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Abstract

All biological systems are, at some level, guided by the laws of natural selection and evo-
lutionary dynamics. Adaptations with increased fitness tend to proliferate and fixate within
populations. Those situations in which an individual’s fitness depends not only upon a static
environment, but upon the fluctuating phenotypes of the surrounding population, fall within
the domain of evolutionary game theory. In a beautiful paper, Tarnita et al. (2009c) proved
that for a large class of evolutionary games on structured populations with n = 2 strategies,
the conditions for a strategy to be selected for in the limit of weak selection could be described
entirely by one, real-valued structure coefficient σ. This paper explores a generalization of this
result to an arbitrary number of strategies n, and finds that to describe selection conditions for
any n we need only three such real-valued structure coefficients σ1, σ2, σ3. In an attempt to
describe exactly which games this theorem applies to, we define a new, general class of evolu-
tionary games which may be of independent interest. We also demonstrate a specific application
of our results to the evolution of cooperation, a popular research topic.

1 Introduction

Since the publication of The Origin of Species [Darwin 1859], evolution has grown to be an integral
part of how people view biology and the world. The theory of evolution is, at its mot basic, a
nearly tautological principle: things which more successfully replicate will become more common.
Yet in the complex and seemingly arbitrary world of living systems, this basic fact is often the only
tool we have to answer the question “Why?” The reason any species or population has any specific
behavior or characteristic is simply that, evolutionarily speaking, it is successful. When attempting
to explain the existence of a known trait or to predict adaptations we cannot directly observe, our
only recourse is to examine how they function under the forces of natural selection.

How creatures evolve in response to a fixed fitness landscape is often straight-forward: polar
bears with warmer coats or gazelles that run faster tend to survive and procreate. The most
interesting situations, from an evolutionary standpoint, instead tend to be those which involve
frequency-dependent selection, where the success of a specific survival strategy within a population
is influenced not only by the static properties of its surrounding environment but by the evolving
properties of the population itself. These are the situations where the structure of the evolutionary
system itself becomes important and interesting. The tools used to study such situations fall within
the realm of evolutionary game theory [Maynard Smith 1982, Hofbauer & Sigmund 1988].

The general model used by evolutionary game theory to study the interaction of n competing
survival strategies employs a n× n payoff matrix A with entries ai,j . A player utilizing strategy i
receives payoff ai,j from an interaction with a player utilizing strategy j. This leaves a wide range
of flexibility as to specifically how interactions occur and how their payoffs influence the resulting
evolutionary dynamics. When we assume the population is infinitely large and well mixed, the
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resulting dynamics can be studied through differential equations and specifically the “replicator
equation” [Taylor & Jonker 1978, Hofbauer et al. 1979, Zeeman 1980]. However, real populations
are rarely well-mixed and always finite, which has lead to substantial research into evolutionary
games on structured populations.

1.1 Evolutionary Games on Structured Populations

These models tend to involve a Markov chain1in which a population of individuals evolves through
different states according to the dynamics of the system. A state consists of a set of individuals,
each of which is assigned one of the n strategies, and a structure of the relationships between
these individuals. An individual interacts with each of the other members of the population with a
weight given by the population structure. The total payoff Π to the individual is then the weighted
sum of the payoffs from matrix A which are associated to each of these interactions. That is, if
P = {1, . . . , N} is the (finite) set of individuals in the population and C : {1, . . . , N} → {1, . . . , n}
is the function assigning each individual a strategy, then individual x ∈ P will receive total payoff

Πx :=
N∑
y=1

ωx,yaC(x),C(y), (1)

where the coefficients ωx,y are parameters of the population structure. From this payoff, the player’s
fitness is calculated by

Fx := 1 + wΠx, (2)

where w is a parameter denoting the strength of selection. Large w makes the game a very important
aspect of an individual’s fitness, while a low one keeps all fitnesses closer together despite the
outcome of the game. These fitnesses are then used to determine the probability with which the
system transitions to each of the possible next states. These probabilities, along with the values
of the interaction weights ωx,y, are additional factors which go into defining an evolutionary game
and there are many ways in which these aspects may be implemented.

The most basic model is known as the Moran process [Moran 1962, Nowak et al. 2004, Nowak 2006a],
and it involves a “well-mixed” population of fixed size N . In each state, any given player interacts
with each of the other N − 1 players with equal weight to determine its payoff and fitness. To
transition to the next state one player is randomly chosen to replicate and another to be replaced
(these two players are not necessarily distinct). Players are chosen for replication with probability
proportional to their fitness, while all players have equal likelihood of being replaced. In any such
replacement event, the replaced player takes on the the strategy of the replicating player with
probability 1 − u, while a mutation occurs with probability 0 < u < 1, in which case the player
being replaced is equally likely to take on each one of the n possible strategies.

The Moran process, however, still does not allow us to change the structure of the population.
This lead to the introduction of evolutionary graph theory, where individuals in the population
are viewed as nodes on a graph with the connections of the graph determining the payoff and
replacement interactions [Lieberman et al. 2005]. In such a game, the values ωx,y (for each pair
x, y ∈ P ) from above are fixed properties of the game, and denote the weight of the directed
edge from player x to player y. These values essentially denotes how closely a player x interacts
with a player y. At each time step a player x is randomly selected to procreate, with probability
proportional to fitness, and this player produces an offspring which replaces one of its neighbors
y with probability proportional to the weight of directed edge ωx,y. As in the Moran process, a

1Those unfamiliar with Markov chains should refer to Appendix A, for a rigorous definition and a review of the
basic theory.
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mutation occurs with some probability 0 < u < 1. This update rule is known as the birth-death
process, but many others exist [Ohtsuki & Nowak 2006b].

In the death-birth process, a player x is randomly selected to die with uniform probability, and
one of its neighbors y is randomly selected to replace it, with probability proportional to both its
fitness and the value of ωy,x, its proximity to player x . The Wright-Fisher process is the same as
the death-birth process, but instead of choosing just one individual x for replacement during each
time step, we simultaneously choose a replacement individual y for each x ∈ P , so that the entire
population is replaced during each time step. Other update rules such as “pairwise-comparison”
or “imitation” processes have also studied [Ohtsuki & Nowak 2006b], and one could also utilize an
entirely novel update rule. In another variation which has been studied, separate graphs are used
to determine interaction and replacement likelihoods [Ohtsuki et al. 2007a, Ohtsuki et al. 2007b].

Such a game defines a Markov chain, and if it is sufficiently nice, over time the process tends
to a unique stationary distribution where it takes on each state S with some fixed probability πS
[Markov 1906, Meyn & Tweedie 1993]. The success of any particular strategy k in this game can
then be measured by its abundance xk, which we define to be the average frequency with which
the strategy occurs in this stationary distribution [Antal et al. 2009c]. We say that strategy k is
selected for if its abundance is above average so that xk > 1/n.

