a. These
expectation values are the most obvious asymptotic quantities to analyze: they are, math-
ematically and physically, the most accessible aspects of high-energy eigenfunctions, whose
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analytic expressions may be difficult or even impossible to write down. Furthermore, they
lead us to a natural definition of an eigenfunction-induced measure, which will motivate the
question of QUE. In particular, the measure on T ∗M defined by

µk(a) := 〈Aϕk, ϕk〉

is called the Wigner measure of the state ϕk. The projection of µk onto the configuration
manifold M is equal to the probability measure µMk := |ϕk(x)|2dx, and it is for this reason
that µk is called the microlocal lift of the measure µMk . As a measure on the phase space
T ∗M , µk also encodes phase information about ϕk: it describes the local momentum of a
particle measured at the h scale. Since this construction is fundamental to the statement
of QUE, we summarize it in the following definition:

Definition 3.3.1. (Wigner measure and microlocal lift) Let A ∈ Ψ(M) have principal
symbol a = σ(A), and as before let us denote the eigenfunctions of Ξ(h) as ϕk. Then the
measure on T ∗M defined by

µk(a(x, p)) = 〈Aϕk, ϕk〉

is called the Wigner measure of ϕk. For a fixed quantization a 7→ A, we can write µk =
µk(a). The transformation of measures defined by

µMk = |ϕk(x)|2dx 7→ 〈Aϕk, ϕk〉 = µk

is called a microlocal lifting of the eigenfunction-induced measure µMk , and µk is called the
microlocal lift of µMk .

In general, it is difficult to analyze the Wigner measures of individual eigenfunctions. As
the QE theorem suggests, we should instead concentrate on the limit of a family of Wigner
measures under some suitable topology. This topology is given by the weak-∗ topology,
which we define for our purposes as follows:

Defintion 3.3.2. (weak-∗ convergence) A sequence of measures {µk} on M converges to µ
in the weak-∗ topology if for all f ∈ C∞(M),

lim
k→∞

∫
fdµk =

∫
fdµ.

Definition 3.3.3. (quantum limit measure) A weak-∗ limit µ of a sequence of Wigner
measures {µk} is called a quantum limit measure.

Technically speaking, most manifolds possess no global coordinate chart, but our definition
of ψDOs depends on local coordinates. We must therefore ensure that microlocal lifts and
their limit measures are also well-defined if the latter exists. Microlocal lifts are generally
not unique depending on the lower-order terms of A; nonetheless, because we know that
these lower-order terms “do not matter,” it should not be surprising that sequences of mi-
crolocal lifts converge to the same quantum limit regardless of lower-order terms in the fixed
quantization a 7→ A. For a more detailed discussion of these technical issues, we refer the
reader to [GS12], [Mar02], and [Hör83c].
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We will also take it for granted that any limit measure µ possesses the following prop-
erties:

• µ is indeed a probability measure on any given energy shell Σc;

• µ is invariant under the geodesic flow gt on M .

The first point can be proved rigorously by some convergence argument, while the second
point directly follows from Egorov’s theorem (Theorem 2.3.16). We now rephrase the QE
theorem as follows:

Theorem 3.3.4. (quantum ergodicity for Wigner measures) If M is a compact Riemannian
manifold with ergodic geodesic flow, then there exists a density-1 subsequence {ki} ⊂ N
such that µki → µcL on Σc as i→∞.

The main difference between QE and QUE is that QUE posits µcL as the only limit to which
the µki converge. We can intuitively appreciate this statement as follows: if C = Opw(1S)
is the Weyl quantization of a characteristic function for some set S ⊂ Σc, then 〈Cϕk, ϕk〉 is
the probability amplitude that a particle in energy state λk lies in S. If the only quantum
limit measure of {µki} is the uniform Liouville measure µcL, then

〈Opw(1S)ϕki , ϕki〉 →
µcL(S)

µcL(Σc)

as i → ∞, so that the particle becomes completely diffuse on the energy shell Σc. As
[Non10] notes, this is a quantum analogue of the phenomenon that chaotic trajectories
equidistribute. Thus, one way to view the fact that QUE is much stronger than QE is that
the eigenfunctions of a quantized Hamiltonian Ξ(h) become diffuse on the energy surface
Σc, and not just on the configuration manifold M .

If QUE fails, then there may exist a sparse, exceptional sequence of Wigner measures
that does not converge uniquely in the weak-∗ topology to the Liouville measure: the
corresponding eigenfunction sequence must, in particular, exhibit a form of singular con-
centration. The QUE conjecture, first proposed by Zeev Rudnick and Peter Sarnak in 1993
[RS96], proposes that QUE does not fail on any manifold with an ergodic geodesic flow (or
negative curvature). It is stated as a direct analogue of the QE theorem as follows.

Conjecture 3.3.5. (quantum unique ergodicity, [RS96]) If M is a compact Riemannian
manifold with negative curvature, then the sequence of Wigner measures µk induced by
the eigenfunctions of Ξ(h) converges to the Liouville measure µcL on any energy shell
Σc := ξ−1(c) ⊂ T ∗M .

The truth of this conjecture would imply that, at both the quantum level and its semiclas-
sical limit, whether or not a Hamiltonian system is classically ergodic does not influence its
dynamics: there is little manifestation of chaotic, classical behavior in both these regimes.
In particular, the quantum mechanics of these chaotic systems would “not reflect the finer
features of the classical mechanics” [Sar11].
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Figure 3.1 |
Time evolution of local-
ized, “scarring” Lapla-
cian eigenfunctions on the
Bunimovich stadium (in
triplet sequences) [Kin13].

The reason why QUE is substantially harder than QE is that it involves a convergence of
measures and the elimination of all possible exceptional eigenfunctions, both of which avoid
the scope of such standard semiclassical-analytic tools as Weyl’s law. Instead of controlling
the behavior of a density-1 family of eigenfunctions of Ξ, we must control the behavior of
all its eigenfunctions. Without such familiar techniques, the task of describing all the ways
in which eigenfunctions can localize seems daunting.

Another source of difficulty is the lack of explicit, easily-described examples. The only
manifolds for which one can explicitly compute quantum limits are mostly limited to ones
with completely integrable classical dynamics, such as the sphere, torus, or other forms of
symmetric surfaces. Nonetheless, these examples are anything but classically ergodic, and
any effort to find new examples of QE or QUE requires a considerable amount of work.

In concluding this section, we note below several examples and non-examples of QE and
QUE in the literature, and proceed to segue into §4.

Example 3.3.6. (non-QE for S1) The circle S1 with Laplacian eigenfunctions {einθ} is
clearly not QE or QUE; see [Ana10] and [Has12] for a more detailed discussion and explicit
computations.

Example 3.3.7. (QE for a class of billiards) Zelditch and Zworski prove in [ZZ96] that
compact Riemannian manifolds with piecewise smooth boundaries and ergodic billiard flows
are QE. Examples of this class include the Bunimovich stadium and the Sinai billiard (c.f.
Figure 1.3). Quantum ergodicity for the stadium billiard was first proven by Gérard and
Leichtman in [GL93].

Example 3.3.8. (QE and non-QUE for stadium billiards) Although the Bunimovich sta-
dium is QE, it is one of the few systems proven to not be QUE in a recent work by Hassell
[Has10]. We present this proof in §4.1. Unlike the geodesic flow on a negatively curved
manifold, Bunimovich billards turn out to have a family of periodic orbits that correspond
to bouncing ball modes, which are eigenfunctions that describe the motion of a particle
bouncing up and down the rectangular sides. The difficulty of showing QUE is proving that
these bouncing ball modes exist in the high-eigenvalue limit. The Bunimovich stadium is
clearly not classically uniquely ergodic due to the vertical bouncing ball modes, and so one
would conjecture that it is not QUE either.

