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Abstract

This paper gives a proof of Mazur’s Theorem, which classifies the possible torsion
subgroups of rational elliptic curves. We begin with a reasonably comprehensive in-
troduction to the theory of elliptic curves, including proofs of most of the relevant
results. We proceed to review many additional topics in modern number theory and
algebraic geometry, including group schemes, Néron models, and modular curves. Fi-
nally, we bring together all this material by giving a proof of Mazur’s Theorem.
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1 Introduction

The goal of this paper is to prove Mazur’s Theorem, which completely classifies the
possible torsion subgroups of rational elliptic curves. First proved in 1977, this result
relies on many different methods in modern number theory and algebraic geometry.
In another sense then, this paper seeks to review many different techniques relevant
to these fields, using the proof of Mazur’s Theorem as a road map.

Theorem 1.1 (Mazur). Let E/Q be an elliptic curve. Then, as an abstract group,
either Etors(Q) ∼= Z/nZ for 1 ≤ n ≤ 10 or n = 12, or Etors(Q) ∼= (Z/2Z) ⊕ (Z/2nZ)
for 1 ≤ n ≤ 4.

Proof. This follows immediately from proposition 4.5 and theorem 5.1.

It is known that all 15 groups do arise for infinitely many rational elliptic curves.
We will not discuss this fact further, but see [Kub, p. 217] for explicit parameteriza-
tions. In fact we will not deal with any of the small cases here. Rather, we will discuss
Mazur’s proof in [Ma1] that rational elliptic curves cannot have torsion points of prime
order larger than 13. We make this choice because the former involves lengthy compu-
tations which are not particularly enlightening, whereas the latter serves as excellent
motivation for the theory we will develop. We also mention that Mazur later gave a
shorter but more advanced proof of the same result; see [Ma2] for details.

We begin with a review of the theory of elliptic curves, where we focus on those
results which will be needed in the proof of Mazur’s Theorem. Next we develop
the theory of group schemes, and in particular we discuss Néron models for elliptic
curves. We then discuss an important result about extensions of cyclotomic fields and
briefly review the theory of modular curves, and we give a brief description of the
computational methods used to settle the small cases of Mazur’s Theorem. Finally,
we conclude by giving a proof that no rational torsion points can have large prime
order, a result which nicely ties together all the theory developed in this paper.

In terms of prerequisites, we assume that the reader has a graduate level under-
standing of most mathematical fields. In particular, we freely use without mention
fundamental results from algebraic geometry, algebraic number theory, complex anal-
ysis, Galois theory, and linear algebra. Also, note that we only use the label “theorem”
to describe substantial results when the proofs are not omitted.

2 Elliptic Curves

In this section we give an introduction to the theory of elliptic curves. We begin by
studying their geometry, and then we focus our studies on the torsion points. After
developing the general theory over arbitrary fields, we focus our studies in the second
part on elliptic curves over finite fields, over the complex numbers, and over number
fields. Throughout our primary reference is the excellent book by Silverman [Si1],
although we cite other sources as needed.
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Definition 2.1. An elliptic curve (E,O) over a field K is a smooth, projective curve
E of genus 1 along with a specified point O, all defined over K.

In practise we will simply talk about the elliptic curve E/K, and O will be un-
derstood to be the base point. Further, as is standard practise we use the notation
E(K ′) to denote the points of E defined over K ′ for any field extension K ′ of K.

2.1 The Geometry of Elliptic Curves

Algebraic geometry has its most natural setting over algebraically closed fields. Thus,
to study the geometry of elliptic curves, we assume throughout this section thatK is an
algebraically closed field (except as noted). We will make liberal use of the Riemann-
Roch Theorem for curves, which we assume the reader is familiar with. For the
statement and a proof see [Har, p. 295-296]. Also, if C/K is a curve and D ∈ Div(C)
is a divisor, we use the notation L (D) = {f ∈ K(C)∗ : div f ≥ −D} ∪ {0}, which is
always a finite dimensional K-vector space.

One of the most important properties of an elliptic curve E is the natural group
structure on the points of E obtained via the base point. We construct this group
structure through a canonical bijection between the points of E and the abelian group
Pic0(E), as given in the following proposition.

Proposition 2.1. Let E/K be an elliptic curve, and define a map σ : E → Pic0(E)
by sending P to the class of (P )− (O). Then σ is a bijection.

Proof. It is immediately clear that σ is a well-defined map with image in Pic0(E).
Let D ∈ Div0(E) be a representative for an arbitrary class in Pic0(E), and consider
L (D + (O)). By the Riemann-Roch Theorem, this space is one-dimensional over K.
Thus, there exists nonzero f ∈ K(E) so that div f+D+(O) ≥ 0, where div f+D+(O)
has degree one. Hence div f + D + (O) = (P ) for some P ∈ E, and consequently
D ∼ (P )− (O). This shows that σ is surjective. Now suppose that σ(P ) = σ(Q) for
P,Q ∈ E. Then (P ) − (O) ∼ (Q) − (O) in Div0(E), that is div f = (P ) − (Q) for
some f ∈ K(E). In particular f ∈ L ((Q)), and again by Riemann-Roch this space
has dimension 1 over K. However, all the constant functions have divisors ≥ −(Q),
and so f must be constant. Thus, for some c ∈ K∗, we have (P ) − (Q) = div c = 0.
Hence (P ) = (Q), so σ is injective, and the proof is complete.

In order to do explicit computations with elliptic curves, it is essential to have a
representation as the zero locus of some polynomials. The next proposition solves this
problem using Weierstrass equations.

Proposition 2.2. Let E/K be an elliptic curve. Then there exist coordinate functions
x, y ∈ K(E) and constants a1, a2, a3, a4, a6 ∈ K such that the following condition
holds. If f : E → P2(K) is the map given by P 7→ [x(P ) : y(P ) : 1], then f gives
an isomorphism between E and the curve y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6.
Conversely, every such equation gives an elliptic curve with base point [0 : 1 : 0]
whenever it is smooth.
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Proof. For any positive integer n, the Riemann-Roch Theorem gives that L (n(O))
has dimension n over K. The constant functions make up a one-dimensional subspace,
and so there exists x, y ∈ K(E) with {1, x} a basis for L (2(O)) and {1, x, y} a basis
for L (3(O)). In particular x has a pole of order exactly two at O, and y has a
pole of order exactly three at O. Hence {1, x, y, x2, xy, y2, x3} ∈ L (6(O)), a six-
dimensional vector-space. So there exists constants c1, . . . , c7 ∈ K, not all zero, with
c1 + c2x+ c3y+ c4x

2 + c5xy+ c6y
2 + c7x

3 = 0. Every term has a pole of different order
at O except for the last two, and consequently c6c7 6= 0. An obvious substitution
gives the ai, and the conditions on x and y imply that O maps to [0 : 1 : 0]. We note
that the ai are numbered as 6 minus the order of the pole of their associated term.
Calling this curve C, we have a rational map f : E → C. Because E is smooth f is a
morphism. The map x : E → P1(K) has degree 2 because x has a pole of order 2 at O
and no other poles, and therefore [K(E) : K(x)] = 2. Similarly [K(E) : K(y)] = 3, so
[K(E) : K(x, y)] = 1. Therefore f has degree 1. If C is smooth then f is a degree one
morphism between smooth curves, and then it must be an isomorphism. So we are
done unless C is singular. A simple computation with Weierstrass equations shows
that in this case there exists a rational map g : C → P1(K) or degree 1, and the
composition g ◦ f gives a degree 1 morphism from E to P1(K). Both these curves are
smooth so g ◦ f is an isomorphism, but this is a contradiction because E has genus 1
and P1(K) has genus 0. This completes the proof of the first statement.

Now take any smooth Weierstrass equation, and let E be the associated curve.
Defining O = [0 : 1 : 0], we see that (E,O) is an elliptic curve assuming E has
genus 1. A tedious but entirely straightforward calculation reveals that the differential
ω = dx/(2y + a1x + a3) has no zeros or poles on E. Hence divω = 0, but a simple
application of the Riemann-Roch Theorem shows that deg divω ′ = 2g − 2 for any
differential ω′. So 2g − 2 = 0 and E has genus 1, as desired.

With minor alterations, this proof also holds when K is not algebraically closed.
Thus, if E/K is an elliptic curve for any field K, then there exists a Weierstrass
equation for E with coefficients in K.

Corollary 2.3. If charK 6= 2, 3 then E is given by an equation y2 = x3 + ax+ b for
a, b ∈ K.

Proof. This follows immediately from proposition 2.2 by simple algebra.

Next, using Weierstrass equations we will classify the isomorphism classes of elliptic
curves over K. Although the classification holds in all characteristics, we will only
prove it here assuming charK 6= 2, 3. See [Si1, p. 325-327] for the remaining cases.
First we state a lemma, the proof of which we leave for the reader as an easy exercise.

Lemma 2.4. Let y2 = x3 + ax + b be a Weierstrass equation over K. Then the
corresponding curve is nonsingular, and hence an elliptic curve, exactly when the
discriminant ∆ = −16(4a3 + 27b2) does not vanish.

Proposition 2.5. Assume charK 6= 2, 3, and let S be the set of isomorphism classes
of elliptic curves over K. Then there exists a bijection j : S → K, defined as follows.
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If y2 = x3 + ax + b is a representative of some class in S, then this class maps to
j = j(a, b) = 2833a3/(4a3 + 27b2).

Proof. First we prove that this map is well-defined. By corollary 2.3, any isomorphism
class always has a representative of the given form. Suppose that y2 = x3 +ax+ b and
y2 = x3 +a′x+ b′ are two representatives of the same class. By assumption there exist
x′, y′ ∈ K(x, y) mapping the first equation to the second. Degree considerations show
that x′ and y′ must be linear in x and y, and straightforward algebra then shows that
(x′, y′) = (u2x, u3y) for some u ∈ K. One easily checks that j is invariant under this
change of variables. By lemma 2.4, we see that 4a3 + 27b2 cannot vanish. So indeed
j gives a well-defined map from S to K, as claimed. For surjectivity, let j0 ∈ K be
arbitrary. If j0 6= 0, 1728, then y2 = x3−(1/48+36/(j0−1728))x+1/864+2/(j0−1728)
has nonzero discriminant and j = j0. Also y2 = x3 + x has j = 1728, and y2 = x3 + 1
has j = 0. Thus j is surjective, as claimed. Finally, suppose that y2 = x3 + ax + b
and y2 = x3 + a′x + b′ both give the same value for j. Then a3/(4a3 + 27b2) =
a′3/(4a′3 + 27b′2), or a3b′2 = a′3b2. Considering what we just showed about elliptic
curves with j = 0, 1728, it is clear that in any case there exists nonzero u ∈ K with
a′ = u4a and b′ = u6b. Then (x′, y′) = (u2x, u3y) gives an isomorphism between the
two given curves, and they represent the same element of S. So j is injective, and the
proof is complete.