Though evolutionary graph theory allows the study of a huge diversity of structured games,
there are still interesting games which do not fit within its confines. Specifically, games in which
the population structure is constantly shifting cannot be defined by a single interaction graph.
Researchers have investigated games where interactions are determined by player’s shifting mem-
berships in different “sets” [Tarnita et al. 2009b] or by a player’s location in “phenotype space”
[Antal et al. 2009b]. Variable structures have also been used to study the viability of group selection
[Traulsen et al. 2008, Traulsen & Nowak 2006].

1.2 Weak Selection

Much research has been done investigating specific such models and the selection criteria they re-
sult in. While a few basic results have been obtained for general values of the selection strength w
[Traulsen et al. 2008, Antal et al. 2009a, Fudenberg et al. 2006], a majority published results hold
only in the limit of weak selection, meaning w is assumed to be arbitrarily small [Nowak et al. 2004,
Antal et al. 2009c, Taylor et al. 2004, Ohtsuki & Nowak 2006a, Ohtsuki et al. 2006, Taylor et al. 2007a,
Fu et al. 2009, Tarnita et al. 2009a, Tarnita et al. 2009b, Traulsen et al. 2009].

The weak selection assumption is heavily used not only because it leads to much cleaner results,
but also because it seems to be a reasonable approximation of the biological world being modeled.
An organism is an unfathomably complicated entity and its successful survival and reproduction is
a function of countless traits, each of which is experiencing selective pressure. Any one adaptation
or attribute we choose to study with our game is just a small part of this greater whole, and as
such should have only a minor impact on the overall fitness of the organism. As such, throughout
this paper, we concern ourselves only with analyzing models in the limit of weak selection.

In a beautiful paper, Tarnita et al. examine the case of n = 2 strategies in order to prove
a general result about the effect of weak selection upon a general class of evolutionary games on
structured populations [Tarnita et al. 2009c]. The paper proves the remarkable fact that, under
weak selection, the evolutionary dynamics implied by any such structure boil down to a single,
real-valued parameter σ. They prove that a value of σ exists such that when any 2 × 2 payoff
matrix

A =

(
a b
c d

)
(3)

3



is plugged into the game, the condition that strategy 1 be selected for is equivalent to the simple
inequality

σa+ b > c+ σd. (4)

Nowak et al. build upon this result and claim that this σ can fully describe the weak selection
dynamics for any number of strategies n for processes which take place in the limit of low mutation
µ := Nu → 0 [Nowak et al. 2010]. Specifically they state that for such processes, strategy k is
selected for if

n∑
j=1

σak,k + ak,j − aj,k − σaj,j > 0. (5)

However, this statement cannot hold for general mutation rates u due to the following result. Antal
et al. [2009] show that if we study the standard Moran process in the limit of large population size
N while fixing µ := Nu, the condition that strategy k is favored under weak selection is

n∑
i=1

n∑
j=1

ak,k + ak,i − ai,k − ai,i + µ(ak,j − ai,j) > 0 (6)

for any n× n payoff matrix A.
The goal of this paper is to present and prove a generalization of the result of [Tarnita et al. 2009c]

which holds for any number of strategies n and any mutation rate µ, and of which both (5) and (6)
are specific examples. It turns out that while the outcome for n = 2 can described with just one
degree of freedom (the value of the structure coefficient σ), to generalize the result to arbitrary n
we require one additional degree of freedom in the description.

The paper is organized as follows. In Section 2, we rigorously define the class of games on
which this theorem holds and present the precise statements of the theorems outlined above. Then
in Section 3 we present the proof of our main result. Section 4 provides an alternate description
of a large class of games to which our result applies. The class of games, called evolutionary
game Markov chains, may also be of independent interest. In Section 5 we demonstrate a specific
application of our results to the hot-button topic of the evolution of cooperation. The final section,
Section 6, summarizes our findings and catalogs several possible future research directions opened
up by the results within.

2 Model and Results

The evolutionary games described in the previous section all share a similar feel, yet it is difficult
to define this notion precisely. Attempting a bottom-up description of all the possible rules which
could govern a general evolutionary game Markov chain gets very messy and makes it hard to reach
the level generality we would desire. Instead, in this section we start with a very basic definition
of such a game and impose several higher-level conditions on its operation.

2.1 Evolutionary Game Selection Criteria

Scraping away all but the bare essentials from the games we have described, we ultimately have
that an evolutionary game takes as an input an n×n payoff matrix A, and returns for each strategy
a selection condition by which we may measure its relative effectiveness against the other strategies
in A. That is, an evolutionary game is just a class of selection conditions x1, . . . , xn which map
from the space of n× n real matrices to the real numbers.
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Definition. An evolutionary game selection criterion [xk,n]1≤k≤n is a class of functions

xk,n : Rn
2 → R, (7)

with the property that

1 =
n∑
k=1

xk,n(A) (8)

for each n ∈ N and A ∈ Rn2
.

The condition in equation (8) simply normalizes the value of the selection conditions, so that the
sum over all strategies in any game is one, and any specific selection condition xk,n essentially
represents the fraction of the population controlled by strategy k, which we call its abundance.
Again, we say that a strategy k is selected for under payoff matrix A if this abundance is above
average so that xk,n(A) > 1/n.

This definition of an evolutionary game as just a set of functions is a bit too general. Thus,
to prove our main theorem, we will require an evolutionary game selection criteria to have the
following three properties.

(i) Differentiability: For each 1 ≤ k ≤ n, the function xk,n : Rn2 → R is differentiable at the zero
matrix 0.

Our theorem is a statement about the dynamics of the game in the limit of weak selection.
With selection equal to 0 there should be no advantages and each strategy should have abun-
dance 1/n, so for such a “limit” to make sense our function must be well-behaved in this
region, making this assumption essential. Just about any naturally defined xk,n should have
this property, and all the games considered in Section 1.1 do.

(ii) Permutability: Let π : {1, . . . , n} → {1, . . . , n} be a bijection or permutation of the positive
integers less than or equal to n. Then, for any n×n matrix A with entries ai,j , we can define
an action of π upon A by the rule π(A) = A′ with entries [a′i,j ]1≤i,j≤n where ai,j = a′π(i),π(j)
or equivalently a′i,j = aπ−1(i),π−1(j). With this notation, we require for all 1 ≤ k ≤ n, all
permutations π of the set {1, . . . , n}, and all real-valued n × n matrices A, that xk,n(A) =
xπ(k),n(π(A)).

This rule requires that the labeling of the strategies 1, . . . , n be immaterial. The point of
examining evolutionary games on population structures is to determine how different payoff
matrices are affected differently. If (ii) does not hold, then the game is somehow biased
towards strategies with specific labels over others, and the outcome of the game is no longer
just a result of the effectiveness of the competing strategy payoffs. The payoff matrix itself
should capture the only differences between strategies in an evolutionary game, and this is
essentially what the permutability condition requires. As such, any true evolutionary game
should satisfy this condition, and again all the games considered in Section 1.1 do.