Example 3.3.9. (QUE on arithmetic surfaces) It has been shown by Lindenstrauss in
[Lin06, Lin01] that QUE holds in the arithmetic case, i.e. for arithmetic surfaces that arise
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as the quotient of the Poincaré half-disk H by certain congruent co-compact lattices Γ.
As mentioned in §1.1, this case is interesting because there exists a class of Laplacian-like
operators, called Hecke operators, that share common eigenfunctions with the Laplacian.
Nonetheless, arithmetic QUE is beyond the scope of this thesis, and we refer the interested
reader to [Mar06], [Sar11], and [Sou10].

Further examples and non-examples involve detailed computations. To gather a sense of
how extensive these calculations are, we refer the reader to [Zel10], which works out the
failure of QE and QUE on the flat torus.
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4 Recent Developments in Quantum Unique Ergodicity

In this largely expository final chapter, we discuss the intuition and heuristics behind Has-
sell’s disproof of QUE for the Bunimovich stadium, a topic within the scope of our thesis.
We then conclude with a brief survey of recent progress in QUE research on several fronts,
some of which have already been mentioned. We will avoid technical details in all cases,
and instead aim to explain how the advances we describe are significant.

4.1 No Quantum Unique Ergodicity on the Bunimovich Stadium

Hassell’s disproof of QUE on the Bunimovich stadium (and more generally, partially rect-
angular surfaces) is the only known counterexample to QUE for billiard systems where the
geodesic flow exhibits “chaoticity” and the quantum dynamics are known to be QE [Bun79].
Let us give a semi-formal definition of the Bunimovich stadium as follows:

Definition 4.1.1. (Bunimovich stadium) The Bunimovich stadium Xt is a 2-dimensional
Riemannian manifold formed by adjoining a rectangle with aspect ratio t to two circles.
With normalization, it is given explicitly as ([−tπ/2, tπ/2]×[−π/2, π/2])∪Bπ/2((±tπ/2, 0)) ⊂
R2, where Br(c) denotes the ball of radius r around center c.

As evidenced by Figure 1.3, billiards on Xt are unlike the geodesic flow on a negatively
curved manifold in the sense that the rectangular part of Xt gives rise to seemingly inte-
grable dynamics: that is, billiards on Xt exhibit a family of 1-dimensional periodic orbits
that correspond to billiards bouncing back and forth orthogonally against the rectangular
walls. As mentioned before, this is termed a bouncing ball mode, and “scarring” involving
these modes was studied by Heller as early as 1984 [Hel84]. Although Xt is QE because
these orbits form a set of (Liouville) measure zero, Xt fails to be QUE because they exist in
the high-eigenvalue limit. Hassell’s main result shows that some high-eigenvalue eigenstates
of Xt do indeed have a positive mass on the bouncing ball orbits. More specifically:

Theorem 4.1.2. (Hassell, [Has10]) For every ε > 0, there exists a subset Bε ⊂ [1, 2] of
measure at least 1 − 4ε and a constant m(ε) > 0 with the following property: for every
t ∈ Bε, there exists a quantum limit formed from Dirichlet eigenfunctions of ∆ on the
stadium Xt that gives probability mass at least m(ε) to the bouncing ball trajectories.

Numerical computations, as well as construction of quasi-modes—approximate solutions for
eigenfuctions given by Wentzel-Kramers-Brillouin (WKB) methods—had already indicated
before Hassell’s work that there exists a subsequence of modes whose Wigner measures
converge to the singular measure supported on all bouncing balls. The main difficulty was
showing that such bouncing ball modes exist in the limit: there may be many true eigen-
functions whose eigenvalues are close to that of a given quasi-mode’s. In this regard, Hassell
proves the theorem using a combination of the following techniques:

• the Heller-Zelditch argument, which already shows that eigenfunctions of ∆ localize on
any Bunimovich stadium Xt, with the possible exception of those with eigenvalues in
the intervals [n2−O(1), n2+O(1)] for n ∈ Z. This is done using an explicit construction
of quasi-modes of the form vn = sin(ny)χ(x) or vn = cos(ny)χ(x), where χ(x) is some
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Figure 4.1 |
A bouncing ball mode (blue) and
chaotic trajectory (red) on the
Bunimovich stadium Xt, for t ∈
[1, 2]. The notation is described
in the text.
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suitable cutoff function. With vn defined as above, we see that ∆vn = n2vn + O(1),
i.e. the spectrum of vn is concentrated in the interval [n2 −O(1), n2 +O(1)]. If there
are only O(1) eigenvalues in this interval, then it can be shown that eigenfunction
localization, or “scarring,” occurs in momentum space for these intervals. We refer
the reader to [Tao08] and [ZZ96] for technical details about this argument.

The difficult task at the center of the proof is showing there are indeed only O(1)
eigenfunctions in the interval [n2−O(1), n2 +O(1)] for n ∈ Z. Although the “standard
tool” of Weyl’s law had too large an error term for this task, Hassell used the following
to achieve the necessary bound:

• the Hadamard variation formula, which details how the eigenvalues of Xt vary with
the aspect ratio of its rectangular component t. This is the equation

d

dt
λk(t) = −

∫
∂Xt

sgn(x)

2
(Y · ~n)|∂~nϕk(x, t)|2ds,

where (ϕk, λk) is an eigenvector-eigenvalue pair of the Dirichlet Laplacian ∆ on Xt, ~n
is the outward unit normal vector at ∂Xt, Y is the vector field which equals 1

2∂x on the

right semicircle of Xt, and ds is the length element on ∂Xt. Since sgn(x)
2 (∂x · ~n) ≥ 0

everywhere, this formula tells us that the magnitude of the k-th eigenvalue always
decreases as the aspect ratio t of Xt increases. This is consistent with Weyl’s law
on Xt (Corollary 2.3.15), which states λk = 4πk

Area(Xt)
(1 + o(1)). Using the Hadamard

variation formula, Hassell shows the refinement

− d

dt
λk(t) ∼ λk(t)

in expectation over k.

• the properties of quantum unique ergodicity, which allow a proof by contradiction.
In particular, if Xt is QUE—the eigenfunctions equidistribute in the phase space
T ∗Xt—then by Egorov’s theorem (Theorem 2.3.16), the positions and momenta of
eigenfunctions in T ∗Xt are propagated by the geodesic flow. Given billiard dynamics,
however, we see that all geodesics on Xt intersect the boundary ∂Xt, and it can be
shown that any equidistributed eigenfunction also has a normal derivative that is
equidistributed on ∂Xt; see [Has10] and [Tao08] for a formalization of this argument.
Thus, all eigenfunctions are equidistributed on ∂Xt, which implies that the exponential
decay − d

dtλk(t) ∼ λk(t) holds for all eigenvalues λk and not just in expectation. We
can then show rigorously that the eigenvalues of ∆ cannot conspire to concentrate
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in any interval of the form [n2 − O(1), n2 + O(1)], n ∈ Z for most t ∈ [1, 2], else
the eigenvalues “loiter” near the value n2 for significant intervals of t and contradict
the exponential decay condition above. The Heller-Zelditch argument then gives a
contradiction to the QUE assumption, proving the desired statement.

It is interesting to note that billiards on the Bunimovich stadium is one of the few model
systems for which we have a firm understanding of QE and QUE. There have been no further
disproofs of QUE on any billiard system since Hassell’s result, though it is currently believed
that QUE holds for billiards on the Barnett stadium (Figure 1.3). This is largely due to the
work of Barnett, who verified QUE in this setting up to the 30,000th eigenfunction. Though
it is a clear counterexample to QUE, the Bunimovich stadium illustrates the key themes
of physical intuition and geometric visualization we mentioned in §1.3, and is therefore an
important model system to remember.