Definition 2.2. If charK 6= 2, 3 and E/K is an elliptic curve, then the quantity in
K associated to E by proposition 2.5 is called the j-invariant of E.

Having fully characterized elliptic curves over K, we now study maps between
them. Recalling the definition of an elliptic curve, it is clear how to define such maps.
For the following definition, we do not assume that K is algebraically closed.

Definition 2.3. Let (E1, O1) and (E2, O2) be elliptic curves defined over a field K.
Then an isogeny is a morphism of curves f : E1 → E2 such that f(O1) = O2. If there
exists a nonzero such map, then E1 and E2 are said to be isogenous.

Although the group structure is not part of the definition of an elliptic curve, it
is certainly central to their study. Thus, we might want to restrict our attention to
isogenies which are also group homomorphisms. As the following shows, this is not
necessary.

Proposition 2.6. Let f : E1 → E2 be an isogeny of elliptic curves. Then f is a
homomorphism for the group structures on E1 and E2.

Proof. For i = 1, 2 let σi : Ei → Pic0(Ei) be the bijection of proposition 2.1, which by
definition is a group homomorphism. The result clearly holds if f(E1) = O2, so sup-
pose that f is a finite map. Then f∗ : Pic0(E1)→ Pic0(E2) is a group homomorphism
such that the following diagram is commutative:
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E1
- Pic0(E1)

σ1

E2
- Pic0(E2)

σ2

?
f

?
f∗

So σ1, σ2, and f∗ are group homomorphisms, and σ2 is injective. Thus f must also be
a group homomorphism, as desired.

We next prove a result which will be useful in developing our understanding of
isogenies. Also, in the course of the proof we will describe an alternate construction
of the group law using Weierstrass equations.

Proposition 2.7. Let E/K be an elliptic curve, and let the maps + : E × E → E
and − : E → E be given respectively by addition and negation under the group law on
E. Then + and − are morphisms.

Proof. By proposition 2.2 there exists a curve C ⊂ P2(K) which is isomorphic to E
and given by a Weierstrass equation. Further, the base point is given by [0 : 1 : 0].
Let L ⊂ P2(K) be any line, given by 0 = f(x, y, z) = ax+ by + cz. Then L intersects
C at exactly three points counting multiplicities, say P1, P2, P3 ∈ C. Looking at
the form of a general Weierstrass equation, it is clear that the line z = 0 intersects
C with multiplicity three at O = [0 : 1 : 0]. Therefore f/z ∈ K(C) has divisor∑3

i=1(Pi)− 3(O). So
∑3

i=1((Pi)− (O)) = 0 in Pic0(C), and consequently
∑3

i=1 Pi = 0
in E exactly when the Pi lie on a line in P2(K). Thus, to negate a point P ∈ C we
simply draw a line through P and O, and the third intersection of this line with C is
−P . For our general Weierstrass equation this is the map (x, y) 7→ (x,−y−a1x−a3),
which is certainly a morphism. Using similar ideas one can construct explicit rational
functions for addition, showing that this map is a morphism as well. The details are
tedious but not difficult. For the complete proof see [Si1, p. 68-69].

For two elliptic curves E1 and E2, let Hom(E1, E2) denote the set of all isoge-
nies from E1 to E2. By proposition 2.7, this set has a natural structure as abelian
group. Further, if E1 = E2 = E, then composition give a multiplicative structure to
Hom(E1, E2) = End(E). Distribution holds by proposition 2.6, and End(E) is in fact a
ring (with identity). In particular there exists a ring homomorphism [·] : Z→ End(E).
So, for each integer m we have a multiplication by m map [m] : E → E. These maps
will be essential in our later study of the torsion subgroups of an elliptic curve.

Let E be an elliptic curve. An important tool in the study of endomorphism rings
is the map deg : End(E) → Z. The following proposition gives a fundamental result
about this map. To prove it would require developing the theory of dual isogenies,
which would take us too far afield.

Proposition 2.8. Let E/K be an elliptic curve. Then the map deg : End(E)→ Z is
a positive definite quadratic form.

Proof. See [Si1, p. 88-89].
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Corollary 2.9. Let E/K be an elliptic curve. Then deg [m] = m2 for all integers m.

Proof. The map [1] is the identity, so deg [1] = 1. The result now follows by proposition
2.8.

In the sequel we will only need corollary 2.9. Although the most natural proof uses
proposition 2.8, there are alternate proofs as well. Using Weierstrass equations one
can explicitly write down rational functions for [m], giving a lengthy but elementary
proof [Si1, p. 105]. Alternatively, the case K = C follows immediately from the results
of section 2.4, and the Lefschetz Principle then implies the statement for all fields of
characteristic zero [Si1, p. 164-165].

Finally, we conclude our study of the geometry of elliptic curves with a description
of the possible isomorphism types for the endomorphism ring. This result will not be
used again, so we omit the proof.

Proposition 2.10. Let E/K be an elliptic curve. Then End(E) is either Z or an
order in a quadratic imaginary field or a quaternion algebra.

Proof. See [Si1, p. 100-102].

2.2 Torsion, the Tate Module, and the Weil Pairing

In this section we study the torsion subgroups of elliptic curves. These groups and
their elements play a central role in the study of elliptic curves, and they are very useful
for applications to number theory. For example, the torsion points on certain elliptic
curves yield an explicit realization of class field theory for quadratic imaginary fields
[Si2, ch. 2]. First, we begin with a lemma. We note that an isogeny is called separable
just if the corresponding map is, and for the definition of a separable morphism see
[Har, p. 300].

Lemma 2.11. Let E1, E2/K be elliptic curves with K algebraically closed, and let
f : E1 → E2 be a nonzero, separable isogeny. Then Ker f ⊆ E1 is a finite subgroup of
order deg f .

Proof. Because f is separable, we know that f−1(P ) has deg f elements for all but
finitely many P ∈ E2. However f−1(P +Q) = f−1(P ) +Q′ for any Q′ ∈ f−1(Q), and
|f−1(P )| is independent of P . Because K is infinite, this implies |f−1(P )| = deg f for
all P ∈ E2. Hence Ker f has deg f elements, and by proposition 2.6 it is a subgroup
of E1, as desired.

Before proceeding with our study of torsion, we mention a sort of converse to
lemma 2.11. This result will be necessary for the proof of Mazur’s Theorem.

Proposition 2.12. Let E/K be an elliptic curve, and let H ⊆ E
(
K
)

be any finite

subgroup which is fixed under Gal
(
K/K

)
. Then there exists an elliptic curve E ′/K

and a separable isogeny f : E → E ′ defined over K so that Ker f = H.
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Proof. There are many approaches to proving this result, but all of them would require
excessive space. For an approach using elementary algebraic geometry see [Si1, p. 107].
For a proof of the more general case, taking the quotient of any variety by a finite
group of automorphisms, see [Mum, §7].

For any elliptic curve E/K and positive integer m, we write E[m] to denote the
points in E

(
K
)

of order dividing m. For the torsion points defined over K we write
E[m](K). Using the above result, we can now completely describe the isomorphism
type of E[m]. Although we state the full result, we do not prove the case where
charK divides m. This situation will not be necessary for our later work, and its
proof requires the use of dual isogenies, among other things.

Proposition 2.13. Let E/K be an elliptic curve, and let m be a positive integer.
Write m = pem′ where charK = p and (p,m′) = 1. If charK = 0 then take m′ = m.
Then either E[m] ∼= (Z/m′Z) ⊕ (Z/m′Z) or E[m] ∼= (Z/mZ) ⊕ (Z/m′Z), and which
isomorphism holds depends only on E.

Proof. As mentioned, we will only give a proof for the case e = 0, that is p does
not divide m. By corollary 2.9 the map [m] : E → E has degree m2, and by our
assumption [m] must be separable. By lemma 2.11, we see that E[m] = Ker [m] has
m2 elements. Also then E[d] has d2 elements for all d dividing m, and the classification
of finite, abelian groups shows that the only possibility is E[m] ∼= (Z/mZ)⊕ (Z/mZ).
This completes the proof for e = 0, and for the general result see [Si1, p. 89].

We let Etors denote the full torsion subgroup of an elliptic curve E/K, and we let
Etors(K) denote those points which are defined over K. In the following result, we use
the notation Z(p) for the elements of Q with denominators relatively prime to p.

Corollary 2.14. Let E/K be an elliptic curve. If charK = 0, then as an abstract
group Etors

∼= (Q/Z)⊕ (Q/Z). If charK = p, then either Etors
∼= (Z(p)/Z)⊕ (Z(p)/Z)

or Etors
∼= (Q/Z)⊕ (Z(p)/Z).

Proof. Immediate from proposition 2.13.

Let E/K be an elliptic curve, and let m be a positive integer. Recalling our
geometric description of the group law using Weierstrass equations, it is clear that
[m] : E → E is defined over K. Thus, for any σ ∈ Gal

(
K/K

)
and P ∈ E[m],

we have [m](σ(P )) = σ([m](P )) = σ(O) = O. So Gal
(
K/K

)
acts on E[m]. In

particular, for each integer m not divisible by charK we have a Galois representation
Gal

(
K/K

)
→ GL2(Z/mZ). We would also like to use elliptic curves to construct

Galois representations over a ring of characteristic zero. To this end we make the
following definition.

Definition 2.4. Let E/K be an elliptic curve, and let p be a prime. We define the
p-adic Tate module Tp(E) = lim←−nE[pn], where the inverse limit is taken with respect

to the map [p] : E[pn+1]→ E[pn].
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Proposition 2.15. Let E/K be an elliptic curve and p a prime. Then Tp(E) is a
Zp-module, and as such Tp(E) ∼= Zp × Zp unless charK = p. In this case either
Tp(E) = 0 or Tp(E) ∼= Zp.

Proof. For any m the group E[m] has the structure of a (Z/mZ)-module, and thus
Tp(E) has the structure of a lim←−nZ/p

nZ module. This is simply Zp, and now the result
follows immediately from proposition 2.13.

Thus, for any elliptic curve E/K and each prime p different from charK, we obtain
a Galois representation Gal

(
K/K

)
→ GL2(Zp). Composing with the determinant we

also obtain a map Gal
(
K/K

)
→ Z∗p. In order to study this latter representation we

introduce the Weil pairing, which will also have numerous other applications. First
though we need a lemma.

Lemma 2.16. Let E/K be an elliptic curve, and let D =
∑

i ni(Pi) ∈ Div(E) be
arbitrary. Then D is principal if and only if

∑
i ni = 0 and

∑
i[ni]Pi = 0.