(iii) Divisibility: For an n× n payoff matrix A and a positive integer m, define Dm(A) to be the
mn ×mn payoff matrix which contains m identical copies (k, 1), . . . , (k,m) of each original
strategy k. Then xk,n(A) = mx(k,i),nm(Dm(A)) for all 1 ≤ k ≤ n, 1 ≤ i ≤ m, and payoff
matrices A.

This condition states that if we take n strategies and split each one intom identical copies, then
this should not cause any change in the dynamics because everything has been done uniformly.
If we are to examine the operation of an evolutionary game over different size strategy sets, we
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must have a condition ensuring the game has some sort of consistency between the different
values of n. Without this condition, there would be nothing preventing silly games which,
for example, employed completely different dynamics for odd and even values of n. Though
this condition, like the previous two, is satisfied by all of the evolutionary games presented in
Section 1.1, it is perhaps the most restrictive in that reasonable examples do exist which do
not satisfy it. Take, for example, the ordinary Moran process on a well-mixed population, but
with the slight change that when an offspring mutates, it randomly takes on one of the n− 1
strategies which are different from the strategy of its parent. Then, when we divide strategies
into multiple copies of themselves, players can then mutate to one of the other copies of their
strategy when previously they couldn’t, altering the dynamics.

2.2 Generalized Weak Selection

One remaining issue with our general characterization of evolutionary games is the concept of
weak selection, which is an integral assumption used by our theorem. Our initial definition of the
strength of selection involved computing the payoff to an individual, and then weighting it by a
selection strength parameter w before adding it to fitness. Since our present definition does not
require any of these steps to be taken, we need to generalize our definition in order for it to still
apply. Recalling equations (1) and (2), we have that in the games for which selection strength was
originally defined, a player x in a state S has fitness

Fx = 1 + w
N∑
y=1

ωx,yaC(x),C(y), (9)

where N , ωx,y, and C : {1, . . . , N} → {1, . . . , n} are properties of the state of the system. This
equation assumes fixed payoff matrix A and variable strength of selection given by w. However, if
we instead fix the strength of selection at 1 and utilize payoff matrix wA, we get the exact same
formula. Since the payoff matrix only determines the player fitnesses, and then these values are
what determine the dynamics of the game, these two games are really equivalent. Thus, a game
with selection strength w and payoff matrix A is equivalent to a game with selection strength 1
and payoff matrix wA.

Then we may redefine, for general evolutionary games, the strength of selection parameter rule
so that playing a game using payoff matrix A and strength of selection w is equivalent playing the
ordinary game utilizing the payoff matrix wA, leading to a general notion of selection strength and
a rigorous definition of the limit of weak selection.

Definition. For any evolutionary game selection criteria [xk,n]1≤k≤n and an n × n payoff matrix
A, the strategy k is selected for in the limit of weak selection if xk,n(wA) > 1/n for arbitrarily
small values of w > 0.

This definition of weak selection can be applied to any evolutionary game selection criteria, and
most importantly, aligns with our original definition on the subset of games for which the notion
was originally. In fact, multiplying the strength of selection directly into the payoff matrix seems
to be conceptually a more direct method of modulating the impact of the game on selection, and
it additionally allows the omission of the complicating payoff/fitness distinction.

2.3 Presentation of the Main Result

With these preliminaries out of the way, we now have all the tools to present rigorous statements
of the theorems discussed in Section 1.2. The following theorem of [Tarnita et al. 2009c] essentially
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states that for n = 2 , the effect of the game structure upon the evolutionary dynamics can be
summarized by a single structure coefficient σ.

Theorem 1 ([Tarnita et al. 2009c]). Consider a game whose evolutionary game selection criterion

[xk,n]1≤k≤n satisfies properties (i) and (ii), and additionally is such that with payoff matrix

(
0 1
0 0

)
,

strategy 1 is selected for in the limit of weak selection, meaning that

x1,2

(
w

(
0 1
0 0

))
> 1/n (10)

for sufficiently small w > 0. To such a game we may associate a structure coefficient σ ∈ R
with the property that for any payoff matrix (

a b
c d

)
(11)

describing the interactions between the two strategies, the game favors strategy 1 in the limit of
weak selection if

σa+ b > c+ σd. (12)

It is important to stress that σ depends only on the structure of the game itself, and not upon the
payoff values a, b, c, and d.

The inequality (10) essentially imposes the reasonable condition that increasing a strategies payoff
against opponents increases its abundance. If this is not the case, then a higher payoff value
b hurts strategy 1, so the equation (12) would need a negative coefficient on b. Many results
previous to this one calculated σ values for specific games, without knowing that such a general
theorem held [Nowak et al. 2004, Antal et al. 2009c, Taylor et al. 2004, Ohtsuki & Nowak 2006a,
Ohtsuki et al. 2006, Taylor et al. 2007a, Fu et al. 2009, Tarnita et al. 2009a, Tarnita et al. 2009b,
Traulsen et al. 2009]. This theorem unifies these previous results under one umbrella, and allows
us to summarize the entire effect of a population structure upon two-strategy game dynamics by
the single structure coefficient σ.

Before we present our generalized version of this theorem, it will be useful to introduce a bit
of notation. For an n × n matrix A with entries [ai,j ]1≤i,j≤n, we define the following quantities.
Define ak,• := n−1

∑n
i=1 ak,i as the average payoff strategy k gets from other strategies, a•,k :=

n−1
∑n

i=1 ai,k as the average payoff other strategies get from strategy k, a•,• := n−1
∑n

i=1 ai,i as
the average payoff a strategy gets from itself, and a•,◦ := n−2

∑n
i=1

∑n
j=1 ai,j as the average payoff

in the population. Under this notation, we can restate equation (5) can be equivalently written as

σak,k + ak,• − a•,k − σa•,• > 0 (13)

and equation (6) simplifies to

ak,k + ak,• − a•,k − a•,• + µ(ak,• − a•,◦). (14)

With this notation established, we present the central result of this paper.

Theorem 2. For any evolutionary game selection criterion satisfying properties (i), (ii), and (iii),
there exist choices of three structure coefficients σ1, σ2, σ3 ∈ R with the following characteristic.
For any number of strategies n and any n × n payoff matrix A, the game favors strategy k in the
limit of weak selection if

σ1(ak,k − a•,•) + σ2(ak,• − a•,k) + σ3(ak,• − a•,◦) > 0. (15)
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The theorem essentially states that the dynamics generated by any game in the limit of weak
selection can be completely described by the relative weights the structure of the game places upon
the three expressions ak,k − a•,•, ak,• − a•,k, and ak,• − a•,◦. This means that the set of possible
dynamics imposed by games under weak selection is much more restricted than one might initially
imagine, and allows us to conclude much more than we otherwise could have.