4.2 Frontiers in Semiclassical Analysis and Quantum Chaos

In concluding this thesis, we mention the following research areas on QUE and its related
disciplines. As noted before, there are many works that lie completely outside the scope of
our thesis; see [Ana09, Non10, Sar11, Zel10] for more detailed surveys. Below, we aim to
provide a summary of several topics that lie within the scope of our exposition, so that the
reader can readily pursue further research in the following areas.

Microlocal and semiclassical analysis. There are several areas of microlocal and semi-
classical analysis relevant to PDE analysis; examples include heat kernel methods, Fourier
integral operators, the Fourier-Bros-Iagolnitzer (FBI) transform, and stationary phase ap-
proximations. We refer the reader to [Dui95], [Mar02], and [Zwo12] for standard treatments
of these topics. A survey of recent research in microlocal and semiclassical analysis can be
found in [MU08] and [UW10].

Failure of QUE for cat maps. It is oftentimes useful to extend the ergodicity of the
geodesic flow to the ergodicity of any map on the symplectic phase space T ∗M , where
(M, g) is a Riemannian manifold. Instead of a flow, “classical” dynamics may be provided
by a discrete time transformation f : T ∗M → T ∗M that preserves the symplectic structure.
Such maps can be reconstructed from flows by considering Poincaré sections transversal to
the flow, and allow us to gain insight into such topics as hyperbolic symplectomorphisms on
the 2-dimensional torus. An explicit example of this subject is given by Arnold’s cat map
(Figure 4.2a), defined by the action of the matrix

Γ =

(
1 1
1 2

)
on T2 = R2/Z2, i.e. fΓ : T2 3 (x, p) 7→ (x+ p, x+ 2p) mod 1 ∈ T2. It has been shown that,
although such maps possess the Anosov (strongly chaotic) property, the analogue of QUE
for quantizations of hyperbolic toral symplectomorphisms fails to hold. This suggests that
there may be something unique about the geodesic flow on a negatively curved manifold,
and perhaps the QUE conjecture (Conjecture 3.3.5) is already the best possible statement
one can hope for. The reader may consult [FNdB03] and [FN04] for further reading.
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Figure 4.2 |
Illustrations
for two cur-
rent research
areas in QUE.

(a) A graphical representation of Arnold’s cat
map, the model hyperbolic toral symplecto-
morphism. Aside from being a test case for
QUE, it is also used in dynamical systems the-
ory and image processing.

(b) A numerically-computed density
plot of |ϕn|2 on the Barnett stadium,
where n ≈ 5× 104 and λn ≈ 106, as cal-
culated by Barnett’s method in [Bar06].

Numerical simulations of QUE. Given the technical difficulty of proving the QUE con-
jecture outright, many researchers have been interested in finding numerical evidence for
it. The most notable project is Barnett’s simulation of 30,000 eigenfunctions of the Bar-
nett billiard (Figure 4.2b), a uniformly hyperbolic planar Euclidean billiard system, which
produced evidence that QUE holds in this case. Barnett studied the rate of equidistribu-
tion of Dirichlet eigenfunctions of ∆ on the Barnett stadium by examining the diagonals
of the matrix elements 〈ϕn, Aϕm〉, where A is some suitably defined test ψDO and ϕn is
an eigenfunction of ∆ with eigenvalue λn. In using an efficient scaling method to compute
these quantities up to n,m ≈ 7× 105, Barnett found that his sample variance decayed with
eigenvalue magnitude as a power of 0.48 ± 0.01, and demonstrated a 102 improvement of
eigenvalue magnitude over previous studies. We refer the reader to [Bar06], [Bar14], and
[Non10] for a more detailed treatment of this topic.

Spectral statistics. This tangentially-related area deals with the inverse problem of de-
scribing the geometric information we obtain from the eigenpairs of ∆ using tools from
fields such as random matrix theory. Although it is rarely possible to explicitly write the
spectral information of ∆ on any domain, one may hope to gain statistical and asymp-
totic information about the eigenpairs given detailed knowledge of the classical billiard or
geodesic flow. Weyl’s law (Corollary 2.3.15) is an example of how this can be done: it
tells us that as λ → ∞, the counting function N(λ) = #{λn ≤ λ} satisfies the asymp-

totic relation N(λ) ∼ Area(Ω)
4π λ, where Ω is a planar Euclidean domain. In the same way

that the area of Ω determines the asymptotic mean density of eigenvalues, we may intro-
duce the consecutive level spacing distribution as a function that counts the fraction of
eigenvalues λn less than λ, whose distance from the next eigenvalue λn+1 is less than s:
P (s,N) := 1

N

∑N
j=1 1(s > λn+1 − λn). If the sequence {λn} is sufficiently “randomized,”

then there should exist a limit distribution P (s) = limN→∞ P (s,N) so that

lim
N→∞

∫ ∞
0

P (s,N)h(s)ds =

∫ ∞
0

P (s)h(s)ds.
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for any nice function h. The 1977 Berry-Tabor conjecture, which has been proven in many
cases, asserts that for “generic integrable systems” the limit distribution P (s) is equal to the
waiting-time distribution for a Poisson process (i.e. P (s) = exp(−s)) [Ber89]. On the other
hand, for “generic” systems with an ergodic geodesic flow the 1984 Bohigas-Giannoni-
Schmidt conjecture proposes that the limit distribution P (s) is equal to the consecutive
level spacing distribution of a suitable Gaussian ensemble of Hermitian random variables
[BGS84]. Numerical experiments have shown that the eigenvalue spacing statistics for the
Sinai billiard correspond to those of the Gaussian orthogonal ensemble (GOE) distribution
[BK10, Rud08]. One hopes that studying these statistics will lead to an increased under-
standing between how integrable and chaotic systems differ in the semiclassical limit.

Other research areas. Aside from the topics mentioned above, there has also been
progress in QUE research in the general case for negatively curved manifolds, which is
exemplified in Anantharaman and Nonnenmacher’s lower bound on the “entropy” of any
quantum limit on such manifolds [Ana08, AN07, Ana10]. This implies that quantum lim-
its cannot be too localized, although the result does not prevent the limits from having
some highly localized ergodic components. Finally, another major result in QUE research
is the proof of QUE in the arithmetic case; see Example 3.3.9 for a brief discussion of
Lindenstrauss’s work.

4.3 Conclusion

We end this thesis with a review of the semiclassical tools and results on quantum ergodic-
ity we have developed, before proceeding to discuss the relevance of what we have hitherto
studied and the future of quantum chaos at large. Having started from first principles in
differential and symplectic geometry, we formalized the Laplace-Beltrami operator, moti-
vated the study of quantum chaos—and in particular, the questions of quantum ergodicity
and quantum unique ergodicity—and addressed these topics by developing the fundamental
tools of semiclassical analysis. These results include the notion of Weyl quantization, which
relates a function defined on phase space to a self-adjoint operator acting on functions in con-
figuration space; the symbol calculus, which formalizes the analytic and algebraic properties
of Weyl-quantized pseudodifferential operators; Weyl’s law, which controls the asymptotic
mean density and behavior of the eigenvalues of a generalized Hamiltonian operator or
Laplacian; and Egorov’s theorem, which relates the classical time evolution given by the
geodesic flow on a manifold to the quantum-mechanical time evolution given by a unitary
propagator. We then proved the quantum ergodicity theorem of Schnirelman, Zelditch, and
de Verdière using a combination of the symbol calculus, Weyl’s law, and Egorov’s theorem,
after which we rigorously formulated the quantum unique ergodicity conjecture and briefly
discussed current research areas in quantum chaos.