Proof. If D is principal then clearly
∑

i ni = 0. Assuming D ∈ Div0(E), define
P =

∑
i[ni]Pi. The map Div0(E) → E given by D 7→ P is simply the inverse of the

map from proposition 2.1. Thus its kernel consists exactly of the principal divisors,
and the proof is complete.

In the following µm denotes the set of mth roots of unity. Also, in the proof we
frequently use lemma 2.16 without explicit mention.

Proposition 2.17. Let E/K be an elliptic curve, and let m a positive integer not
divisible by charK. Then there exists a canonical isomorphism of Gal

(
K/K

)
-modules

em :
∧2 E[m]→ µm.

Proof. We will construct a bilinear, alternating map em : E[m]×E[m]→ µm. First let
P1 ∈ E[m] be arbitrary, so there exists f ∈ K(E) with div f = m(P1)−m(O). Take
arbitrary Q ∈ E[m2] such that [m]Q = P1, and find g ∈ K(E) which satisfies div g =∑

R∈E[m]((Q+R)−(R)). Then f ◦[m] and gm have divisor
∑

R∈E[m](m(Q+R)−m(R)),

and, multiplying f by a constant if necessary, we may assume that f ◦ [m] = gm. Fix
some P2 ∈ E[m], and let X ∈ E

(
K
)

be arbitrary so that both g(P2 + X) and g(X)
are defined and nonzero. We define em(P1, P2) = g(P2 + X)/g(X). First, we have
g(P2 + X)m = f([m]P2 + [m]X) = f([m]X) = g(X)m, and em(P1, P2) ∈ µm. Thus
g(P2 +X)/g(X) ∈ µm for all but finitely many values of X, and this function must be
independent of X. Further, the construction of g is defined up to a constant multiple,
and we see that em is in fact a well-defined function from E[m]2 to µm, as desired. We
now prove various properties of em that will imply our desired result.

First we prove linearity. Let P,Q1, Q2 ∈ E[m] be arbitrary, and let f, g ∈ K(E)
be the functions corresponding to P . Then for appropriate X ∈ E

(
K
)

we have

em(P,Q1 +Q2) =
g(Q1 +Q2 +X)

g(X)
=

(
g(Q1 + (Q2 +X))

g(Q2 +X)

)(
g(Q2 +X)

g(X)

)

= em(P,Q1)em(P,Q2).
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For linearity in the first factor, let P1, P2, Q ∈ E[m] be arbitrary, and let f1, f2, f3

and g1, g2, g3 correspond to P1, P2, and P1 + P2 respectively. Take h ∈ K(E) with
div h = (P1+P2)−(P1)−(P2)+(O), so that f3 = f1f2h

m after multiplying by a constant
as necessary. Composing with [m] we find f3 ◦ [m] = (f1 ◦ [m])(f2 ◦ [m])(h ◦ [m])m, or
g3 = g1g2(h ◦ [m]). Again taking suitable X ∈ E

(
K
)

we obtain

em(P1 + P2, Q) =
g3(Q+X)

g3(X)
=
g1(Q+X)g2(Q+X)h([m]Q+ [m]X)

g1(X)g2(X)h([m]X)

= em(P1, X)em(P2, X),

because [m]Q = O. Thus em is linear in both factors, and we next prove that it is
alternating. By linearity, it is enough to show that em(P, P ) = 1 for all P ∈ E[m].
Let f, g ∈ K(E) correspond to P , and consider the function

∏m−1
i=0 f(X − [i]P ). Its

divisor is
∑m−1

i=0 (([i+ 1]P )− ([i]P )) = 0, so it must be constant. If Q ∈ E[m2] satisfies
[m]Q = P , then

∏m−1
i=0 g(X − [i]Q)m =

∏m−1
i=0 f([m]X − [i]P ) is constant, and so must

be
∏m−1

i=0 g(X − [i]Q). Evaluating at X and X − Q, we find
∏m−1

i=0 g(X − [i]Q) =∏m
i=1 g(X − [i]Q), or g(X) = g(X − P ). From this it follows that em(P, P ) = 1, and

finally we have shown that em induces a linear map em :
∧2 E[m] → µm. We will

complete the proof by showing that em is bijective and Galois invariant.
Considering the order of each set, to show bijectivity it is enough to show surjec-

tivity. Take P ∧ Q which generates
∧2 E[m] as an abelian group, and suppose that

em(P,Q) is a primitive `th root of unity for some ` dividing m. Then em([`]P,Q) = 1,
and in fact em(P ′, Q′) = 1 for all Q′ ∈ E[m] where P ′ = [`]P . Letting f, g ∈ K(E)
correspond to P ′, this is g(X + Q′) = g(X) for all Q′ ∈ E[m]. So there exists
h ∈ K(E) with g = h ◦ [m], and consequently f ◦ [m] = gm = (h ◦ [m])m. The
map [m] is a nonzero morphism of smooth curves, so it must be surjective. Then f
is a constant times hm, and the divisor of h must be (P ′) − (O). Hence P ′ = O
in E, that is [`]P = O. By the choice of P this implies ` = m, and em(P,Q)
is a primitive mth root of unity. So em is surjective and consequently bijective.
Finally, take arbitrary σ ∈ Gal

(
K/K

)
, and let P,Q ∈ E[m] be arbitrary with

f, g ∈ K̄(E) corresponding to P . From the construction it is clear that f σ and
gσ are the maps corresponding to σ(P ), and we find for appropriate X ∈ E

(
K
)

that
em(σ(P ), σ(Q)) = gσ(σ(X)+σ(Q))/gσ(σ(X)) = σ(g(X+Q))/σ(g(X)) = σ(em(P,Q)).
This completes the proof.

Using the Weil pairing em we can begin to limit the possibilities for the rational
torsion of an elliptic curve.

Corollary 2.18. Let E/Q be an elliptic curve. Then we have either Etors(Q) ∼= H or
Etors(Q) ∼= (Z/2Z)⊕H for some subgroup H ⊆ Q/Z.

Proof. By corollary 2.14 it is enough to show that E[m] 6⊂ Etors(Q) for all m > 2.
Suppose that E[m] ⊆ Etors(Q) for some positive integer m. Then Gal

(
Q/Q

)
acts

trivially on E[m], and by proposition 2.17 it must also act trivially on µm. This
implies m ≤ 2, and the proof is complete.
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Of course, this result works equally well with Q replaced by R. In fact, one can
show that for any elliptic curve E/R either E(R) ∼= R/Z or E(R) ∼= (Z/2Z)⊕ (R/Z).
To do so here would take us too far afield, but see [Si2, p. 420] for a proof of this result.

2.3 Elliptic Curves over Finite Fields

In this section we will prove the Weil conjectures for elliptic curves. The general
conjectures concern the number of points on varieties defined over finite fields, and
their proof represents one of the major achievements of modern algebraic geometry;
see [Har, app. C] for further information. Here we will only prove them in the case
of elliptic curves, which does not require particularly advanced techniques. We will
also forgo many other important topics in elliptic curves over finite fields, such as the
Hasse invariant. The reader can consult [Si1, ch. 5] for further results. Before proving
our main result, we need a couple of lemmas.

Lemma 2.19. Let E/Fq be an elliptic curve with some embedding E ⊂ P2(Fq), and
define φ : P2(Fq)→ P2(Fq) to be the map [x : y : z] 7→ [xq : yq : zq]. Then φ ∈ End(E),
and 1− φ is separable.

Proof. Take the equation for E and raise all the coefficients to the qth power. Then φ
maps E to the curve defined this equation. However Fq is invariant under this map,
and because E is defined over Fq we see that φ(E) = E. Further, it is clearly a rational
map which fixes the identity, and φ is an isogeny, as claimed. To show that 1 − φ is
separable would require developing the theory of invariant differentials, and thus we
omit the proof here. See [Si1, p. 83-84] for a proof that in fact m+nφ is separable for
integers m and n if and only if (m, q) = 1.

The map φ in the above lemma is called the (qth-power) Frobenius endomorphism
of E. For the next result, recall from our work in section 2.2 that for any elliptic
curve E/K and prime p 6= charK there exists a map End(E) → End(Tp(E)). For
arbitrary ψ ∈ End(E) we use the notation ψp for its image under this map. Also,
from proposition 2.15, we can regard ψp as a 2 × 2 matrix with entries in Zp. Thus
detψp and trψp are well-defined quantities in Zp.

Lemma 2.20. Let E/Fq be an elliptic curve, let ψ : E → E be any isogeny, and let p
be any prime with (p, q) = 1. Then detψp = degψ and trψp = 1 + degψ−deg(1−ψ).

Proof. The proof of the first result uses the Weil pairing and dual isogenies, and we
must therefore exclude it. See [Si1, p. 135]. For the second result, one simply notes
that trM = 1 + detM − det(1−M) for any 2× 2 matrix M with coefficients in any
commutative ring with identity.

Proposition 2.21. Let E/Fq be an elliptic curve. Then there exists α ∈ C with |α| =√
q so that for all positive integers n the curve E(Fqn) contains exactly qn−αn−ᾱn+1

points.
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Proof. Let φ be the qth-power Frobenius endomorphism of E, and let n be any positive
integer. Then φn fixes exactly those points defined over Fq, and by proposition 2.11
and lemma 2.19 the curve E(Fqn) contains deg(1 − φn) points. Now fix some prime
p 6= charFq. By lemma 2.20 the characteristic polynomial of φp has integer coefficients,
and we may factor it over C as (λ−α)(λ−β). We evaluate the characteristic polynomial
at any rational number a/b as det(a/b− φp) = det(a− bφp)/b2 = deg(a− bφ)/b2 ≥ 0,
and therefore β = ᾱ. Further αᾱ = detφp = deg φ = q, so |α| =

√
q. Clearly

(φn)p = φnp , and thus the characteristic polynomial of φnp is given by (λ−αn)(λ− ᾱn).
Finally deg(1− φn) = det(1− φnp ) = (1− αn)(1− ᾱn) = 1− αn − ᾱn + qn, and by the
above this completes the proof.

2.4 Elliptic Curves over C
We begin with a review of the theory of doubly period functions on the complex plane.
This area is frequently covered in graduate level complex analysis courses, so we omit
the proofs here. For a complete exposition see for example [Ahl, ch. 7].

Proposition 2.22. Let Λ be any lattice in the complex plane. There there exists an
even meromorphic function ℘(z) defined on all of C such that ℘(z) = ℘(z + ω) for
all ω ∈ Λ. Further ℘ is analytic on C \ Λ, and it has a double pole with residue 0 at
every point of Λ. Finally, for every c ∈ C the function ℘(z)− c has exactly two zeros
modulo Λ, counting multiplicities.

Definition 2.5. The function ℘(z) described in proposition 2.22 is called the Weier-
strass ℘-function.