Note that while we require three structure coefficients σ1, σ2, and σ3, equation (15) is homoge-
neous in these values and thus replacing them with scalar multiples of each other does not affect
the theorem. In Theorem 1, this fact is exploited in order to fix the coefficient on b and c to 1,
leaving only the single variable σ. The natural condition (10) allows this normalization by insuring
the initial coefficient on b and c terms is positive, so they can be divided out without altering
the inequality. In the general case of Theorem 2, there is no natural condition by which we can
guarantee that any one structure coefficient is positive, so such a scaling is difficult. Still, though
we use three variables to describe the structure, this scalability means that there are really only
two degrees of freedom in a games structure, not three.

The results we have discussed so far are all closely related to Theorem 2. Note that when n = 2
we have that (ak,• − a•,◦) = 1

2(ak,k − a•,•) + 1
2(ak,• − a•,k). and thus because Theorem 2 holds

for n = 2 we may conclude that the structure coefficients of any such evolutionary game selection
criteria are related by the expression σ = 2σ1+σ3

2σ2+σ3
. Additionally, in light of Theorem 2, the claim

made in [Nowak et al. 2010] is equivalent to the statement that σ3 = 0 for games which takes place
in the limit of low mutation2 Finally, we can view equation (6) as a calculation of these structure
coefficients σ1 = 1, σ2 = 1, and σ3 = µ for a specific evolutionary game, the standard Moran
process.

3 Proof of Theorem 2

Let [xk,n]1≤k≤n be an evolutionary game selection criterion satisfying properties (i), (ii), and (iii).
To prove the theorem, we will begin by showing that for each number of strategies n ∈ N there are
constants σn1 , σn2 , and σn3 with the desired properties (these are superscripts, not exponents), and
then show that these values may be replaced with one triple σ1, σ2, σ3 which works for all n.

Fix a number of strategies n. When w = 0, all strategies have equal payoffs and by property
(ii), permutability, all strategies are identical at neutrality. Thus, they must have equal abundances
xk,n(0) = 1/n for all k. Since each strategy has equal abundance at w = 0, the relative success
of the strategies in the limit as w tends to 0 is determined by the derivative of their abundances.
Hence, for any A = [ai,j ]1≤i,j≤n, strategy k is selected for if

Rk,n(A) :=
∂

∂w
xk,n(wA)

∣∣∣∣
w=0

> 0. (16)

From property (i), differentiability, we know that the partial derivatives of xk,n exist at the zero
matrix 0. This implies that the derivative in (16) exists, and that in fact we may evaluating this
using the chain rule. This simplifies dramatically to an expression of the form

Rk,n(A) =
n∑
i=1

n∑
j=1

ck,i,jai,j > 0, (17)

where each ck,i,j is a constant given by taking the partial derivative of xk,n with respect to the
i, jth matrix entry and then evaluating this partial at A = 0.

2A rigorous definition of the limit of low mutation and the claim of [Nowak et al. 2010] would require a substantial
amount of additional machinery. Since we present the claim only to provide general context for Theorem 2 from the
literature, and this goal is accomplished by the loose description provided thus far, we omit a rigorous definition in
the interest of brevity.
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Next we make use of property (ii), permutability, in order to reduce the total number of constants
we must consider. We know that permuting the labeling system with any bijection π : {1, . . . , n} →
{1, . . . , n} does not change the operation of the game, and specifically that xk,n(A) = xπ(k),n(π(A)).
From the definition of Rk,n, this implies that Rk,n(A) = Rπ(k),n(π(A)) for any n×n payoff matrix
A = [ai,j ]1≤i,j≤n and thus

n∑
i=1

n∑
j=1

ck,i,jai,j =

n∑
i=1

n∑
j=1

cπ(k),i,jaπ−1(i),π−1(j) (18)

=

n∑
i=1

n∑
j=1

cπ(k),π(i),π(j)ai,j . (19)

By choosing A to be zero in every entry except ai,j for any 1 ≤ i, j ≤ n, we conclude that
cπ(k),π(i),π(j) = ck,i,j for any such permutation π and any 1 ≤ k, i, j ≤ n.

We say that the ordered triples (k, i, j) and (k′, i′, j′) lie within the same equivalence class if a
permutation exists with π((k, i, j)) = (k′, i′, j′). In fact, the only things that matter are the equality
relations between the indexes; this analysis leads to 5 different equivalence classes: k = i = j,
k = i 6= j, k = j 6= i, i = j 6= k, or i 6= j 6= k 6= i. Each ordered triple belongs to one of these five
equivalence classes. Thus the game depends on only the 5 constants associated to each of these
possibilities. In fact, with a bit of massaging we can write

Rk,n(A) = αak,k + βak,• + γa•,k + δa•,• + εa•,◦, (20)

for real numbers α, β, γ, δ, and ε which we may calculate in the following manner. Some ai,j with
k 6= i 6= j 6= k shows up only in the expression a•,◦ and with coefficient ε

n2 , so we must take ε :=
n2ck,i,j = n2c1,2,3. The term ai,i with k 6= i shows up in the last two terms and has total coefficient
δ
n + ε

n2 = ck,i,i = c1,2,2 so we define δ := n(c1,2,2− c1,2,3). In this same fashion we may calculate the
values γ := n(c1,2,1−c1,2,3), β := n(c1,1,2−c1,2,3), and then α := c1,1,1−c1,1,2−c1,2,1−c1,2,2 +2c1,2,3
which make equation (20) equivalent to equation (17).

However, from equation (8), we know that the sum of the Rk must be 0, and thus

0 =

n∑
k=1

Rk,n(A) = n(α+ δ)a•,• + n(β + γ + ε)a•,◦, (21)

and since this equation holds for any matrix A, we must have that 0 = α + δ = β + γ + ε. Thus,
the condition that strategy k is selected for is

Rk,n(A) = σn1 (ak,k − a•,•) + σn2 (ak,• − a•,k) + σn3 (ak,• − a•,◦) > 0, (22)

for σn1 := α, σn2 := −γ, and σn3 := −ε. These parameters depend on the structure and the dynamics,
as well as on the number of strategies, n. Now we need only show that the σni can be replaced by
σi which do not depend on n.