As we have mentioned before, our approach to semiclassical analysis and quantum er-
godicity emphasizes intuition over straightforward proofs. The key themes introduced in
§1.3, which serve as general guidelines for thinking about problems related to semiclassi-
cal analysis and quantum chaos, illustrate this approach. For instance, we have seen that
the billiard flow serves as a model dynamical system whose trajectories may be regular or
chaotic depending on the geometry of the domain, and that the classical-quantum corre-
spondence provides a physical heuristic as to when the QE property may hold. It is also
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important to stress that the tools we have developed in this thesis find broader applica-
tions beyond QE and QUE. In regard to semiclassical analysis, we can apply such notions
as Weyl quantization and G̊arding’s inequality to the analysis of PDEs. On the quantum
chaos side, we may examine direct applications of Egorov’s theorem to problems in quantum
mechanics, as well as model the behavior of h-dependent and chaotic Hamiltonians. Lastly,
in considering spectral statistics, we can endeavor to relate the distributional properties of
Laplacian eigenvalues to the classical behaviors of corresponding systems. References for
the foregoing applications have been mentioned in §4.2.

Let us now step backwards and examine QE and QUE as they relate to other fields.
Our predominant emphasis on QE begs the question of how relevant QE is as a physical
concept. Why, in particular, do we care that eigenfunctions of the Laplacian equidistribute?
How physically useful are the notions of QE and QUE, and why should we study them
if statements like the QUE conjecture are seemingly so far out of reach? The answer is
twofold. The one appealing to most mathematicians is that QE leads to, and is inspired
by, many beautiful mathematical theories, some of which (like semiclassical analysis) have
found broader utility which justifies their development. The second answer, which appeals
to most physicists and pragmatists, is that the subject may find applications in condensed
matter or quantum physics. For example, the basic idea of ergodicity is used in statistical
mechanics as a measure of how chaotic and mixing an ensemble of particles is, and may
also serve as a factor influencing the higher-level material properties of a system. Chaotic
effects are manifest in atomic systems where a particle can roam freely, as in electron scat-
tering. Heat kernel methods, which are related to semiclassical analysis, can be computed
using Feynman path integrals as expansions over geodesic terms [Bär12]. Other areas of
application include wavepacket dynamics and many-body systems; the equidistribution of
eigenfunctions may be important here if we specifically want particles to scar disjoint sub-
spaces of the configuration manifold, so that they become well-described by stable periodic
orbits. It may even be argued that chaotic—as opposed to regular—systems are the bread
and butter of science: in nature, nothing is ever ideal, and the classical dynamics of a
system are almost never completely integrable.

Although the resolution of the QUE conjecture seems to lie beyond the range of our
current techniques, a full proof or disproof of the QUE conjecture for negatively curved
manifolds would undoubtedly lead to new insights into quantum mechanics, and may in-
troduce new techniques applicable to other areas of analysis and geometry. In aiming to
formulate the questions of quantum ergodicity and quantum unique ergodicity, it is our
hope that the mathematics developed in this thesis will contribute toward an increased
understanding of semiclassical analysis and quantum chaos.
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Appendices

Appendix I: Results from Functional Analysis

In this appendix, we provide a summary of the functional-analytic tools needed to address
the Laplacian, which are also used in proofs throughout the thesis. A basic background
in functional analysis is assumed; more detailed treatments than the one we present below
can be found in standard analysis textbooks. See, for example, [dMG81], [Dav95], [Hel10],
[Hör83a], [Hör83b], [RS80], and [SS11].

Recall that a topological space S is said to be separable if it contains a countable, dense
subset, i.e. there exists a sequence {xn}∞n=1 of elements of S such that every nonempty
open subset of S contains at least one element of {xn}∞n=1. Let (H, 〈·, ·〉) denote a separable
complex Hilbert space. We remind ourselves that the spectrum of a bounded linear operator
T : H → H is given by the set of all λ such that T − λI has a kernel. (T is bounded if
its operator norm, written below, is finite.) λ ∈ Spec(T ) is an eigenvalue of T if ∃x 6= 0 :
Tx = λx. Recall as well that T is compact if it maps a bounded set of H to a relatively
compact (the closure is compact) subset of H. The space of compact operators forms a
closed ideal in the space of bounded operators in the topology induced by the operator
norm ||T || = min{c ≥ 0 : ||Tx|| ≤ c||x|| ∀x ∈ H}: in particular, if T is compact and
S is bounded, then TS and ST are also compact; if there is a sequence {Tn} such that
||Tn − T || → 0 as n→∞ and the Tn’s are all compact, then T is also compact.

The adjoint of T : H → H is the operator T ∗ satisfying 〈Tx, y〉 = 〈x, Ty〉 for x, y ∈ H.
T is said to be self-adjoint if T = T ∗. The standard spectral theorem for a bounded self-
adjoint operator T : H → H, which is proven in [Dav95, RS80], states that there is an
orthonormal basis of H consisting of eigenvectors of T with real eigenvalues. The analogue
for unbounded operators is more complicated, and requires some technical detail to get right.

Theorem I.1. (spectral theorem for bounded operators) For each self-adjoint bounded
operator T : H → H, there exists a measure space (X,A, µ), a real-valued function
f ∈ L∞(X,µ), and a unitary operator U : H → L2(X,µ) such that U∗MfU = A, there
Mf : x 7→ fx for x ∈ L2(X,µ) is the multiplication operator.

Theorem I.2. (spectrum of self-adjoint operators) If T : H → H is a self-adjoint bounded
operator, then (T − λI)−1 exists and is a bounded linear operator on H for all λ ∈
C/Spec(T ), and if Spec(T ) ⊂ [c,∞), then 〈Tx, x〉 ≥ c||x||2 for x ∈ H.

Proofs of these two theorems can also be found in [RS80] and [SS11].

Now recall that an unbounded operator S : H → H is a linear operator defined on a sub-
space D(S) ⊂ H called the domain of S; in particular, S is a linear transformation from
D(S) → H. S is said to be densely defined in D(S) is dense as a subset in H. The graph
of S is defined as the set G(S) := {(x, Sx) : x ∈ D(S)} ⊂ H ×H, and S is closed if G(S) is
a closed subspace of H ×H with norm ||(x, y)||2 = ||x||2 + ||y||2. S is closable if there is a
closed unbounded operator S s.t. D(S) ⊆ D(S) and L = S on D(S). A standard result of
functional analysis is that S is uniquely defined; call it the closure of S.

If S is a unbounded densely defined operator, then it always has an unbounded adjoint
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operator S∗ such that 〈S∗x, y〉 = 〈x, Ly〉 for all x ∈ D(S∗), y ∈ D(S), where D(S) = {y ∈
H : |〈Sx, y〉| ≤ Cy||x|| ∀x ∈ D(S)}. Furthermore, S∗ is always closed, and if it is densely
defined, then S is closable with S = (S∗)∗, S

∗
= S∗. See [SS11] for a proof of this assertion.

Finally, we recall that an unbounded, densely defined operator S : H → H is symmetric if
〈Sx, y〉 = 〈x, Sy〉 for all x, y ∈ D(S); i.e. S ⊆ S∗, where S ⊆ S∗ means that D(S) ⊆ D(S∗)
and S = S∗ on all x ∈ D(S). S is self-adjoint if S = S∗, and if S is symmetric, then it is
essentially self-adjoint if S = S∗.

In the form of a multiplication operator, the spectral theorem for unbounded operators
can be stated as follows:

Theorem I.3. (spectral theorem for unbounded operators) For each self-adjoint unbounded
operator S : H → H, there exists a measure space (X,A, µ), a real-valued measurable func-
tion f , and a unitary operator U : H → L2(X,µ) such that x ∈ D(S) iffMf (Ux) ∈ L2(X,µ),
and x ∈ D(L) =⇒ U(Ax) = Mf (Ux), where Mf : x 7→ fx is the (unbounded) multiplica-
tion operator on X.