For the next proposition we use the notation Gk(Λ) =
∑

ω∈Λ\{0} ω
−2k for any lattice

Λ ⊂ C. Simple analytic arguments show that this sum converges for all integers k > 1.

Proposition 2.23. The Weierstrass ℘-function associated to some lattice Λ ⊂ C
satisfies the differential equation ℘′(z)2 = 4℘(z)3−60G2(Λ)℘(z)−140G3(Λ). Further,
the cubic 4x3 − 60G2(Λ)x− 140G3(Λ) has nonzero discriminant.

We next recall a couple results about the space of all meromorphic functions
C/Λ→ C.

Proposition 2.24. Take arbitrary n1, . . . , nk ∈ Z and z1, . . . , zk ∈ C. Then there
exists a meromorphic function C/Λ → C with divisor

∑k
i=1 ni(zi) if and only if∑k

i=1 ni = 0 and
∑k

i=1 zi ∈ Λ.

Proposition 2.25. Let Λ ⊂ C be a lattice. Then any meromorphic f : C/Λ→ C can
be written as a rational function of ℘ and ℘′.

From proposition 2.23 we see the connection between doubly periodic functions
and elliptic curves. Because ℘(z) and ℘′(z) satisfy a Weierstrass equation, we might
guess that they could be used to give an isomorphism between C/Λ and an elliptic
curve over C. This is indeed the case.
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Proposition 2.26. Let Λ ⊂ C be a lattice with associated Weierstrass function ℘(z),
and let E/C be the elliptic curve given by y2 = 4x3− 60G2(Λ)x− 140G3(Λ). Then the
map f : C/Λ→ E given by z 7→ [℘(z) : ℘′(z) : 1] is a group isomorphism.

Proof. By proposition 2.23 the map f is well-defined. Now let (x, y) ∈ E be arbitrary.
By proposition 2.22 there exists z ∈ C/Λ with ℘(z) = x. That same proposition says
that ℘ is even, and thus ℘′ is an odd function. So ℘′(−z) = −℘′(z). It is clear that
℘′(z) = ±y, so taking ±z as appropriate we have found an element of C/Λ mapping to
(x, y). One easily checks that the point at infinity also lies in the image, and therefore
f is surjective. Finally, injectivity easily follows from the last statement in proposition
2.22, and f is bijective.

Now we verify that f is a group homomorphism. It is clear that f(0) = O, so
let z1, z2 ∈ C be arbitrary. By proposition 2.24 there exists a meromorphic function
g : C/Λ→ C with div g = (z1 + z2)− (z1)− (z2) + (0), and by proposition 2.25 there
exists a rational function G(X,Y ) ∈ C(X,Y ) with g(z) = G(℘(z), ℘′(z)). Considering
G(x, y) ∈ C(x, y) = C(E), we now have divG = (f(z1+z2))−(f(z1))−(f(z2))+(f(0)).
By lemma 2.16 this implies f(z1 + z2) = f(z1) + f(z2), and the proof is complete.

In fact, the above map f is an isomorphism of complex Lie groups; that is f is also
a complex analytic map. The usefulness of the above result comes from the fact that
every complex elliptic curve has such a representation. This will follow immediately
from the following result.

Proposition 2.27. Let a, b ∈ C be arbitrary such that the cubic 4x3 + ax + b has
nonzero discriminant. Then there exists a (unique) lattice Λ ⊂ C such that a =
−60G2(Λ) and b = −140G3(Λ).

Proof. See [Ser, p. 89].

Corollary 2.28. Let E/C be an elliptic curve. Then there exists a lattice Λ ⊂ C and
a group isomorphism f : C/Λ→ E.

Proof. Immediate from propositions 2.26 and 2.27.

The obvious remaining problem is to determine when two lattices Λ1,Λ2 ⊂ C
correspond to isomorphic elliptic curves. Certainly if Λ2 = cΛ1 for nonzero c ∈ C,
then multiplication by c gives a group isomorphism C/Λ1 → C/Λ2. We will see
shortly that this is the only possibility, and non-homothetic lattices always give non-
isomorphic elliptic curves. This follows from the following characterization of maps
between complex tori of the form C/Λ. The proof is entirely elementary but somewhat
lengthy, and we skip the details here.

Proposition 2.29. Let E1, E2/C be elliptic curves, and let Λ1,Λ2 ⊂ C be lattices such
that C/Λi

∼= Ei for i = 1, 2. Let S = {c ∈ C : cΛ1 ⊆ Λ2}, and for each c ∈ S let
fc : E1 → E2 be the map induced by the multiplication by c map C/Λ1 → C/Λ2. Then
the association c 7→ fc gives a bijection S → Hom(E1, E2).

Proof. See [Si1, p. 160].
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Before completing out study of complex elliptic curves we mention a corollary of
the above result which we be used in the proof of Mazur’s Theorem.

Corollary 2.30. Let E/Q be an elliptic curve, and let f ∈ EndE be an endomorphism
defined over Q. Then f is scalar, that is f = [m] for some m ∈ Z.

Proof. For any elliptic curve E/C, proposition 2.29 shows that EndE = Z unless
E = C/Λ where Λ ⊂ C is a lattice with cΛ = Λ for some non-real c ∈ C. Simple
algebra shows that this can only occur if Λ is generated by {τ1, τ2} with τ1/τ2 quadratic
over Q, and in this case EndE ∼= O for some order O in an imaginary quadratic field.

Let E/Q be an elliptic curve, and suppose that there exists a non-scalar endomor-
phism of E defined over Q. By the previous paragraph we obtain an action of O on
E/Q for some order O in an imaginary quadratic field. This gives an action of O on
H0(E/Q,Ω1) ∼= Q, and this action is faithful because Z ⊂ O acts as [m]∗ω = mω. So
we have a faithful action of O on Q, a contradiction because O ⊗Z Q has dimension
greater than one.

Let H denote the upper-half plane, that is H = {z ∈ C : Im z > 0}. For any
τ ∈ H we obtain a lattice Λ ⊂ C generated by 1 and τ , and by proposition 2.26 this
lattice corresponds to a complex elliptic curve. If we then consider the j-invariant
of this elliptic curve, we obtain a map j : H → C. We let SL2(Z) act on H by(
a b
c d

)
(z) = az+b

cz+d
. One easily checks that this is indeed an action. For any τ ∈ H

and M =
(
a b
c d

)
∈ SL2(C) the lattice generated by M(τ) is homothetic to the lattice

generated by aτ + b and cτ + d. Because ad− bc = 1, this is also the lattice generated
by 1 and τ , and consequently τ and M(τ) correspond to isomorphic elliptic curves. So
j is invariant under SL2(Z). We complete this section with the following result which
summarizes the above work.

Proposition 2.31. The map j : H/SL2(Z)→ C is bijective.

Proof. By the above arguments j is a well-defined map. By proposition 2.5 and
corollary 2.28 the map j is surjective. Further, we see that j is injective unless there
exists τ1, τ2 ∈ H which are inequivalent modulo SL2(Z) but yield isomorphic elliptic
curves. By proposition 2.29, this means that the lattice generated by 1 and τ1 is
homothetic to the lattice generated by 1 and τ2. However, one easily checks that this
implies τ1 ≡ τ2 mod SL2(Z), and the proof is complete.

2.5 Reduction and Elliptic Curves over Number Fields

We complete our introduction to elliptic curves by considering them over number
fields. The study of these objects pervades modern number theory, and many of the
most important and deepest conjectures in modern mathematics concern points of
elliptic curves defined over number fields. Of course we provide only the barest of
introductions to this fascinating field.

One of the primary tools used to study elliptic curves consists of reducing modulo
various primes. One takes a Weierstrass equation for the elliptic curve with integral
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coefficients, and then reducing each coefficient modulo some prime ideal p gives a cubic
equation over the residue field of p. Unfortunately, these equations do not always define
elliptic curves, as reducing sometimes gives cubics with vanishing discriminants. So
we begin with a study of singular Weierstrass equations and the curves they define.

Proposition 2.32. Let K be any algebraically closed field, and let C ⊂ P2(K) be a
singular curve defined by some Weierstrass equation with coefficients in K. Then C
has exactly one singular point, which is either a node or a cusp. Further, there exists
a natural group structure on the Cns, the set of nonsingular points of C. If C has a
node then as groups Cns

∼= K∗, and if C has a cusp then Cns
∼= K+.

Proof. Let C be given by 0 = f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6, for

a1, a2, a3, a4, a6 ∈ K. One easily checks that the point at infinity is never singular,
and, applying a linear shift as necessary, we may assume that the point (0, 0) is a
singular point on C. Then {0, 0, 0} = {f(0, 0), fx(0, 0), fy(0, 0)} = {−a6,−a4, a3}. So
C is given by y2 + a1xy = x3 + a2x

2, and from here it is a simple exercise to show
that C has no other singular points. To determine the type of singularity at (0, 0), we
recall that it is a node or cusp if the quadratic form y2 + a1xy − a2x

2 has distinct or
identical linear factors respectively. Clearly, both are possible. Finally, for the group
structure on Cns we refer the reader to [Si1, p. 61].

Definition 2.6. Let E/K be an elliptic curve with K a number field. Let p be any
prime of K, and let v : K∗ → Z be the normalized valuation corresponding to p. A
Weierstrass equation f(x, y) = 0 for E is said to be minimal with respect to p if all
the coefficients of f have nonnegative valuation and v(∆) ≥ 0 is minimal, where ∆
is the discriminant of f(x, y). Let g(x, y) be given by reducing the coefficients of f
modulo p, so that g has coefficients in the residue field of p. Then E is said to have
good reduction at p if g defines an elliptic curve; otherwise E has bad reduction at p.
If the singular curve defined by g has a node then the reduction is called multiplicative
or semi-stable, and if the curve has a cusp then the reduction is called additive or
unstable.

In the above definition we used the notion of a discriminant for a general Weier-
strass equation, while in section 2.1 we only considered the discriminant of equations
of the form y2 = x3 + ax + b. For the more general definition and the fact that
v(a1), . . . , v(a6) ≥ 0 implies v(∆) ≥ 0 see [Si1, p. 46]. For a proof that the above
concepts are well-defined, that distinct minimal Weierstrass equations always give the
same type of reduction, see [Si1, p. 180]. The choice of the terms additive reduction
and multiplicative reduction follows immediately from proposition 2.32. The terms
stable, semi-stable, and unstable come from considerations in the theory of moduli
spaces. See [F-M] for a detailed explanation. Another explanation comes from the
fact that additive reduction will become either multiplicative reduction or good reduc-
tion over an appropriate extension field, as the following result shows. Although we
are concerned here with number fields, the result is most naturally stated in the con-
text of local fields. It should be clear how to interpret the various types of reduction
in this context.
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Proposition 2.33. Let E/Qp be an elliptic curve for some prime p, and suppose that
E has additive reduction at the maximal ideal of Zp. Then there exists an extension
field K/Qp with ring of integers O so that E/K has either good or multiplicative
reduction at the maximal ideal of O. Furthermore, one can choose K to have absolute
ramification index at most six over Qp.