Let n and m be positive integers and A = [ai,j ]1≤i,j≤n be an n× n payoff matrix, and consider
the nm × nm matrix Dm(A) = [di,j ]1≤i,j≤nm defined in the statement of property (iii). From
property (iii), we have that xk,n(A) = mx(k,i),nm(Dm(A)) for all 1 ≤ k ≤ n and 1 ≤ i ≤ m,
and because wDm(A) = Dm(wA), we obtain immediately from the definition that Rk,n(A) =
mR(k,i),nm(Dm(A)). Note that ak,k−a•,• = dk,k−d•,•, ak,•−a•,k = d(k,i),•−d•,(k,i), and ak,•−a•,◦ =

d(k,i),• − d•,◦, so we have that

0 = Rk,n(A)−mR(k,i),nm(D) (23)

= (σn1 −mσnm1 )(ak,k − a•,•) + (σn2 −mσnm2 )(ak,• − a•,k) + (σn3 −mσnm3 )(ak,• − a•,◦). (24)
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This holds for any n× n matrix A, so by choosing a few judicious special cases, we may conclude
that σni = mσnmi for i = 1, 2, 3. Since this works for any positive integers n and m, switching their
positions we also have that σmi = nσnmi and thus σmi = n

mσ
n
i . If we define σi := 1

3σ
3
i for each

i = 1, 2, 3, then we have that

nRk,n(A) = σ1(ak,k − a•,•) + σ2(ak,• − a•,k) + σ3(ak,• − a•,◦). (25)

From this it is clear that the inequality (16), which is the condition for strategy k to be selected
for, is equivalent to

σ1(ak,k − a•,•) + σ2(ak,• − a•,k) + σ3(ak,• − a•,◦) > 0. (26)

Thus σ1, σ2, σ3 with the desired properties do exist, completing the proof.

4 Evolutionary Game Markov chains

The introduction discussed a large number of evolutionary games which have been studied. All these
games have a similar feel, but it is very difficult to rigorously define this notion. Evolutionary graph
theory is a step in the correct direction, but it does not admit a changing population structure. Even
more troublesome is dealing with the multitude of possible update rules which have been previously
studied or may be invented in the future. Many papers which prove general statements about evo-
lutionary games assume a single update rule, such as the birth-death process, but note that an anal-
ogous proof results in analogous results for other update rules [Fu et al. 2009, Taylor et al. 2007a,
Taylor et al. 2007b, Ohtsuki et al. 2006, Ohtsuki & Nowak 2006b, Ohtsuki & Nowak 2008, Ohtsuki et al. 2007].
Here we rigorously define a class of games known as evolutionary game Markov chains, which con-
tains a large portion of the classical evolutionary games, and show that these games satisfy the
conditions necessary in order to apply Theorem 2.

An evolutionary game is a Markov chain, with populations transitioning through different struc-
tures and strategies. As we attempt rigorously define this idea, we will make use of the following
two guiding concepts.

(1) The effectiveness of a strategy should be determined only by the payoff matrix A. That is, player
strategy choices should only affect the game through the payoffs they receive from interactions
(and only those interactions which actually occur in the game).

(2) As we transition from one state to a new one, individuals are assigned new strategies. These
strategies should only come from one of two sources: they should either be inherited from an
individual in the old state or be the result of a random mutation which assigns each of the n
strategies with equal probability.

The first guideline leads us to clarify exactly what a state of an evolutionary game consists of.
Each state S of a Markov chain which is an evolutionary game has two components: (a) a population
structure s and (b) a strategy choice function C assigning each member of the population structure
to one of the n possible strategies. It is important to distinguish between these two aspects in
order to “protect the privacy” of the each individual’s strategy choice. That is, if we want make
sure condition (1) is satisfied, then we must be sure to restrict how the game can utilize the
information contained in part (b) of a state. As such, for any finite population set P = {1, . . . , N}
and positive integer n, we define the set of strategy of functions CP,n to be the set of all functions
C : {1, . . . , N} → {1, . . . , n}. Then, to determine how an n× n matrix A affects the dynamics of a
state with strategy choice function C, we should not use A directly but instead employ the N ×N
with entries aC(x),C(y).
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From the second guideline we can begin to define how the transition function must be operate.
Towards this end, for any finite population {1, . . . , N}, we define an inheritance rule from the
population to itself to be any function I : {1, . . . , N} → {1, . . . , N, µ}. Such a function associates
each member of the new population to the source of its strategy: either inherited from one of the
members of the old population or a result of the special mutation event µ. For any finite population
set {1, . . . , N}, we define IN to be the set of all such inheritance functions. When an evolutionary
game transitions from one state to the next, the population structure may change freely change,
but the strategy choice function C ′ of the new state must be related to the previous strategy choice
function C by such an inheritance function I. Specifically, it must be the case that C ′(x) = C(I(x))
for all 1 ≤ x ≤ N such that I(x) 6= µ. For any two such C,C ′ ∈ CN,n, we define

IC,C′ := {I ∈ IN : I(x) ∈ C−1(C ′(k)) ∪ {µ}}, (27)

to be this set of all inheritance functions which could possibly lead from strategy choice function
C to strategy choice C ′.

Putting these ideas together, we present a rigorous definition of an evolutionary game Markov
chain, after which we further describe the intuition behind the process.

Definition. For a population size N ∈ N, a population structure set S, and an update
likelihood function

L : S × S × IN × RN
2 → R (28)

such that

1 =
∑
s′∈S

∑
I∈IP

L(s, s′, I,M) (29)

for all M ∈ RN2
and s ∈ S, the triple 〈N,S, L〉 defines an evolutionary game Markov chain.

These parameters then determine the Markov chain by which the game operates for any n× n
payoff matrix A (with entries ai,j). For any such A of dimension n, the game is a Markov chain
on state space S := S × CN,n, where the probability of transitioning from state S = (s, C) ∈ S to
state S′ = (s′, C ′) ∈ S is given by

TS,S′(A) :=
∑

I∈IC,C′

n−|I
−1(µ)|Ls

s′, I, N⊕
x,y=1

aC(x),C(y)

 . (30)

Though the ultimate transition probability values given by (30) is a bit daunting, the idea
behind how one transitions from one state to the next is much simpler. Starting in state S, one
chooses a new population structure s′ and an inheritance rule I based only on the current population
structure s and the payoffs from interactions occurring within the current the population. Equation
(29) simply requires that these probabilities sum to 1. The new state then has structure s′ and
population choice function C ′ given by C ′(x) = C(I(x)) unless I(x) = µ in which case the new
strategy is chosen randomly.

Note that a large class of such games, including any example from evolutionary graph theory,
have a fixed structure and thus can be defined with only a single element in their population
structure set S. In such cases, the definition simplifies dramatically and transitions rely on a single
inheritance likelihood function L : IN × RN2 → R.

As an example, we explicitly define the function L for the standard Moran process on a popu-
lation of size N with mutation rate u. For x ∈ {1, . . . , N, µ}, y ∈ {1, . . . , N}, define the inheritance
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rule Ix,y ∈ IN by I(y) := x and I(z) := z for all z 6= y. Note that because there is only one
replacement in any time step, inheritance rules of this form are the only ones which occur for the
standard Moran process. Then for any x, y ∈ {1, . . . , N} we have that

L

Ix,y, N⊕
w,z=1

bw,z

 := (1− u) · 1

N
·

1 +
∑N

z=1 bx,z

N +
∑N

w,z=1 bw,z
, (31)

and

L

Iµ,y, N⊕
w,z=1

bw,z

 :=
u

N
, (32)

with L taking on the value 0 for any I ∈ IN not of this form. For more complicated evolutionary
graphs the function L is more complex, and for games with a changing population structure things
become even more convoluted. However, it is fairly easy to check that all the specific games
presented thus far do fit into this structure in some manner or another.