Proofs of this result can be found in [Dav95], [RS80], and [SS03].

Note that the Laplace-Beltrami operator on H = L2(M) is densely defined, with domain
C∞c (M). This can be seen with an application on the closed graph theorem, which, albeit
standard functional analysis-fare, will not be presented here.

Let us state several more theorems used in proofs of other results throughout our the-
sis. One useful result from functional analysis is Stone’s theorem on one-parameter unitary
groups, which establishes a one-to-one correspondence between self-adjoint operators on H
and one-parameter families U(t), t ∈ R of unitary operators that are both strongly contin-
uous and are homomorphisms. More precisely:

Theorem I.4. (Stone) If T : D(T )→ H is a bounded or unbounded self-adjoint operator,
then U(t) := exp(−itT ) for t ∈ R is a strongly continuous unitary group of homomorphisms,
i.e.

∀t0 ∈ R, x ∈ H, lim
t→t0

U(t)x = U(t0)x

and
∀s, t ∈ R, U(t+ s) = U(t)U(s), U(t)∗ = U(−t).

Furthermore, we have d
dt(U(t)x) + U(t)Tx = 0 for all t ∈ R and x ∈ H. If there is a group

of unitary operators satisfying the continuity and homomorphism conditions above, then
we can also produce a self-adjoint operator T such that all the conditions above hold.

A proof of Stone’s theorem can be found in [RS80] and [SS11]. We also prove the following
theorem for reference:

Theorem I.5. (inverses of bounded linear operators) Let X and Y be Hilbert spaces,
A : X → Y be a bounded linear operator, and B1, B2 : Y → X be bounded linear operators
satisfying

AB1 = I + C1 and B2A = I + C2,
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where C1 : Y → Y , C2 : X → X, ||C1|| < 1, and ||C2|| < 1. Then there exists A−1 : Y →
X : AA−1 = A−1A = I.

Proof. Note that, since ||C1|| < 1,
∑∞

i=0(−1)iCi1 converges and is an inverse to the
operator I + C1. Thus AA0 = I, where A0 := B1(I + C1)−1. Similarly, A1A = I where
A1 := (I+C2)−1B2. Since A has both a left and right inverse, from basic functional analysis
we know that it is invertible with A−1 = A0 = A1. �

Let us end the appendix by citing two useful theorems from [Zwo12]. These results are
needed in the proofs of Theorems 2.2.16 (inverses for elliptic symbols) and 2.3.3 (Weyl’s
law). The first theorem gives an explicit expression for the eigenvalues of any suitable self-
adjoint operator, while the second theorem deals primarily with bounding the eigenvalue
counting function N(λ), adapted for operators beyond ∆.

Theorem I.6. (Courant-Fischer) Let T : H → H be a self-adjoint operator with 〈Tx, x〉 ≥
c〈x, x〉, and suppose that the right inverse (T −2c)−1 : H → H is a compact operator. Then
Spec(T ) is discrete and countable, and D(T ) = (T − 2c)−1H. If we order the eigenvalues
in ascending order as λ1 ≤ λ2 ≤ ..., then we also have

λj = max
V⊂H

dimV <j

min
w∈D(T )

dimw⊥V 6=0

〈Tw,w〉
||w||2

= min
V⊂D(T )
dimV≥j

max
w∈V
w 6=0

〈Tw,w〉
||w||2

,

where V is a linear subspace of H.

The proof of Theorem I.6 can be found in [RS80, CH89]. For the following statement, let
rank T = dimT (H), where T : H → H is a bounded linear operator. If S : H → H is an
operator that possesses a real and discrete spectrum, then we set NS(λ) := #{λn : λn ≤ λ}.

Theorem I.7. (estimates of N(λ)) Let T : H → H be a self-adjoint operator with
〈Tx, x〉 ≥ c〈x, x〉, and suppose that the right inverse (T − 2c)−1 : H → H is a compact
operator.

(i) If there exists some δ > 0 and an operator S : D(T )→ H with rank ≤ k such that

〈Tx, x〉 ≥ (λ+ δ)||x||2 − 〈Sx, x〉

for x ∈ D(T ), then NT (λ) ≤ k.
(ii) If for all δ > 0 there exists a subspace V ⊂ D(T ) with dimV ≥ k such that

〈Tx, x〉 ≤ (λ+ δ)||x||2

for x ∈ V , then NT (λ) ≥ k.

The proof of Theorem I.7 uses Theorem I.6, and can be found in [Zwo12].
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Appendix II: Quantization Formulas and Proof of the Expansion Theorem

We compile the following quantization procedures, for a = a(x, p) ∈ S(R2n) being a real-
valued symbol:

Quantization Formula

Weyl quantization Opw(a)(ϕ)(x) = (2πh)−n
∫∫

Rn×Rn e
i
h
〈x−y,p〉a

(
x+y

2
, p
)
ϕ(y)dydp

left (standard) quantization Opl(a)(ϕ)(x) = (2πh)−n
∫∫

Rn×Rn e
i
h
〈x−y,p〉a(x, p)ϕ(y)dydp

right quantization Opr(a)(ϕ)(x) = (2πh)−n
∫∫

Rn×Rn e
i
h
〈x−y,p〉a(y, p)ϕ(y)dydp

t-quantization, t ∈ [0, 1] Opt(a)(ϕ)(x) = (2πh)−n
∫∫

Rn×Rn e
i
h
〈x−y,p〉a(tx+ (1− t)y, p)ϕ(y)dydp

Table 1 | A compilation of quantization procedures

The properties of Weyl quantization are discussed in §2.1.2 and §2.2. The following ta-
ble lists explicit formulas for the quantizations of certain symbols, as shown in examples
throughout the thesis (c.f. Appendix VI):

Symbol Quantization Location

pα Opt(a)(ϕ)(x) = a(x, hD)ϕ(x) = (hD)αϕ(x) Example 2.1.15∑
|α|≤N aα(x)pα Opt(a)(ϕ)(x) = a(x, hD)ϕ(x) =

∑
|α|≤N aα(x)(hD)αϕ(x) Example 2.1.15

〈x, p〉 Opt(a)(ϕ) = (1− t)〈hD, xϕ〉+ t〈x, hDϕ〉
Opw(a)(ϕ) = h

2
(〈D,xϕ〉+ 〈x,Dϕ〉) Example 2.1.16

a(x) Opt(a)(ϕ) = aϕ Example 2.1.17
〈x, x∗〉+ 〈p, p∗〉 Opt(a) = 〈x, x∗〉+ 〈hD, p∗〉 Example 2.1.18

e
i
h
〈x,x∗〉+〈p,p∗〉 Opw(a)(x, hD) = e

i
h
l(x,hD) Lemma 2.2.1

Table 2 | A compilation of quantization examples

We devote the remainder of this appendix to proving Theorem 2.2.6 (semiclassical expan-
sion), following the proof in [Zwo12].

Lemma II.1 (quadratic phase asymptotics, [Zwo12]) Let Q be an invertible, symmetric real
matrix. Then for each N ∈ Z+, we have∫

Rn
e
i

2h
〈Qx,x〉a(x)dx = (2πh)n/2

e
iπ
4

sgn(Q)

| detQ|1/2

(
N−1∑
k=0

hk

k!