Proof. See [B-S, §2].

In working with elliptic curves over number fields, it is very useful to have many
ways of determining the reduction type at a particular prime. This need is satisfied
by a powerful result called the Criterion of Néron-Ogg-Shafarevich. To state the full
result would require defining a notion of ramification for Tate modules. Instead we
only give one of its statements and also one of its corollaries, which are all that we will
need for proving Mazur’s Theorem. In the following we use the notation K(E[m]) for
the field generated over K by the points of order m. Equivalently, this is the extension
field of K fixed by the same subgroup of Gal

(
K/K

)
that acts trivially on E[m], which

in particular must be a Galois extension.

Proposition 2.34 (Néron-Ogg-Shafarevich). Let E/K be an elliptic curve with
K a number field, let p be any finite place of K, and let m be any positive integer not
divisible by p. If K has good reduction at p, then K(E[m]) is unramified at p, and, if
K(E[m]) is unramified at p for infinitely many positive integer m, then K has good
reduction at p.

Proof. This result follows from studying elliptic curves over local fields. The proof is
not complicated, but going through the details would require developing a lot of extra
theory. See [Si1, p. 178] for the first implication and [Si1, p. 184] for the second.

Corollary 2.35. Let E1, E2/K be elliptic curves with K a number field, and suppose
that there exists an isogeny f : E1 → E2 defined over K. Then E1 has good reduction
at any given prime of K if and only if E2 does.

Proof. Let p be any prime of K, and let m > 1 be any integer relatively prime to
deg f and not divisible by p. Then f restricted to E1[m] is injective, and we obtain a
bijective map f : E1[m]→ E2[m]. Because f is defined over K we see that this is an
isomorphism of Gal

(
K/K

)
-modules, and consequently K(E1[m]) is unramified over p

if and only if K(E2[m]) is. This equivalence holds for infinitely many positive integer
m, and by proposition 2.34 we see that E1 has good reduction at K if and only if E2

does, as desired.

We now consider the group structure of elliptic curves defined over number fields.
The most important result in this area is the Mordell-Weil Theorem. Its proof is far
too lengthy to be included here, but fortunately it will not be used in the sequel.
However, no introduction to elliptic curves over number fields would be complete
without at least stating this important result.

Proposition 2.36 (Mordell-Weil). Let E/K be an elliptic curve with K a number
field. Then E(K) is a finitely generated group.
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Proof. See [Si1, ch. 8].

Using this result along with our conclusions based on the Weil pairing, we can
further restrict the possible structure of Etors(Q).

Corollary 2.37. Let E/Q be an elliptic curve. Then either Etors(Q) ∼= Z/nZ or
Etors(Q) ∼= (Z/2Z)⊕ (Z/2nZ) for some positive integer n.

Proof. This follows immediately from corollary 2.18 and proposition 2.36.

Given that elliptic curves over number fields are finitely generated, the torsion-
free part is always of the form Zr for some nonnegative integer r; we call r the rank
of the elliptic curve. Unfortunately, the proof of the Mordell-Weil Theorem is not
effective, and in fact there is no known procedure guaranteed to compute the rank
of any elliptic curve, even if we restrict to the case K = Q. However, there are
many important conjectures which connect the rank to various properties of analytic
functions associated to elliptic curves, and if true they would provide an effective
procedure for calculating the rank. The details are beyond the scope of the current
paper, but the interested reader can consult [Si1, p. 360-363].

Beyond looking at points defined over given number fields, another natural question
concerns finding integral points. The following result, which is a corollary to a theorem
of Siegel, solves a generalization of this problem. If K is any number field and S is
any set of places including all the infinite places, we use the notation RS for the set
of elements of K which have nonnegative valuation with respect to all the primes not
in S.

Proposition 2.38 (Siegel). Let E/K be an elliptic curve with K a number field, and
let x ∈ K(E) be a coordinate function on E. Let S be any finite set of places of K,
including all the infinite places. Then there are only finitely many points P ∈ E(K)
with x(P ) ∈ RS.

Proof. See [Si1, p. 248].

Finally, we complete our introduction to elliptic curves with Shafarevich’s Theo-
rem. We will use this result directly in our later work, and it is a fitting conclusion as
it combines most of the elements of this section. Also, for future applications of this
result, we note that every elliptic curve E over a number field K has good reduction at
all but finitely many places. To see this simply write down any Weierstrass equation
for E with coefficients in R, and then E has good reductions at all primes not dividing
the discriminant of this equation.

Proposition 2.39 (Shafarevich). Let K be a number field, and let S be a finite set
of places of K including all the infinite places. Then, up to isomorphism over K, there
are only finitely many elliptic curves defined over K with good reduction at all primes
not in S.
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Proof. The full proof depends on details we omitted above, such as using the dis-
criminant of a minimal Weierstrass equation to determine the reduction type. We
give an quick outline though, and refer the reader to [Si1, p. 264] for a complete proof.
Roughly, suppose we have an elliptic curve E/K with good reduction outside S. Then
E has a Weierstrass equation of the form y2 = x3 + ax + b with a, b ∈ RS. Further-
more, the given conditions greatly restrict the possible values for the discriminant of
this Weierstrass equation, and, considering the formula for the discriminant, one can
write down another elliptic curve and a correspondence between pairs (a, b) and solu-
tions to this curve with coordinate in RS. By proposition 2.38 this latter elliptic curve
can only have finitely many points defined over RS, and the conclusion follows.

3 Group Schemes and the Néron Model

In this section we study group schemes, which play a prominent role in both modern
algebraic geometry and number theory. We begin with definitions and basic results,
and then we consider the group schemes most relevant to our present concerns, namely
the Néron models of elliptic curves. Finally, we mention a couple of results on group
schemes which will be needed for the proof of Mazur’s Theorem. We assume the reader
is already familiar with basic scheme theory, as developed in [Har] for example.

3.1 Definitions and Basic Results

There are many distinct approaches to defining group schemes, although of course
ultimately they are all equivalent. Here we adopt an somewhat explicit approach,
although we still phrase the group laws in terms of maps rather than actions on
individual elements. An alternative approach defines group schemes as representable,
covariant functors form the category of schemes to the category of groups. In the
proof of Mazur’s Theorem we will only encounter commutative group schemes, but we
develop the theory in full generality because it requires no extra effort. The material
in this section is based on the introductions to group schemes presented in [Si2], [Tat],
[Voi], and [Wat].

Definition 3.1. An S-group scheme consists of an S-scheme π : G → S along
with three S-morphisms, the unit map σ : S → G, the inverse map i : G → G,
and the multiplication map m : G ×S G → G, such that the following five diagrams
commute. In the below p denotes projection, and δG : G → G ×S G denotes the
diagonal morphism.

G×S G×S G - G×S G
m× 1

G×S G - G
m

?
1×m

?
m
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G×S G

G×S S - G
p

�
�
��� @

@
@@R

1× σ m

G×S G

S ×S G - G
p

�
�
��� @

@
@@R

σ × 1 m

G×S G - G×S G
1× i

G - S - G
π σ

6
δG

?
m

G×S G - G×S G
i× 1

G - S - G
π σ

6
δG

?
m

The name S-group scheme is particularly suitable, as such an object G gives a
scheme for defining a group on the T -valued points of G for any other S-scheme T .
As usual we have G(T ) = Hom(T,G), the set of all morphisms in the category of
S-schemes, and the multiplication map mT : G(T ) × G(T ) → G(T ) is computed in
the obvious way as mT (f1, f2) = m ◦ (f1 ×S f2) : T → G ×S G → G. One can easily
check that the axioms for an S-group scheme force G(T ) to be a group.

We now give two examples of Z-group schemes, the additive and the multiplicative.
Technically they are (SpecZ)-group schemes, but here and elsewhere we sometimes
omit the Spec for notational ease. It will always be clear from context what is intended.
So consider SpecZ[x], and define multiplication SpecZ[x] ×Z SpecZ[x] → SpecZ[x]
as the dual of the map Z[x] → Z[x] ⊗Z Z[x] ∼= Z[x1, x2] given by x 7→ x1 + x2. This
latter map, which always exists by duality in the case of affine group schemes, is called
comultiplication. Similarly, the counit map Z[x] → Z is induced by x 7→ 0, and for
the coinverse map we take x 7→ −x. To show that these definition make SpecZ[x] a
group scheme, one simply shows that the diagrams dual to those in definition 3.1 are
commutative. The group scheme SpecZ[x] is denoted Ga, and it is so called because
for any ring R we have Ga(R) = Ga(SpecR) ∼= R+, the abelian group underlying R.
One can similarly define a Z-group scheme Gm so that Gm(R) ∼= R× for any ring R.
In this case Gm is dual to the ring Z[x, x−1] with comultiplication x 7→ x1x2, counit
x 7→ 1, and coinverse x 7→ x−1.

Repeating the above paragraph verbatim except replacing each occurrence of Z
with an arbitrary commutative ring with identity R, we obtain R-group scheme
analogs of the additive and multiplicative groups schemes, which we denote (Ga)R
and (Gm)R. However, for any R-algebra A, one easily checks that (Ga)R(A) ∼= Ga(A)
and (Gm)R(A) ∼= Gm(A) as groups. Hence (Ga)R and (Gm)R are in some sense the
same as Ga and Gm. To formalize this we introduce the concept of a base change. If
T and U are S-schemes, we use the notation UT for the base change of U from S to
T , which is given by U ×S T . Clearly UT is a T -scheme. Any other T -scheme V is
also canonically an S-scheme, and we recall that UT (V ) = US(V ).
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Proposition 3.1. Let G be an S-group scheme, and let T be an S-scheme. Then GT

is a T -group scheme, and for any T -scheme U we have GT (U) ∼= G(U) as groups.

Proof. Using cumbersome but entirely elementary methods from category theory one
can construct the multiplication, unit, and inverse maps for GT and verify that they
satisfy the required properties. Alternatively, the proof comes almost immediately
using the functorial definition of a group scheme. See [Tat] for details.

Using proposition 3.1, we can now explain our observations that (Ga)R(A) ∼= Ga(A)
and (Gm)R(A) ∼= Gm(A) for any commutative ring with identity R and R-algebra A.
Every scheme S is uniquely a (SpecZ)-scheme, and the group schemes (Ga)R and
(Gm)R are simply the canonical base changes from SpecZ to SpecR.