Note that while in our definition we assume a fixed population size N , there is no particular
reason this should be a requirement of such a game. In fact, one could generalize the definition above
so that each structure s ∈ S had its own associated population size Ns. Transitions would require
generalized inheritance functions I : {1, . . . , Ns′} → {1, . . . , Ns, µ}, but only certain inheritance
functions would be compatible with certain population structure changes. With enough care, such
a generalized definition can be created, but it is substantially more convoluted. Since few, if any,
examples of games with variable population size exist within the literature, we restrict ourselves to
fixed population size in order to prevent the definition from becoming any more convoluted.

The definition of strategy abundance for an evolutionary game Markov chain is clear when the
process has a unique stationary distribution.

Definition. If an evolutionary game Markov chain 〈N,S, L〉 has a unique stationary distribution
[πS(A)]S∈S for each n× n payoff matrix A, then we may define xk,n(A), the abundance of strategy
k, by

xk,n(A) :=
1

N

∑
s∈S

∑
C∈CN,n

πs,C(A)|C−1({k})|. (33)

With this definition in mind, we may characterize which evolutionary game Markov chains yield
abundance functions which satisfy the conditions (i), (ii), and (iii).

Theorem 3. Let 〈N,S, L〉 be an evolutionary game Markov chain with a unique stationary distri-
bution. Then the abundance functions [xk,n]1≤k≤n satisfy property (ii), permutability, and prop-
erty (iii), divisibility. Further, if the population structure set S is finite and if the function
Ls,s′,I : RN2 → R defined

Ls,s′,I(M) = L(s, s′, I,M), (34)

is differentiable at the zero matrix M = 0 ∈ RN2
for any fixed values of s, s′ ∈ S and I ∈ IN , then

property (i), divisibility, is also satisfied.

As a corollary, we have that Theorem 2 applies to any evolutionary game Markov chain with
a unique stationary distribution, finite population structure set S, and differentiable function L.
This is convienient, because this is generally more straight-forward to show for any given game
than each the three properties seperately. Note that an infinite population structure set S does not
necessarily imply that the game does not satisfy property (i), but simply means that one must be
more careful in proving this.
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Proof of Theorem 3. The transition functions T(s,C),(s′,C′) are clearly differentiable functions of the
update likelihood functions Ls,s′,I , and because these are differentiable at the zero matrix, the
transition functions must be as well. Note also that if S is finite then so is the state space S :=
S × CN,n. In proving Theorem 1, the paper [Tarnita et al. 2009c] proves, in an appendix, that if
the transition functions of a Markov process are differentiable functions at a point then the unique
stationary distribution probabilities πS are differentiable functions there as well. Finally, the actual
abundance functions are linear combinations of the πS , and thus they two must be differentiable,
proving that such games satisfy property (i).

The fact that property (ii) is satisfied by evolutionary game Markov processes is essentially
obvious from the fact that such a process can in no way access the strategy indexes. Specifically we
want to show that xk,n(A) = xπ(k),n(π(A)) for any 1 ≤ k ≤ n, any permutation π : {1, . . . , n} →
{1, . . . , n}, and n × n payoff matrix A = [ai,j ]1≤i,j≤n, where π(A) = [a′i,j ]1≤i,j≤n with a′i,j :=
aπ−1(i),π−1(j). Essentially, the state (s, C) of the game under matrix A is equivalent to the state
(s, π ◦ C) under the matrix π(A). Specifically, noting that IC,C′ = Iπ◦C,π◦C′ , it follows from
definitions that

T(s,C),(s′,C′)(A) = T(s,π◦C),(s′,π◦C′)(π(A)) (35)

for any (s, C), (s′, C ′) ∈ S and payoff matrix A. This equivalence between the transition functions
of the two Markov processes implies a corresponding equivalence

π(s,C)(A) = π(s,π◦C)(π(A)) (36)

in the stationary probability distributions. Then, note that if C ′ = π−1 ◦ C then C = π ◦ C ′ and

C−1({π(k)}) = {x : C(x) = π(k)} = {x : π(C ′(x)) = π(x)} = C ′−1({k}), (37)

and thus

xπ(k),n(π(A)) =
1

N

∑
s∈S

∑
C∈CN,n

π(s,C)(π(A))|C−1({π(k)})| (38)

=
1

N

∑
s∈S

∑
C′∈CN,n

π(s,π◦C′)|C−1({π(k)})| (39)

=
1

N

∑
s∈S

∑
C′∈CN,n

π(s,π◦C′)|C ′−1({k})| (40)

= xk,n(A), (41)

which completes the proof.
The fact that any evolutionary game Markov process satisfies property (iii), divisibility is almost

as intuitive as the fact that it satisfiies property (ii), but the details are a bit messy. Intuitively, if
we watch the Markov process as it runs under the operation of payoff matrix Dm(A), but ignore the
irrelevant tags 1 ≤ i ≤ m each strategy carries and instead view each strategy as its root strategy
from the matrix A, we see that the operation of the Markov process is exactly the same as it would
be if running under the payoff matrix A. Thus the abundances of the duplicates of any one strategy
should sum to the abundance of that strategy, meaning

xk,n(A) =
m∑
i=1

x(k,i),n(Dm(A)). (42)
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The fact that xk,n(A) = mx(k,i),n(Dm(A)) then follows easily from the fact that the game satisfies
property (ii) and thus all of the identitical strategies {(k, i) : 1 ≤ i ≤ m} must have the same
abundances.

The rigorous proof in terms of transition probabilities is a bit messy. Essentially, the intuitive
idea that larger groups of states of the Markov process on Dm(A) correspond to individual states
in the process on A is summarized by the following straight-forward lemma about general Markov
processes.

Lemma. Let 〈S, T 〉 and 〈S′, T ′〉 be two Markov chains, each with a unique stationary distribution.
Let πS and π′S, respectively, denote the equilibrium probability distributions for these processes. If
f : S′ → S is a surjective function such that for all S1, S2 ∈ S and S′1 ∈ f−1({S1}) ⊆ S, we have
that

TS1,S2 =
∑

S′2∈f−1({S2})

TS′1,S′2 , (43)

then

πS =
∑

S′∈f−1({S})

π′S′ , (44)

for all S ∈ S.

Define the function R : CN,nm → CN,n which maps the function C ∈ CN,nm to the function
C ′ := R(C) ∈ CN,n, where C ′ ∈ CN,n is defined so that for whatever values 1 ≤ k ≤ n and
1 ≤ i ≤ m are such that C(x) = (k, i), we have that C ′(x) = k. Then, in applying our lemma, we
wish to use the function f : S×CN,nm → S×CN,n such that f((s, C)) := (s,R(C)). Note that with
these definitions we have for any S = (s, C) ∈ S ×CN,n, we have that f−1(S) = {s} × R−1(C) ⊆
S ×CN,nm.