(
〈Q−1D,D〉

2i

)k
a(0) +O(hN )

)
,

where a ∈ C∞c (Rn) is real-valued.
Proof. We combine Proposition 2.1.9 and Plancherel’s theorem to see that∫

Rn
e
i

2h
〈Qx,x〉a(x)dx =

(
h

2π

)n/2 e
iπ
4

sgn(Q)

| detQ|1/2

∫
Rn
e−

ih
2
〈Q−1p,p〉â(p)dp.

Setting I(h, a) :=
∫
Rn exp(− ih

2 〈Q
−1p, p〉)â(p)dp, we see that

∂I(h, a)

∂h
=

∫
Rn
e
−ih

2
〈Q−1p,p〉

(
− i

2
〈Q−1p, p〉â(p)

)
dp = I(h, Pa),
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where P = − i
2〈Q

−1D,D〉. Thus

I(h, a) =

N−1∑
k=0

hk

k!
I(0, P ka) +

hN

N !
RN (h, a),

where RN (h, a) is the remainder term given by

Rn(h, a) = N

∫ 1

0
(1− t)N−1I(th, PNa)dt.

Applying the Fourier inversion identity gives

I(0, P ka) =

∫
Rn

(
− i

2
〈Q−1p, p〉

)k
â(p)dp = (2π)nP ka(0),

and using Proposition 2.1.5 gives a bound on the remainder as

|RN | ≤ CN ||P̂Na||1 ≤ CN sup
|α|≤2N+n+1

|∂αa|,

as desired. �

Proposition II.2 (stationary phase formula, [Zwo12]) If a ∈ C∞c (R4n), then∫∫
R2n×R2n

e
i
h
σ(z,w)a(z, w)dzdw = (2πh)2n

(
N−1∑
k=0

hk

k!

(
σ(Dx, Dp, Dy, Dq)

i

)k
a(0, 0) +O(hN )

)

for each N ∈ Z+, where z = (x, p) ∈ R2n and w = (y, q) ∈ R2n.
Proof. Let

Q =

(
−J

J

)
.

As in Lemma 2.2.4, we see that 1
2〈Q(z, w), (z, w)〉 = σ(z, w) and

1

2
〈Q−1D,D〉 = σ(Dx, Dp, Dy, Dq).

Applying Lemma II.1 above gives the result. �

Proof of Theorem 2.2.6. The main idea of this proof is to use Proposition II.2 above
but take h/2 instead of h and −σ instead of σ, and substitute this into the integral repre-
sentation formula (Theorem 2.2.5). Thus, if a, b ∈ S, then

(f#g)(x, p) = (πh)−2n

∫∫
R2n×R2n

e−
2i
h
σ(w1,w2)a(z + w1)b(z + w2)dw1dw2,

where z = (x, p). It remains to show that the remainders are in OS(hN+1). For that we
note from the composition theorem that

eihA(D) =

N∑
k=0

(ih)k

k!
A(D)k +

iN+1hN+1

N !

∫ 1

0
(1− t)NeithA(D)A(D)N+1dt,
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where eithA(D)A(D)N+1 is multiplication by F−1eitA(ζ)A(ζ)N+1F (where F is the Fourier
transform and ζ ∈ R4n). Hence eithA(D)A(D)N+1 : S(R4n)→ S(R4n) uniformly in h and t,
which proves the estimate on the remainder. For the other equations, we simply compute

a#b = ab+ ihA(D)(a(x, p)b(x, p)|y=x,q=p +O(h2)

= ab+
ih

2
(〈Dpa,Dyb〉 − 〈Dxa,Dqb〉)|y=x,q=p +O(h2)

= ab+
h

2i
(〈∂pa, ∂xb〉 − 〈∂xa, ∂pb〉) +O(h2) = ab+

h

2i
{a, b}+O(h2).

and

[Opw(a), Opw(b)] = Opw(a)Opw(b)−Opw(b)Opw(a) = Opw(a#b− b#a)

= Opw
(
ab+

h

2i
{a, b}+

h2

2
A(D)2(ab)|y=x,q=p +OS(h3)

)
−Opw

(
ba+

h

2i
{b, a}+

h2

2
A(D)2(ba)|y=x,q=p +OS(h3)

)
=

h

i
Opw({a, b}) +Opw(OS(h3)),

where the final equality follows because

(A(D)2(a(x, p)b(y, q))−A(D)2(b(x, p)a(y, q)))|y=x,q=p = 0.

Finally, if supp(a) ∩ supp(b) = ∅, then each term in the expansion above vanishes for
arbitrary N . This gives the result. �
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Appendix III: Source Code for Figures and Numerical Simulations

This appendix provides source code for Figures 1.1 and 1.3, some of which is original work.
The reader is encouraged to experiment with the scripts that generate billiard trajectories
on different domains. The vector graphics language used in these simulations is Asymptote
2.24, which is available for download at http://asymptote.sourceforge.net/.

1 maxj = 3;

2 maxk = 6;

3 For[j = 1, j <= maxj , j++,

4 For[k = 1, k <= maxk , k++,

5 list[j][k] =

6 ContourPlot[Sin[(j*Pi/1)*x] Sin[(k*Pi/1)*y], {x, 0, 1}, {y, 0, 1},

7 Axes -> False , Frame -> False ,

8 ColorFunction -> "SunsetColors"];]]

9 argstring = "{";

10 For[j = 1, j <= maxj , j++,

11 stringadd = "{";

12 For[k = 1, k <= maxk , k++,

13 stringadd =

14 stringadd <> "list[" <> ToString[j] <> "][" <> ToString[k] <>

15 "]" <> ",";];

16 stringadd = stringadd <> "}";

17 argstring =

18 argstring <> StringReplace[stringadd , {",}" -> "}"}] <> ","]

19 argstring = StringReplace[argstring <> "}", {"},}" -> "}}"}];

20 otput = GraphicsGrid[ToExpression[argstring], ImageSize -> 2000];

Script 1 | Dirichlet Laplacian eigenfunctions on a square (Figure 1.1a, Mathematica 8.0+).

1 maxj = 3;

2 maxk = 6;

3 For[j = 1, j <= maxj , j++,

4 For[k = 0, k <= maxk , k++,

5 list[j][k] = With[{kk = k, jj = j},

6 ContourPlot [(Cos[kk* phi] + Sin[kk*phi]) BesselJ[kk ,

7 BesselJZero[kk, jj]* r] /. {r -> Norm[{x, y}],

8 phi -> ArcTan[x, y]}, {x, -1, 1}, {y, -1, 1}, Contours -> 50,

9 ContourLines -> False , RegionFunction -> (#1^2 + #2^2 < 1 &),

10 ColorFunction -> "SunsetColors", Axes -> False , Frame -> False ]];]]

11 argstring = "{";

12 For[j = 1, j <= maxj , j++,

13 stringadd = "{";

14 For[k = 0, k <= maxk , k++,

15 stringadd =

16 stringadd <> "list[" <> ToString[j] <> "][" <> ToString[k] <>

17 "]" <> ",";];

18 stringadd = stringadd <> "}";

19 argstring =

20 argstring <> StringReplace[stringadd , {",}" -> "}"}] <> ","]

21 argstring = StringReplace[argstring <> "}", {"},}" -> "}}"}];

22 otput = GraphicsGrid[ToExpression[argstring], ImageSize -> 2000];

Script 2 | Dirichlet Laplacian eigenfunctions on a circle (Figure 1.1b, Mathematica 8.0+).
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1 if(! settings.multipleView) settings.batchView=false;

2 settings.tex="pdflatex";

3 defaultfilename="rectangle";

4 if(settings.render < 0) settings.render =4; settings.outformat="";

5 settings.inlineimage=true; settings.embed=true; settings.toolbar=false;

6 viewportmargin =(2,2); import graph; size (200);

7

8 path bill = (-50,-30) --(50,-30) --(50,30) --(-50,30)--cycle;

9 real phi = 2*pi *0.123456;

10 draw(bill);

11 pair s = (20 ,20), db, dt = exp(I*phi), e = s+200*dt;

12 path traj = s--e;

13 real [] c;

14

15 for(int i=0; i<50; ++i) {

16 c = intersect(bill , traj);

17 e = point(traj , c[1]);

18 db = dir(bill , c[0]);

19 draw(s--e,red);

20 dot(e,blue);

21 dt = -dt + 2*dot(dt ,db)*db;

22 s = e;

23 e = s + 200*dt;

24 traj = (s+dt)--e;

25 }

Script 3 | Rectangle billiard trajectories (Figure 1.3a, Asymptote 2.24).