So far we have developed the theory of arbitrary group schemes, but all our exam-
ples have been restricted to affine schemes. In the sequel, we will only be interested in
the affine case, and, to simplify matters, for the remainder of this section we assume
that all schemes are affine. Recall though that all finite schemes over affine bases
schemes are automatically themselves affine [Har, p. 91]. Given this simplifying as-
sumption, we can freely work with the comultiplication, counit, and coinverse maps.
We also assume that all rings are commutative with identity and locally noetherian.
The former is pretty much always true of rings one considers in algebraic geometry,
and the latter will be useful for simplifying many of the definitions. In particular, we
note that the below definitions implicitly rely on results using our assumptions and
are no longer valid without them.

Definition 3.2. A finite flat group scheme of order n is a (SpecR)-group scheme
SpecA where A is a locally free R-algebra of rank n.

We note that finite is a technical term which is stronger than simply requiring the
fiber over each point to be finite. A scheme satisfying this latter property is called
quasi-finite.

Our first two examples, namely Ga and Gm, are clearly not finite flat group
schemes. To give an example of a finite flat group scheme we construct the con-
stant R-group scheme ΓR for any finite group Γ. By proposition 3.1 it is enough to
restrict to the case R = Z. First, recall that for any finite set X the constant Z-scheme
XZ is the disjoint union

∐
x∈X(SpecZ)x of copies of SpecZ indexed by X. Further,

we know that for any Z-scheme S we have XZ(S) =
∏

i∈I X, where I is the set of
connected components of S. In light of this, we cannot hope to construct a group
scheme ΓZ with ΓZ(S) ∼= Γ for all schemes S. The best we can hope for is that this
holds whenever S is non-empty and connected, and we indeed achieve this goal. Fix
a finite group Γ, and let R be the ring

∏
γ∈Γ Zγ . For each γ ∈ Γ let eγ denote the

element of R which vanishes on every component except Zγ , where it is given by 1.
Then the eγ form a system of orthogonal idempotents in R. Define comultiplication
by eγ 7→

∑
γ1γ2=γ eγ1eγ2 , define counit by e1 7→ 1 and eγ 7→ 0 for γ 6= 1, and define

coinverse by eγ 7→ eγ−1 . One may easily check that these make ΓZ = SpecR into a
group scheme, and it is clearly finite flat with order the same as that of Γ.

Next we would like to define the notion of a closed subgroup scheme, but we will
need a preliminary definition.
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Definition 3.3. Let G = SpecA be an R-group scheme, and let I ⊂ A be the kernel
of the counit map A→ R. Then I is called the augmentation ideal.

Definition 3.4. Let G = SpecA be a group scheme. A closed subgroup scheme of G is
a group scheme H = SpecA/J , where J is an ideal in A contained in the augmentation
ideal and where the multiplication, identity, and inverse morphisms on H are induced
by those on G.

As an example of these definitions we construct the group scheme µn, which has
the property that for any ring R the group µn(R) consists of the nth roots of unity in
R. As one might expect, we will see that µn is a closed subgroup scheme of Gm. First,
recall that Gm is given by SpecZ[x, x−1]. The counit map is induced by x 7→ 1, and
thus the augmentation ideal consists of all polynomials

∑b
i=−a cix

i with
∑b

i=−a ci = 0.
In particular, fixing any positive integer n, the ideal (xn − 1) ⊂ Z[x, x−1] is contained
in the augmentation ideal. We define µn = SpecZ[x, x−1]/(xn − 1). It is an easy
exercise to check that multiplication, unit, and inverse maps on Gm induce maps on
µn, and one easily verifies that µn(R) has the previously described form. Finally, we
note that µn is a finite flat group scheme of order n.

In a typical development of the theory of group schemes, one would next consider
kernels and cokernels, quotient group schemes, and other notions analogous to those
in group theory. However, in most cases the obvious approaches do not work, just as
the naive definition of the cokernel of a map of sheaves only gives a presheaf. Beyond
what we have developed so far and the results of section 3.3, the only additional notion
we will need in the sequel is that of a map between group schemes. Thus we conclude
our review of the basic properties of group schemes with the following definition.

Definition 3.5. Let G and H be S-group schemes with multiplication maps mG and
mH respectively. A homomorphism of S-group schemes is a map f : G→ H such that
f is a morphism of S-schemes and such that the following diagram commutes.

G×S G - G
mG

H ×S H - H
mH

?
f × f

?
f

3.2 The Néron Model

This section is primarily based on [Si2, ch. 4]. Any elliptic curve is both a group and
a variety, and therefore a scheme. Thus one might expect that all elliptic curves are
group schemes. If E/K is an elliptic curve, then indeed E may be given the structure
of a K-group scheme. However, this does not yield any new information about E,
because SpecK consists of a single point and the group scheme is essentially just E.
If instead we take a Weierstrass equation for E over a commutative ring with identity
R, so that E is defined over the field of fractions of R, then a group scheme structure
on E would provide lots of new information. Primarily, the fibers of this hypothetical
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group scheme lying over the non-generic points of SpecR would give information on
the reduction of E modulo the various prime ideals of R. It is the search for such a
group scheme that occupies us in this section.

Let R be a commutative ring with identity with field of fractions K, and let E/K be
an elliptic curve given by a Weierstrass equations with coefficients in R. This equation
defines a subscheme S ⊂ P2(R), and elementary results on projective schemes shows
that S(R) = E(K). The group law extends to a rational map S ×R S → S, but in
general this map is not a morphism. Indeed, recall from section 2.5 that reducing an
elliptic curve modulo a prime ideal might yield a curve with a singular point. However,
the group law yields a valid morphism on the non-singular part of this curve, and, in
the present context, the group law gives a morphism T ×R T → T , where T denotes
the scheme obtained by removing all the singular points on the non-generic fibers of S.
We do not prove this result here and cite it only for illustrative purposes. So T is our
candidate group scheme, but, while S(R) = E(K), it is possible that T (R) 6= E(K).
In our hope that there exists a group scheme E with E(R) = E(K), we make the
following definition. The term smooth group scheme simply means a group scheme
where the underlying scheme is smooth.

Definition 3.6. Let R be a Dedekind domain with field of fractions K, and let E/K
be an elliptic curve. A Néron model for E/K is a smooth R-group scheme E with
E(R) = E(K) that satisfies the Néron mapping property. That is, for any smooth
R-scheme S with generic fiber C/K and for any K-rational map φK : C → E there
exists a unique R-scheme morphism φR : S → E which reduces to φK on the generic
fibers.

We note that this definition is somewhat redundant, as the Néron mapping prop-
erty implies E(R) = E(K). For illustrative purposes though it is useful to explicitly
state this as part of the definition. Now, if an elliptic curve has a Néron model, then
the fiber of this model over a nonzero prime ideal p gives a nonsingular group variety
defined over the residue field of p. This is certainly a very useful property, and we will
make heavy use of it in the proof of Mazur’s Theorem. The obvious problem now is
to determine which elliptic curves have Néron models, and luckily the answer is all of
them.

Proposition 3.2. Let R be a Dedekind domain with field of fractions K, and let E/K
be an elliptic curve. Then there exists an R-group scheme E which is a Néron model
for E/K. Further, the group scheme E is unique up to isomorphism.

Proof. The proof of this important result is highly technical, and space constraints
prevent us from covering the details in the present work. The reader is referred to
[Si2, p. 325-338] for the complete proof. However, we can summarize the method of
constructing E . There is a general method of “blowing-up” singularities which can be
applied to the singular point on the curve at a prime of bad reduction. This method
may create new singularities, but after a finite number of applications the process will
necessarily terminate to give an R-scheme S that has S(R) = E(K) and many other
nice properties. This object is called a proper regular model for E/K, and there exists
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a minimal such model. The Néron model is then constructed as the largest subscheme
of a minimal proper regular model for E/K which is smooth over R. Finally, the last
statement to be proven follows easily from the Néron mapping property.

Besides their existence, the other central result concerning Néron models describes
the structure of their special fibers. Let R be a Dedekind domain with field of fractions
K, and let E be a Néron model over R for the elliptic curve E/K. As mentioned
before, the fiber of E over any nonzero prime ideal p ⊂ R gives a nonsingular group
variety defined over the residue field kp. Rather than record the full Kodaira-Néron
classification, we quote a simpler version that will be sufficient for use in proving
Mazur’s Theorem. We note that by definition the special fiber over p is simply E(kp),
and we use the notation E(kp)

0 for the connected component of the identity.

Proposition 3.3 (Kodaira-Néron). Let R be a Dedekind domain with field of frac-
tions K, let E be a Néron model over R for an elliptic curve E/K, and let p ⊂ R
be any nonzero prime ideal with residue field kp. If E has stable reduction at p,
then E(kp) = E(kp)

0 is an elliptic curve. If E has semi-stable reduction at p, then
there exists an extension k of kp of degree at most two so that E(k)0 ∼= k∗ and
E(k)/E(k)0 ∼= Z/nZ for some positive integer n. If E has unstable reduction at p,
then E(kp)

0 ∼= k+
p , and E(kp)/E(kp)

0 is a finite group of order at most four.

Proof. We note that all values for n do occur in the case of semi-stable reduction, and
all five groups of order at most four occur in the case of unstable reduction. Also,
the reason we may need a quadratic extension in the case of multiplicative reduction
is that the relevant theory only applies if the tangent lines to the node have slope
defined over k. As usual, the proof is far too lengthy to be included here, but we do
mention that it is a primarily straightforward application of intersection theory. For
the complete proof see [Si2, p. 361-379].

3.3 Further Results on Group Schemes

In this section we collect a couple of results on group schemes which will be needed
in the proof of Mazur’s Theorem. In both cases the proofs are far too complicated
to be included here, and instead we must be satisfied with references to other papers.
We note that an abelian (or commutative) group scheme is defined in the obvious way
using a commutative diagram.

Proposition 3.4 (Raynaud). Let p be an odd prime, and let O be the ring of integers
in a field K/Qp of absolute ramification less than p − 1. Let G be a commutative,
finite flat O-group scheme of order a power p. The G is uniquely determined up to
isomorphism by the isomorphism type of its generic fiber.

Proof. See [Tat, p. 152].

Proposition 3.5. Let T be an open subscheme of SpecZ over which 2 is invertible,
let A be an abelian T -group scheme, and let p be any prime giving a closed point of T .
Then the specialization map A(T )tors → A(Fp) is injective.
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Proof. This follows from a result in [O-T]. See [Ma1, p. 160] for the details of the
implication.

4 Additional Topics

In this section we review a couple of topics not yet covered which are relevant to
the proof of Mazur’s Theorem. First we discuss Herbrand’s Theorem, which concerns
unramified extensions of cyclotomic fields, and then we give a brief introduction to
the theory of modular curves. We conclude with a quick look at the computational
methods used to settle the small cases of Mazur’s Theorem, and in particular we
reduce to the problem of showing that rational torsion points on elliptic curves cannot
have large prime order.