With these definitions, to apply our lemma we need to show that

TS1,S2(A) =
∑

S′2∈f−1(S2)

TS′1,S′2(Dm(A)) (45)

for all S1 = (s1, C1), S2 = (s2, c2) ∈ S × CN,n and S′1 = (s1, C
′
1) ∈ f−1(S1) ⊆ {s1} × CN,nm ⊆

S ×CN,nm. Expanding the right side of this equation yields the expression

∑
S′2=(s2,C′2)∈f−1(S′2)

∑
I∈IC′1,C′2

(nm)−|I
−1({µ})|Ls1

s2, I, N⊕
x,y=1

dC′1(x),C′1(y)

 . (46)

Note that the interior of this summation does not depend on the value of of S′2, and as such, things
should simplify if we manage to switch the order of summation. First note that⋃

S′2∈f−1(S2)

IC′1,C′2 ⊆ IC1,C2 . (47)

Thus, in switching the order of summation our first sum can be over all I ∈ IC1,C2 , with the second
summation over the set {(s2, C ′2) ∈ f−1(S2) : I ∈ IC′1,C′2}. Note that if I ∈ IC′1,C′2 then we must
have that C ′2(x) = C ′1(I(x)) for all x ∈ {1, . . . , N} for which I(x) 6= µ. For x ∈ {1, . . . , N} for
which I(x) = µ, we must have C ′2 ∈ f−1(S2), so R(C ′2(x)) = C2(x), meaning that C ′2 can assign to
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x any one of the m duplicate strategies equivalent to the strategy assigned to x by C2. Thus we
have that

|(s, C2) ∈ f−1(S2) : I ∈ IC′1,C′2}| = m|I
−1({µ})|. (48)

Since the interior of the summation does not depend upon the specific choice of S′2 = (s, C ′2),
equation (46) simplifies to

∑
I∈IC1,C2

n−|I
−1({µ})|Ls1

s2, I, N⊕
x,y=1

dC′1(x),C′1(y)

 . (49)

By the definition of Dm(A) and the fact that (s1, C
′
1) ∈ f−1({(s1, C1)}), we have that dC′1(x),C′1(y) =

aC1(x),C1(y). Making this replacement in the equation above yields exactly the definition of TS1,S2(A),
which proves equation (45). This allows us to apply our lemma and conclude that

πs,C(A) =
∑

(s,C′)∈f−1({(s,C)})

π(s,C′)(Dm(A)) =
∑

C′∈R−1({C})

π(s,C′)(Dm(A)). (50)

for all (s, C) ∈ S × CN,n. Since for every C ′ ∈ R−1(C) we have that C ′(x) = (C(x), i) for some
1 ≤ i ≤ m, we have that the abundance of a strategy k in specific state (s, C) is equivalent to the
the sum of the abundances of (k, i) over all 1 ≤ i ≤ m for any state (s, C ′) ∈ f−1((s, C)). Thus
when we take

m∑
i=1

∑
(s,C′)∈f−1((s,C))={s}×R−1(C)

πs,C′(Dm(A))|C ′−1({(k, i)})| (51)

and swith the order of summation, the multiplier on πs,C′(Dm(A) is becomes constant and equal
to |C−1({k})|, so from equation (50) we may conclude that

xk,n(A) =
m∑
i=1

x(k,i),n(Dm(A)). (52)

This is equation (42), and we already know that the desired result follows easily from it using
property (ii).

5 Cooperation

One of the most intruiging topics in evolutionary biology is the evolution of cooperation [Trivers 1971,
Axelrod & Hamilton 1981, May 1987, Milinski 1987, Nowak & Sigmund 1990, Doebeli & Knowlton 1998,
Frank 1988, Bshary et al. 2008]. It seems counter-intuitive that competing individuals would evolve
altruistic tendencies, yet cooperation pervades biology at every level. Cooperation is most com-
monly viewed as occurring between organisms, but is it is also essential for life to reach any new
level of organization. Cooperation was most likely essential in the formation of now-basic ele-
ments of life, such as cells and chromosomes, from even more basic replicators such as proteins or
nucleic acids [Maynard Smith & Szathmáry 1997, Jain & Krishna 2001]. The evolution of multi-
cellular organisms from individual cells is also an instance of cooperation [Michod & Roze 2001,
Blackstone & Green 1999], and when this cooperation breaks down, with individual cells replicat-
ing at the expense of the organism as a whole, the resulting disease is known as cancer. Each time
a new level of organization arises through evolution, it is the result of cooperation between lower
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levels of organization which were formerly competing against each other. In light of this, coopera-
tion has been referred to as the third fundamental principle of evolution, along with mutation and
selection [Nowak 2006b].

Evolutionary game theory provides a unique forum in which to study how population structure
affects the viability of cooperative strategies. The prototypical cooperative game is known as the
prisoner’s dilemma, and in its most basic form is given by the payoff matrix(

b− c −c
b 0

)
(53)

with the assumption that b > c > 0. The first strategy is known as cooperation C and the
second as defection D. The value c represents the cost paid by a player choosing to cooper-
ate, and b is the benefit received by the player who is on the receiving end of this cooperation.
Defection strictly dominates cooperation as a strategy, making mutual defection the only Nash
equilibrium of the game, yet both players would benefit more from mutual cooperation. Many
population structures, such as a well-mixed one, cannot ever select for cooperators under this
payoff matrix, regardless of the choices of b and c. As such, the cataloging of different popula-
tion structures and their capacity to support such cooperative strategies is a subject of much active
research [Nowak et al. 2004, Ohtsuki et al. 2006, Traulsen & Nowak 2006, Ohtsuki & Nowak 2007,
Langer et al. 2008, Traulsen et al. 2009, Antal et al. 2009b, Tarnita et al. 2009b, Nowak et al. 2010].
In this section, we demonstrate some interesting results along these lines which follow naturally
from our main result.

One known mechanism for increasing cooperation is called tag-based cooperation or the “green
beard effect” [Hamilton 1964a, Hamilton 1964b, Dawkins 1976]. The name derives from imagining
a single gene (or multiple, linked genes) simultaneously caused its owner to have a green beard and to
show altruistic behavior towards all individuals with green beards. Green beards are so strange that
any individual with one would be sure to be a carrier of this gene, and thus all acts of altruism would
work to further the survival and spread of the gene itself. More generally, the idea is that by using
an arbitrary phenotypic symbol or “tag” in deciding between cooperation and defection, individuals
may be able to choose to cooperate more judiciously and profitably. This general concept has been
analyzed and proven to be effective in promoting cooperation under numerous implementations
and population structures [Riolo et al. 2001, Masuda & Ohtsuki 2007, Traulsen & Nowak 2007].
There are many different implementations of this general concept, one of which we described below.
Using it we will show that, provided sufficiently specific tags are used, tag-based cooperation can be
supported by any mutation-selection process on a structured population with a positive σ1 structure
coefficient. Note that a structure has a positive σ1 if and only if strategy 1 is favored under weak
selection with the payoff matrix 1 0 0

0 0 1
0 1 0,

 (54)

which essentially means that payoffs from self-interactions are more important than those from
opponent-interactions.