1 if(! settings.multipleView) settings.batchView=false;

2 settings.tex="pdflatex";

3 defaultfilename="circle";

4 if(settings.render < 0) settings.render =4; settings.outformat="";

5 settings.inlineimage=true; settings.embed=true; settings.toolbar=false;

6 viewportmargin =(2,2); import graph; size (200);

7

8 path bill = Circle ((0,0) ,90.0);

9 real phi = 2*pi *0.23456;

10 draw(bill);

11 pair s = (20 ,20), db, dt = exp(I*phi), e = s+200*dt;

12 path traj = s--e;

13 real [] c;

14

15 for(int i=0; i<50; ++i) {

16 c = intersect(bill , traj);

17 e = point(traj , c[1]);

18 db = dir(bill , c[0]);

19 draw(s--e,red);

20 dot(e,blue);

21 dt = -dt + 2*dot(dt ,db)*db;

22 s = e;

23 e = s + 200*dt;

24 traj = (s+dt)--e;

25 }

Script 4 | Circle billiard trajectories (Figure 1.3b, Asymptote 2.24).
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1 if(! settings.multipleView) settings.batchView=false;

2 settings.tex="pdflatex";

3 defaultfilename="bunimovich";

4 if(settings.render < 0) settings.render =4; settings.outformat="";

5 settings.inlineimage=true; settings.embed=true; settings.toolbar=false;

6 viewportmargin =(2,2); import graph; size (200);

7

8 path bill = (-50,-50) --(50,-50)--arc ((50 ,0), 50, -90, 90)

9 --(50,50) --(-50,50)--arc((-50,0), 50, 90, 270) --cycle;

10 real phi = 2*pi *0.123456;

11 draw(bill);

12 pair s = (20 ,20), db, dt = exp(I*phi), e = s+200*dt;

13 path traj = s--e;

14 real [] c;

15

16 for(int i=0; i<50; ++i) {

17 c = intersect(bill , traj);

18 e = point(traj , c[1]);

19 db = dir(bill , c[0]);

20 draw(s--e,red);

21 dot(e,blue);

22 dt = -dt + 2*dot(dt ,db)*db;

23 s = e;

24 e = s + 200*dt;

25 traj = (s+dt)--e;

26 }

Script 5 | Bunimovich billiard trajectories (Figure 1.3c, Asymptote 2.24).

1 if(! settings.multipleView) settings.batchView=false;

2 settings.tex="pdflatex";

3 defaultfilename="sinai";

4 if(settings.render < 0) settings.render =4; settings.outformat="";

5 settings.inlineimage=true; settings.embed=true; settings.toolbar=false;

6 viewportmargin =(2,2); import graph; size (200);

7

8 path bill = (-90,-90) --(90,-90) --(90,90) --(-90,90)--cycle;

9 path inner = reverse(Circle ((0,0) ,30.0));

10 real phi = 2*pi *0.05;

11 filldraw(bill^^inner ,lightgray ,black);

12 pair s = (30 ,30), db, dt = exp(I*phi), e = s+200*dt;

13 path traj = s--e;

14 real [] co;

15 real [][] ci;

16

17 for(int i=0; i<20; ++i) {

18 co = intersect(traj , bill);

19 ci = intersections(traj , inner);

20 if(ci.length > 0) {

21 e = point(traj , ci [0][0]);

22 db = dir(inner , ci [0][1]);

23 } else {

24 e = point(traj , co[0]);

25 db = dir(bill , co[1]);

26 }

27 draw(s--e,red);
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28 dot(e,blue);

29 dt = -dt + 2*dot(dt ,db)*db;

30 s = e;

31 e = s + 200*dt;

32 traj = (s+dt)--e;

33 }

34 size (284.52756pt ,284.52756pt ,keepAspect=true);

Script 6 | Sinai billiard trajectories (Figure 1.3d, Asymptote 2.24).

1 if(! settings.multipleView) settings.batchView=false;

2 settings.tex="pdflatex";

3 defaultfilename="barnett";

4 if(settings.render < 0) settings.render =4; settings.outformat="";

5 settings.inlineimage=true; settings.embed=true; settings.toolbar=false;

6 viewportmargin =(2,2); import graph; size (200);

7

8 pair A,B,C,D;

9 A = (80,-80);

10 D = (120 ,120);

11 B = (80,-50);

12 C = (100 ,80);

13 guide g=A.. controls B and C..D;

14 draw(g);

15

16 pair AA,BB,CC,DD;

17 AA = (-80,80);

18 DD = (120 ,120);

19 BB = (80 ,100);

20 CC = (-50,80);

21 guide gg=DD.. controls BB and CC..AA;

22 draw(gg);

23

24 path bill = (-80,-80) --(80,-80)--g- -(120 ,120) --gg --(-80,80) --cycle;

25 real phi = 2*pi *0.123456;

26 draw(bill);

27

28 pair s = (0 ,20), db , dt = exp(I*phi), e = s+300*dt;

29 path traj = s--e;

30 real [] c;

31

32 for(int i=0; i<30; ++i) {

33 c = intersect(bill , traj);

34 e = point(traj , c[1]);

35 db = dir(bill , c[0]);

36 draw(s--e,red);

37 dot(e,blue);

38 dt = -dt + 2*dot(dt ,db)*db;

39 s = e;

40 e = s + 300*dt;

41 traj = (s+dt)--e;

42 }

43 size (284.52756pt ,284.52756pt ,keepAspect=true);

Script 7 | Barnett billiard trajectories (Figure 1.3e, Asymptote 2.24).
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1 if(! settings.multipleView) settings.batchView=false;

2 settings.tex="pdflatex";

3 defaultfilename="triangle";

4 if(settings.render < 0) settings.render =4; settings.outformat="";

5 settings.inlineimage=true; settings.embed=true; settings.toolbar=false;

6 viewportmargin =(2,2); import graph; size (200);

7

8 path bill = (-80,-80) --(120,-80) --(-80,80)--cycle;

9 real phi = 2*pi *0.123456;

10 draw(bill);

11

12 pair s = (-70,0), db , dt = exp(I*phi), e = s+300*dt;

13 path traj = s--e;

14 real [] c;

15

16 for(int i=0; i<60; ++i) {

17 c = intersect(bill , traj);

18 e = point(traj , c[1]);

19 db = dir(bill , c[0]);

20 draw(s--e,red);

21 dot(e,blue);

22 dt = -dt + 2*dot(dt ,db)*db;

23 s = e;

24 e = s + 300*dt;

25 traj = (s+dt)--e;

26 }

27 size (284.52756pt ,284.52756pt ,keepAspect=true);

Script 8 | Triangle billiard trajectories (Figure 1.3f, Asymptote 2.24).