4.1 Extensions of Cyclotomic Fields

Cyclotomic fields are central to number theory, and as such they have been studied
extensively for centuries. We record here only those results which will be need for
proving Mazur’s Theorem.

Let Q(µp) be the pth cyclotomic field, for p an odd prime, and let K be its Hilbert
class field. Let Y ′ be the maximal quotient of Gal(K/Q(µp)) where every element has
order a power of p, and let Y be the subgroup of Y ′ generated by elements of order
p. In particular, we see that Y is the trivial group whenever p is a regular prime.
Now, the group Gal(Q(µp)/Q) acts on Gal(K/Q(µp)) by conjugation in Gal(K/Q),
and via projection Gal(Q(µp)/Q) acts on Y as well. Let ζ be any primitive pth root of
unity, and let σ ∈ Gal(Q(µp)/Q) be arbitrary. Then σ(ζ) = ζd for some d ∈ (Z/pZ)∗,
and d does not depend on the choice of ζ. So there exists a canonical isomorphism
Gal(Q(µp)/Q) → (Z/pZ)∗, and we obtain an action of (Z/pZ)∗ on Y . Now, for any
integer j, we define Y (j) to be the subgroup of Y on which a ∈ (Z/pZ)∗ acts as
multiplication by aj. We can now state Herbrand’s Theorem.

Proposition 4.1 (Herbrand). Using the notation from above, let 1 < j < p− 1 be
an odd integer. If Y (j) is non-trivial, then the Bernoulli number Bp−j has numerator
divisible by p.

Proof. As usual, the proof is beyond the scope of this paper. See [Ma1, p. 52-54] for
details.

4.2 Modular Curves

Recall from proposition 2.31 that we have a bijection j : H/SL2(Z) → C, where H
is the upper-half plane and SL2(Z) acts as described in section 2.4. The Riemann
surface H/SL2(Z) is the simplest example of a modular curve, an object ubiquitous
in modern mathematics. We will discuss here only those modular curves used in the
proof of Mazur’s Theorem, and even in this specific case we must omit proofs. For a
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good introduction to the more general theory see [Roh], and for the scheme theoretic
perspective see [Del]. Another valuable reference is [Shi].

Fix any positive integer N , and define Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
.

Now let τ ∈ H and M =
(
a b
c d

)
∈ Γ0(N) be arbitrary. Because M ∈ SL2(Z) we know

that M(τ) ∈ H corresponds to the same complex elliptic curve as τ . However, the
restrictions on Γ0(N) imply that more structure is preserved by this action. So, let
Λ be the lattice generated by 1 and τ , and let Λ′ be the lattice generated by 1 and
τ ′ = M(τ) = (aτ + b)/(cτ + d). Then we have an isomorphism f : C/Λ→ C/Λ′ given
by z 7→ z/(cτ + d). We compute that 1/N − f(d/N) = (c/N)τ/(cτ + d) ∈ Λ′ because
N divides c. Thus f(d/N) = 1/N in C/Λ′, and f preserves the subgroup of order N
generated by 1/N . Thus the points of H/Γ0(N) correspond to pairs (E,Z/NZ) where
E/C is an elliptic curve with a fixed subgroup Z/NZ ⊂ E(C).

The above characterization of the points of H/Γ0(N) shows their immediate useful-
ness to analyzing elliptic curves. In the case N = 1, where Γ0(N) = SL2(Z), we have
the bijection j : H/Γ0(1)→ C. We would like a similar structure theorem on the space
H/Γ0(N) for general N , and this is provided by the result we shall state shortly. First
though, we need to briefly describe the space H∗. This is defined as H ∪ P1(Q), and
the action of

(
a b
c d

)
∈ SL2(Z) on [x : y] ∈ P1(Q) is given by [x : y] 7→ [ax+ by : cx+dy].

One easily checks that P1(Q)/SL2(Z) consists of a single point, and one can show that
j extends to a bijection H∗/SL2(Z)→ P1(C), where the point P1(Q)/SL2(Z) maps to
the point at infinity.

Proposition 4.2. Let N be a positive integer. There exists a smooth projective curve
X0(N)/Q and a bijection jN,0 : H∗/Γ0(N) → X0(N)(C) with the following property.
Let τ ∈ H/Γ0(N), and let K = Q(jN,0(τ)). Then τ correspond to a pair (E,C) where
E/K is an elliptic curve and C ⊂ E is a cyclic subgroup of order N also defined over
K.

Proof. See [Shi, §6.7].

The curves X0(N) are modular curves. Not only does the above result give
H∗/Γ0(N) the structure of a smooth projective rational curve, but it also shows
how to determine the field of definition of a pair (E,C) corresponding to any point
τ ∈ H∗/Γ0(N). Based on this observation one can study the scheme theoretic proper-
ties of X0(N) viewed as a moduli space.

We can only give a brief introduction. If S is a scheme, then the S-valued points of
X0(N) correspond to pairs (E,C) with C a cyclic subgroup or order N in an elliptic
curve E, where both E and C are defined over S. For S corresponding to a finite
extension of Q this is explained by proposition 4.2. The other important idea we will
need to prove Mazur’s Theorem is a modular interpretation for the points of X0(N)
corresponding to P1(Q) ⊂ H∗. Whenever N is an odd prime one can easily check
that P1(Q)/Γ0(N) consists of two points, which are sometimes called 0 and∞. These
points, the cusps of X0(N), in some sense correspond to curves defined by singular
Weierstrass equations. To fix ideas, let E/Q be an elliptic curve with multiplicative
reduction at some prime p, let E be a Néron model for E over Z, and let C ⊆ Etors(Q)
be a cyclic subgroup of order N . Then E(Fp) is not an elliptic curve, and instead
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it corresponds to one of the cusps. If C ⊂ E(Fp)0 then it corresponds to 0, while if
C 6⊂ E(Fp)0 then it corresponds to ∞.

We conclude this section with a result of Mazur which will be play an essential
role in the proof of his Theorem. Conveniently (and not coincidentally), both proofs
are given in the same paper [Ma1]. Of all the results in the present paper for which
we omit the proofs, the following is by far the most substantive. Indeed, it is in some
sense the heart of Mazur’s proof of his Theorem.

Proposition 4.3 (Mazur). Let N be an odd prime. There exists an abelian variety
J and a surjective morphism X0(N)→ J such that J(Q) is a torsion group. Further,
if the point 0−∞ ∈ X0(N) maps to the identity in J , then N ≤ 13.

Proof. See [Ma1, p. 148-150]. We will also give a brief, non-rigorous explanation of
the second part here. The morphism X0(N) → J factors through the Jacobian, and
it turns out that if 0 −∞ goes to zero in J then is must go to zero in the Jacobian.
From this one concludes (0)− (∞) must be a principal divisor, and therefore L ((∞))
has dimension at least two. This contradicts the Riemann-Roch Theorem whenever
the genus is greater than zero. However, it is well-known that for N prime the curve
X0(N) only has genus zero for N ≤ 7 or N = 13, from which the desired result
follows.

4.3 Computations for Small Cases

In this section we briefly describe the computational methods used to classify the
possible p-parts of the rational torsion of an elliptic curve for small primes p. We
begin by mentioning a result that is quite useful for computing the torsion subgroup
of any explicit rational elliptic curve.

Proposition 4.4 (Nagell-Lutz). Let E/Q be an elliptic curve given by a Weierstrass
equation y2 = x3 + ax + b with a, b ∈ Z, and let (x, y) ∈ E(Q) be a nonzero torsion
point. Then x, y ∈ Z, and either y = 0 or y2 divides 4a3 + 27b2.

Proof. In a treatment on elliptic curves over local fields, one proves that torsion points
on elliptic curves satisfy a similar integrality condition, although it is not quite as
strict. In particular, points of order a power of p in an elliptic curve over Qp do not
necessarily have coordinates in Zp, but one can give reasonable lower bounds on the
valuations of these coordinates. The given result is proven by putting together all
these local integrality conditions. See [Si1, p. 221] for details.

In particular, the above gives a computational procedure to effectively determine
the torsion subgroup of any given rational elliptic curve. However, to prove results
about all rational elliptic curves, more advanced techniques are required. Essentially,
one can perform computations using the modular curves described in section 4.2,
although the proofs are usually not straightforward. Many of the curves arising in
this context have relatively high genus, and one often searches for quotients or other
related curves of lower genus to work with. Even so the proofs can be incredibly
complicated. For example, showing that no elliptic curve has a rational point of order
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25 requires a 71-decent on a curve of genus 4. Beyond these vague generalities though,
we must be content to simply quote the conclusions of the involved computations
performed by Kubert and many others.

Proposition 4.5 (Kubert). Suppose that Mazur’s Theorem is false. Then there
exists an elliptic curve E/Q so that Etors(Q) contains a point of prime order p ≥ 23.

Proof. See [Kub].

5 Proof of Mazur’s Theorem

In this section we prove the following result of Mazur, which coupled with proposition
4.5 gives a complete proof of Mazur’s Theorem.

Theorem 5.1 (Mazur). Let E/Q be an elliptic curve, and suppose that P ∈ Etors(Q)
is a point of prime order p. Then p ≤ 13.

Proof. This follows immediately from lemmas 5.2 and 5.7.

The proof presented here is very similar to that given in [Ma1, p. 156-160], except
that we explain some of the parts in more detail. First we reduce the problem to
showing that a certain field extension is unramified. We then study the properties of
a constant group scheme sitting inside a Néron model, and we complete the proof by
using the conclusions of this study to show that the desired field extension is indeed
unramified. The heart of the proof lies in lemma 5.5, which in turn relies primarily
on proposition 4.3.

5.1 Reducing to a Question of Ramification

Lemma 5.2. Let E/Q be an elliptic curve with a point P ∈ Etors(Q) of order p, an
odd prime. Then E is rationally isogenous to an elliptic curve E ′/Q with a point of
order p so that Q(E ′[p]) is a ramified extension of Q(µp).