Imagine that each player, in addition to being either a cooperator C or defector D, has an
integer tag valued between 1 and m. This would give us n := 2m strategies C1, D1, . . . , Cm, Dm.
The idea is that a player can only “see” the opponents tag when deciding which action to take. As
such, cooperators cooperate if and only if their opponent shares their tag, and otherwise defect.
Defectors still defect at all times. Thus the payoff to strategy Xi in its interaction with strategy
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Yj is

aXi,Yj :=


0 if i 6= j or X = Y = D;

b− c if i = j,X = Y = C;

−c if i = j,X = C, Y = D;

b if i = j,X = D,Y = C.

(55)

Imagine some evolutionary game with structure coefficients σ1, σ2, and σ3. Under the ordinary two-
strategy prisoners dilemma given by (53), we have that aC,C−a•,• = 1

2(b−c), aC,•−a•,C = −1
2(b+c),

and aC,• − a•,◦ = −1
2c. As such, cooperation is favored only if

σ1(b− c)− σ2(b+ c)− σ3c > 0. (56)

However, the fact that the σi are fixed over varying numbers of strategies n allows us to compare
this result to the one which uses m tags and the payoffs given by (55). In this case we have that
aCk,Ck

− a•,• = 1
2(b − c), aCk,• − a•,C = − 1

2m(b + c), and aCk,• = − c
2m , so cooperation is selected

for if
σ1(b− c)−

σ2
m

(b+ c)− σ3
m
c > 0. (57)

As claimed, for a sufficient number of tags m, the first term dominates the equation and cooperators
are selected for as long as σ1 > 0.

6 Discussion

6.1 Summary

In Sections 2 and 3 we presented and proved our main result, Theorem 2. This theorem states that
for a large class of evolutionary games satisfying certain natural properties, the condition which
determines if any strategy k within payoff matrix A is favored in the limit of weak selection can
be written as a simple inequality which depends on just three structure coeficients σ1, σ2, σ3 ∈ R.
This generalizes a previous result of [Tarnita et al. 2009c] which held for n = 2 strategy matrices,
and is closely related to several other results within the literature.

Section 4 defines the notion of an evolutionary game Markov process, a class into which most
ordinary evolutionary games fall within. This rigorously defines a novel and more general class
of evolutionary games than currently exists in the literature. We then show that, given certain
differentiability requirements, such games satisfy the necessary conditions and fall within the scope
of Theorem 2, providing a large, concrete class of examples for this theorem. Finally, in Section 5
we discuss implications Theorem 2 has in the particularly case of the evolution of cooperation.

6.2 Future Directions

The ideas presented thus far provide numerous, specific ideas for future research. The struc-
ture coefficient of Theorem 1 has been calculated for many specific evolutionary games. How-
ever, the structure coefficients σ1, σ2, σ3 are currently only known for the standard Moran process
[Antal et al. 2009c]. Now that such values are known to exist for all evolutionary games, they
should be calculated as well.

In general, for any two-strategy theorems relating to Theorem 1, we should seek generalized
n-strategy theorems associated to Theorem 2. One intruiging example of this is in using computer
simulations to calculate approximate structure coefficients. Two insightful papers have been pub-
lished which are concerned with achieving efficient approximations of the structure coefficient σ
for specific update rules [Fu et al. 2009, Nathanson et al. 2009]. Not only should these methods
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also lead to ways of calculating all three structure coefficients, but we may also be able to use
the rigorous definition of evolutionary game Markov chains to increase the number of evolutionary
games to which they apply.

In fact, the definition of evolutionary game Markov chains presented in Section 4, may be this pa-
pers best jumping off point for future research. The definition is novel in that it is general enough to
support diverse population structures and update rules, but rigorous and restrictive enough to retain
the intuitive properties desired in such an evolutionary game. Specifically, the idea of an inheritance
rule allows us to unify diverse update rules, such as birth-death, death-birth, and Wright-Fisher
processes, under one umbrella. Many general results currently in the literature are proven for just
one specific update rule, such as the birth-death process, but with a footnote that for other processes
an analogous proof works just as well [Fu et al. 2009, Taylor et al. 2007a, Taylor et al. 2007b,
Ohtsuki et al. 2006, Ohtsuki & Nowak 2006b, Ohtsuki & Nowak 2008, Ohtsuki et al. 2007]. In the
past, the generality of such results may have been limited more by the lack of a general description
capturing the unifying characteristics of such update rules. With this definition in hand, we may
may be able to generalize the results provided within these papers to large classes of Evolutionary
game Markov chains.
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Appendix - Markov Chains

A stochastic process is a sequence of random variables X0, X1, . . . indexed by the natural numbers
and taking values in some state space S, which is a finite or countable set. Such a process is a
Markov chain if it is memoryless, meaning the probability it takes on future states is conditional
only upon the present state. More formally we require that

P[Xt = xt|Xt−1 = xt−1] = P[Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . , X1 = x1] (58)

for any t ∈ N and x1, . . . , xt ∈ S. In this paper we are concerned only with time-homogeneous
Markov chains, which have the additional property that the specific time t is irrelevant to the
transition probabilities, meaning

P[Xt+2 = x|Xt+1 = y] = P[Xt+1 = x|Xt = y] (59)

for any t ∈ N and x, y ∈ S. Such a process is completely described by transition probabilities

TS,S′ := P[X1 = S′ : X0 = S] (60)

defined for all S, S′ ∈ S. We can further define the values

T
(n)
S,S′ := P[Xn = S′ : X0 = S], (61)
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denoting the probability that S′ is the state of the system n time steps after being in state S.

State S′ is said to be accessible from state S if there exists an integer n ∈ N such that T
(n)
S,S′ > 0,

meaning that there is positive probability a system in state S will eventually reach state S′. A
Markov chain is called irreducible if every state is accessible from every other.

For any state S we can define a random variable, known as the hitting time, HS by

HS := inf{n ≥ 1 : Xn = S|X0 = S}. (62)

This represents the first time the process returns to state n. If the expected hitting time MS :=
E[HS ] is finite, then the state S is called positive recurrent.

A vector of probabilities [πS ]S∈S is called a stationary distribution of the Markov chain if

πS =
∑
S′∈S

πS′TS′,S (63)

for all S ∈ S. An irreducible Markov chain has a stationary distribution if and only if all of its
states are positive recurrent, and in this case the distribution is unique and given by πS = M−1S .
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