As mentioned in §4.2, Barnett’s recent numerical computation of the eigenfunctions and
eigenvalues of the Dirichlet Laplacian on the Barnett stadium is a notable work. A list
of the first 62,076 eigenvalues in the range [0, 1276900] is available at http://www.math.

dartmouth.edu/~ahb/qugrs_n62076.Es.
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Appendix IV: Index of Notation

List of symbols, in alphabetical order

1S ,1(S) indicator function of the set
or event S

60

a a symbol 35
A Weyl-quantization of a 36
A σ-algebra 18
A(D) the differential operator

1
2
σ(Dx, Dp, Dy, Dq)

35

||A||L2→L2 operator norm of A : L2 →
L2

37

Area(D) area of a Euclidean domain
D ⊂ Rn

4

B∗ adjoint of an operator B 54
Br(c) ball of radius r around c 63
〈B〉T time-average of an operator

B
55

C complex numbers 7
C1(M) space of continuously differ-

entiable functions on M
8

C∞(M) space of smooth functions on
M

8

C∞c (M) space of smooth, compactly
supported functions on M

10

CP complex projective space 20
Dx directional derivative with

respect to x
35

Dα
x

1

i|α|
∂α 23

D′(M) space of all distributions on
M

45

Dψ dispersion of a function ψ ∈
L2(R)

27

∂n, ∂xn partial derivative in the nth
local coordinate

8

∂β
∏n
i=1

∂βi

∂x
βi
i

22

dxi basis coordinates for the
cotangent space

9

∆,∆g,∆Ω Laplace-Beltrami operator,
with dependencies on the
Riemannian metric g and
domain Ω

7

∆D,∆N Laplace-Beltrami operator
with Dirichlet and Neumann
boundary conditions

8

δxy Dirac delta of x− y 8
δ, δ(x) Dirac delta of x 24
Diff(M) space of all C∞ diffeomor-

phisms of M
45

dim dimension 15
div divergence 8
En energy level (eigenvalue of

∆) indexed by n
13

exp(x) exponential map
∑∞
n=1

1
n!
xn 13

f∗ pullback map of f 18
||f ||p norm of f in Lp space 27
||f ||α,β seminorm of f ∈ C∞ with

respect to multiindices α
and β

22

[ flat musical isomorphism 8

F(f), f̂ Fourier transform of a func-
tion f ∈ S

22

Fh semiclassical Fourier trans-
form with parameter h

27

gij covariant metric tensor 8
gij contravariant metric tensor 8
|g| determinant of the covariant

metric tensor
9

Γ∞ space of smooth sections 8
grad,∇ gradient 8
gt geodesic flow 18
h a semiclassical parameter 27
H a Hamiltonian function 14
~ quantum-mechanical nor-

malized Planck’s constant
5

Hn(x) nth Hermite polynomial 40
Hom(S) space of homomorphisms of

S
29

I identity matrix 34
im image of a map 43
Im(z) imaginary part of z 25
−
∫

average integral 18
ιX contraction map with re-

spect to the vector field X
14

J complex structure 34
Jk kth Bessel function 11
L2 space of square-integrable

functions
7

λn eigenvalue of ∆ indexed by
n

4

LX Lie derivative with respect
to the vector field X

14

(M, g) Riemannian manifold with
metric

8
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M̃ covering space of a manifold
M

8

µ a measure 18
µk Wigner measure of the

Laplacian eigenfunction ϕk

59

µcL Liouville measure on Σc 17
N natural numbers 24
ω symplectic structure 14

Opl left, or standard, quantiza-
tion

29

Opr right quantization 29
Opt t-quantization 29
Opw Weyl quantization 29
⊕ direct sum 8
o(f) little-o of f 43
OV (f) big-O of f in the vector

space V , or w.r.t. the norm
in V

35

p canonical momentum coor-
dinate

14

P projective space 20
ϕn, ψn eigenfunctions of ∆ indexed

by n
4

Φt a Hamiltonian flow 14
# Weyl product operator 31
#S number of elements in S 4
ψDO pseudodifferential operator 22
Ψ(M) Ψ0(M) 46
Ψm(M) space of all ψDOs of order m

on M
46

R real numbers 4
Re(z) real part of z 26
S Schwartz space of Rn 22
S ′ space of tempered distribu-

tions
24

S(m) symbol class of the order
function m

36

Sδ(m) δ-dependent symbol class of
the order function m

36

Sm(R2n) Kohn-Nirenberg symbol
class of order m over R2n

45

Sn sphere of dimension n 61
sgn(Q) sign of a matrix Q 25
] sharp musical isomorphism 9
σ symplectic form on R2n,

given by (x, p), (y, q) 7→
〈p, y〉 − 〈x, q〉

33

σ map that takes ψDOs to the
equivalence class of symbols
determined by the principal
symbol

46

Σc fiber of the Hamiltonian
map H at value c

16

Spec(P ) spectrum of an operator P
supp(f) support of a function f 35
Tn torus of dimension n 65
TxM tangent space of a manifold

M at a point x
8

TM tangent bundle of a manifold
M

8

T ∗xM cotangent space of a mani-
fold M at a point x

8

T ∗M cotangent bundle of a mani-
fold M

8

U projection operator on the
set of uniform symbols

52

V a potential function 15
VolMS volume of the set S in M 47
x canonical position coordi-

nate
14

[x] equivalence class of an ele-
ment x

46

||x||
√
〈x, x〉 7

xα
∏n
i=1 x

αi
i 22

XH a Hamiltonian vector field 14
Xt Bunimovich stadium with

aspect ratio t
63

ξ(x, p) the Hamiltonian symbol
|p|2 + V (x), where V is a
potential

40

Ξ(x, hD) Weyl quantization of ξ(x, p) 40
〈x, y〉 inner product of vectors x

and y in some inner product
space

7

[X,Y ] Lie bracket of two vector
fields X and Y

15

{X,Y } Poisson bracket of two vec-
tor fields X and Y

15

z complex conjugate of z 7

〈z〉 the function (1 + |z|2)1/2 36
Z integers 10
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Appendix V: Index of Mathematical Objects and Figures

List of theorems and definitions, in temporal order

Definition 1.1.1 L2 space of functions 7
Example 1.1.2 Riemannian metrics 8
Definition 1.1.3 Laplace-Beltrami operator 9
Proposition 1.1.4 Green’s second identity 10
Theorem 1.1.5 spectral theorem and eigenfunction basis of ∆ 10
Example 1.1.6 Laplacian on S1 10
Example 1.1.7 Laplacian on a rectangular domain 11
Example 1.1.8 Laplacian on D 11
Example 1.2.1 circular and Sinai billiard flows 12
Example 1.2.2 Newton’s second law 15
Definition 1.2.3 integrability 15
Theorem 1.2.4 Liouville-Arnold, [dS08] 16
Example 1.2.5 integrability of two-dimensional systems 16
Example 1.2.6 Hamiltonian nature of billiards 16
Definition 1.2.7 Liouville measure 17
Theorem 1.2.8 geodesic and cogeodesic flow, [Mil64] 17
Example 1.2.9 geodesic integrability of surfaces of revolution, [Kiy00] 17
Definition 1.2.10 ergodicity and mixing 18
Theorem 1.2.11 weak ergodic theorem 18
Theorem 1.2.12 ergodicity of geodesic flow on a negatively curved manifold, [Bal95] 19
Definition 2.1.1 Schwartz space 22
Definition 2.1.2 Fourier transform 22
Proposition 2.1.3 Fourier transform of an exponential of a real quadratic form, [Zwo12] 23
Theorem 2.1.4 properties of F 23
Proposition 2.1.5 estimates of F 24
Definition 2.1.6 tempered distributions 24
Example 2.1.7 Heavyside step function 24
Example 2.1.8 Fourier transform of Dirac delta 24
Proposition 2.1.9 Fourier transform of an imaginary quadratic exponential, [Zwo12] 25
Example 2.1.10 uncertainty principle in R, [Du09] 27
Definition 2.1.11 semiclassical Fourier transform 27
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