Proof. Recall, from proposition 2.17, that there exists an isomorphism of Galois
modules ep :

∧2 E[m] → µp. We define a map E[m] → µp by Q 7→ ep(P,Q),
and, because P ∈ E(Q), this gives a short exact sequence of Gal

(
Q/Q

)
-modules

0 → Z/pZ → E[p] → µp → 0. Let K = Q(E[p]), which we know must contain
Q(µp). Now, the action of Gal(K/Q) on E[p] is faithful, and from our exact se-
quence we have an embedding Gal(K/Q) → GL2(Z/pZ) of the form

(
1 ∗
0 χ

)
, where

χ : Gal(K/Q)→ Gal(Q(µp)/Q) is the cyclotomic character. It is clear that there are
only two possibilities, namely that the image of Gal(K/Q) consists of all matrices of
the given form or only those of the form

(
1 0
0 χ

)
. Further, our short exact sequence of

Galois modules is split if and only if we are in the latter situation.
Now suppose, for contradiction, that any rational elliptic curve isogenous to E

and with a point of order p always contains a Galois submodule isomorphic to µp;
this is, suppose that the associated short exact sequence of Galois modules always
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splits. Take E = E1, and by proposition 2.12 there exists an elliptic curve E2/Q and
a rational isogeny E1 → E2 with kernel µp. Then the image of the Galois submodule
Z/pZ gives a point of order p in E2, and by assumption E2 must also have a cyclic
subgroup isomorphic to µp. Continuing in this fashion we obtain a sequence of rational
isogenies E1 → E2 → · · · , where each isogeny has kernel µp. By corollary 2.35, we
see that all the Ei have good reduction at the same set of primes in Q, and by
proposition 2.39 we see that Ei

∼= Ej for some i < j. So composing our isogenies gives
a rational endomorphism f : Ei → Ei, and, if P ∈ Ei(Q) is a point of order p, then by
construction P /∈ Ker f . However deg f is a power of p, and therefore f is a non-scalar
endomorphism defined over Q, a contradiction by proposition 2.30.

By the previous paragraph there exists an elliptic curve E ′/Q isogenous to E and
containing a point of order p so that the associated short exact sequence of Galois
modules does not split. Letting K denote Q(E ′[p]), the above shows that there exists
an isomorphism Gal(K/Q) → G, where G is the subgroup of GL2(Z/pZ) consisting
of all matrices of the form

(
1 k
0 a

)
with a 6= 0. Further, we see that Gal(K/Q(µp)) cor-

responds to those matrices with bottom-right entry equal to 1. Now, take arbitrary
a ∈ (Z/pZ)∗ ∼= Gal(Q(µp)/Q), so that

(
1 0
0 a

)
is a representative of the coset correspond-

ing to our element in Gal(Q(µp)/Q). Then conjugating
(

1 k
0 1

)
by
(

1 0
0 a

)
gives

(
1 k/a
0 1

)
.

Suppose, for contradiction, that K is unramified over Q(µp). Then K is contained
in the Hilbert class field of Q(µp). Because a ∈ (Z/pZ)∗ acts on Gal(K/Q(µp)) as
multiplication by a−1, in the notation of section 4.1 we see that Y (−1) is nontrivial.
Applying proposition 4.1 with j = p − 2, we see that the Bernoulli number B2 must
have numerator divisible by p. However B2 = 1/6, giving the desired contradiction.
Therefore K is in fact a ramified extension of Q(µp), and the proof is complete.

5.2 Analyzing Z/pZ ⊂ E
Throughout this section we fix an elliptic curve E/Q with P ∈ Etors(Q) a point of
prime order p > 13. Let E be a Néron model for E over Z, and let Z/pZ ⊂ E be
the constant, finite flat subgroup scheme generated by P . In light of proposition 3.4,
we see that P indeed generates Z/pZ as a group scheme because we are working in a
context of ramification e = 1 < p − 1. Also, here and in the next section we use the
notation ·0 to denote the connected component of the identity.

Lemma 5.3. The elliptic curve E has either good or multiplicative reduction at all
primes q.

Proof. Suppose, for contradiction, that E has additive reduction at q. By proposi-
tion 3.3, we see that E(Fq)0 has index at most four in E(Fq). Therefore we obtain
Z/pZ(Fq) ⊆ E(Fq)0 ∼= F+

q . This is a contradiction unless q = p, so suppose that this is
the case. By proposition 2.33 there exists an extension field K/Qp of absolute rami-
fication index at most six so that E/K has either good or multiplicative reduction at
the maximal ideal of O, the ring of integers of K. Let E ′ be a Néron model for E over
O, and let EO denote E×SpecZSpecO, the base change of E from Z to O. By the Néron
mapping property there exists a morphism f : EO → E ′ which is an isomorphism on
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the generic fibers. However, as is easily shown, there are no nontrivial maps from an
additive group to a multiplicative group or an elliptic curve over given field, and con-
sequently f must be trivial on the special fibers. Let G ⊂ E ′ be the closed subgroup
scheme generated by f(Z/pZ(K)), that is generated by the copy of Z/pZ sitting in
the generic fiber of E ′. Then f restricts to a morphism g : (Z/pZ)O → G which is
an isomorphism on generic fibers, and because f is trivial on the special fibers we see
that g is not an isomorphism. Now G is quasi-finite by construction, and because it is
closed it is finite. Because it sits inside a Néron model it must also be flat, and finally
then g is a morphism of commutative, finite flat group schemes of order p which is an
isomorphism on generic fibers. However K has absolute ramification index at most
6 < p − 1 over Qp, and by proposition 3.4 we see that g must be an isomorphism, a
contradiction.

Lemma 5.4. The elliptic curve E has bad reduction at 2 and 3.

Proof. If E has good reduction at some prime q, then E(Fq) is an elliptic curve, which
by proposition 2.21 has at most q+ 2

√
q+ 1 points. We must have Z/pZ(Fq) ⊆ E(Fq),

and consequently p ≤ q + 2
√
q + 1. This is a contradiction for q < 7, completing the

proof.

Lemma 5.5. If E has bad reduction at a prime q, then Z/pZ(Fq) 6⊂ E(Fq)0.

Proof. By lemma 5.3, we see that E has multiplicative reduction at q. The field
Fq2 contains every quadratic extension of Fq, and by proposition 3.3 we see that
E(Fq2)0 ∼= F∗q2 , a cyclic group of order q2 − 1. So Z/pZ(Fq) ⊆ E(Fq)0 can only occur if

p divides q2 − 1. In particular, this inclusion does not hold if q ∈ {2, 3, p}.
Now suppose, for contradiction, that Z/pZ(Fq) ⊆ E(Fq)0. By the previous para-

graph we may assume that q /∈ {2, 3, p}. Let S be the scheme SpecZ[1/2p], and
let x be the S-valued point of X0(p) determined by the pair (ES, (Z/pZ)S), that is
x = jN,0(ES, (Z/pZ)S) via proposition 4.2. Recall that E has multiplicative reduction
at 3 and Z/pZ(F3) 6⊂ E(F3)0. From our discussion in section 4.2 of the modular inter-
pretations for the cusps of X0(p), we see that the value of x lying over 3 is ∞, while
the value of x lying over q is 0. Now let f : X0(N)(S) → J(S) be the map induced
by that in proposition 4.3, where J(S) = J(Q) is a torsion group. By proposition
3.5 the map J(S) → J(F`) is injective for ` = 3, q, and we may now conclude that
f(x(F3)) = f(x(Fq)). This equation is not quite precise, since the two sides lie in dif-
ferent rings, but because the various reduction maps are injective we can make sense
of it by identifying rational points with their images. So we have shown f(0) = f(∞),
and f(0−∞) is the identity in J . By proposition 4.3 we see that p ≤ 13, giving the
desired contradiction.

5.3 Completing the Proof

Lemma 5.6. Let X/Q be a scheme, and let X ′ be the scheme X/Qp for some prime
p. Then X

(
Q
)

is unramified at p if and only if X ′
(
Qp

)
is.
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Proof. Fix any embedding Q ↪→ Qq, and from this we obtain an injective homomor-

phism Gal
(
Qq/Qq

)
→ Gal

(
Q/Q

)
and an injective morphism X → X ′. Using the

former map we get an action of Gal
(
Qq/Qq

)
on X; this group clearly acts on X ′

as well, and by construction these actions commute with latter map. To put it more
concisely, localization commutes with Galois action, and our desired result now follows
immediately.

Lemma 5.7. Let E/Q be an elliptic curve with P ∈ Etors(Q) a point of prime order
p > 13. Then Q(E[p]) is an unramified extension of Q(µp).

Proof. Define K = Q(E[p]). By proposition 2.34, we see that K is unramified at all
primes of Q(µp) lying over rational primes of good reduction for E, except possibly
those primes lying over p. Now let q be a prime of bad reduction, and let E be the Néron
model of E over Zq. We claim that E0[p] is nontrivial. By lemma 5.3 we know that E
has multiplicative reduction at q, and thus E 0 is given by Gm over Fq, which has points
of all orders relatively prime to q. The case p = q is a little trickier, but reasoning with
Tate curves shows that µp ⊆ E0, which proves our claim in this case as well; see [Si2,
ch. 5] for an introduction to Tate curves. Now consider the short exact sequence of
groups 0→ E0

(
Qq

)
→ E

(
Qq

)
→ E

(
Qq

)
/E0

(
Qq

)
→ 0. By lemma 5.5 and our claim,

the restriction of this exact sequence to E[p] must split. By the reasoning in the proof
of lemma 5.2, we see that Qq(E[p]) is unramified over Qq(µp) at all primes lying over
q, and by lemma 5.6 we conclude that Q(E[p]) is unramified over Q(µp) at all primes
lying over q. Finally, we will show that this extension is unramified over the primes
lying over p whenever E has good reduction at p. Suppose this is the case, and consider
the short exact sequence of Zp-group schemes 0→ Z/pZ→ E[p]→ µp → 0. Over Fp
the group Z/pZ is completely disconnected, while µp collapses to a point. Applying
the “connected component of the identity” functor shows that E[p]0 = µp, and this
exact sequence must also split. As before we conclude that Q(E[p]) is unramified over
Q(µp) at all primes lying over p, and the proof is complete.

6 Conclusion

In this course of this paper we have accomplished many things. We have learned a
good deal about elliptic curves, and we have discussed many areas that can be used
to solve difficult problems in number theory. In proving Mazur’s Theorem, we have
seen an example of how all these previous results may be applied, and we have also
demonstrated a fairly interesting result. There are two obvious avenues for further
work.

First, one could more fully understand many of the topic only briefly considered
here. Most notably, the theory of modular curves is a fascinating subject to which
we only gave the barest of introductions. A further study of these curves and related
objects, such as modular functions and automorphic forms, would be quite rewarding.
One might explore further topics in elliptic curves or perhaps study abelian varieties,
a generalization of elliptic curves to higher dimensional varieties. Finally, one might
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study any of the numerous other topic touched on in this paper, such as Herbrand’s
Theorem or Néron models.

The second direction for future work is a study of the generalizations of Mazur’s
Theorem. The most obvious consideration is to classify the possible group structures
for Etors(K), with K a specific or perhaps general class of number fields. For the
primary paper discussing this problem see [Mer]. Finally, one might study the more
advanced techniques used for the shorter proof of Mazur’s Theorem in [Ma2].
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