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Chapter 1

Introduction

In 1637, Fermat posed the question of whether there were nonzero integer solutions to the
equation

xn + yn = zn

for n ≥ 3, and claimed to have a marvelous proof that none existed. Number theory, which
studies properties of the integers, has many simple questions whose answers require deep and
difficult mathematics. Fermat’s question was referred to as Fermat’s Last Theorem (FLT)
on the assumption that he did indeed know a proof, but many great mathematicians over the
years tried and failed to solve the problem. While FLT in itself does not seem to reveal any
deep properties of the integers, the approaches of various mathematicians to the problem
have inspired many major developments in number theory.

Fermat did write down the solution to one case of the problem using a technique called
“infinite descent.” The idea was to show that if (x, y, z) is a solution in positive integers
to x4 + y4 = z4, one could construct a solution with a smaller value of z. By repeating
this procedure, one would obtain an infinite sequence of shrinking positive integers, which is
impossible. Fermat’s technique is used throughout mathematics as a fundamental method
of argumentation.

Kummer invented the subject of algebraic number theory in order to prove additional
cases of FLT. In particular, he devised “prime ideals” to study factorization in the ring Z[ζn],
where ζn is a primitive nth root of unity. This ring arises if one considers the factorization

yn = xn − zn =
n−1∏
k=0

(x− ζknz).

Kummer’s criterion for whether his solution to FLT worked for a prime exponent p was
related to divisibility properties of a series of numbers, called Bernoulli numbers. Kum-
mer’s criterion was refined by Herbrand and Ribet [Rib76]. Ribet’s result had significant
implications for the modern area of Iwasawa theory.

Faltings proved a very general theorem called Mordell’s conjecture, which implied that
FLT has finitely many solutions in coprime integers for any particular n. This shows, more-
over, that FLT can only have solutions for a set of exponents n of “density 0,” which
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informally means that these exponents are very sparsely distributed. His proof, in contrast
to previous approaches, used the geometry of the curves xn + yn = zn. In particular, the
solutions to the “inhomogeneous” equation Xn + Y n = 1, where X = x

z
and Y = y

z
, looks

like a sphere with a number g of “handles” attached when viewed as a subset of the affine
complex space C2. If the number g, called the genus, is at least 2, then Falting’s proof shows
that only finitely many integer points can lie on the curve.

However, the solution to Fermat’s Last Theorem had to wait for the work of Wiles
[Wil95] and Taylor-Wiles [TW95], whose work blended far more areas of number theory than
any previous approach. As we will see, the work also introduces a brilliant mathematical
argument that has already been used in the last decade to resolve many long-standing open
problems and promises many more breakthroughs down the road.

1.1 Motivation

Wiles and Taylor-Wiles settled Fermat’s Last Theorem in 1994. The path to the proof
routed through several areas of number theory. Frey [Fre86, Fre89] showed that a nontrivial
solution in integers to this equation would give rise to an elliptic curve that had peculiar
properties. Serre [Ser87] then showed that if a special case of one of his conjectures, which
he called the ε-conjecture, were proven, then a conjecture of Shimura and Taniyama would
imply Fermat’s Last Theorem. Ribet [Rib90] proved the ε-conjecture and showed, moreover,
that only a special case of the Shimura-Taniyama conjecture – the semistable case – would
be sufficient.

The Shimura-Taniyama conjecture relates elliptic curves over the rational numbers Q,
which are solution sets to equations of the form

y2 = x3 + Ax+B

for rational numbers A and B, to modular forms, which are, loosely speaking, certain func-
tions on the upper halfplane H of the complex numbers satisfying transformation properties
with respect to the action of SL2(Z), the group of 2 × 2 matrices with determinant 1, on
H. While it was long understood that modular forms could be seen as functions acting on
a moduli space – a space that forms a geometric parametrization for an object – of elliptic
curves, the Shimura-Taniyama conjecture predicts a surprising twist on the relationship be-
tween these two types of objects. In order to understand the relationship, we need to look
at a third type of object – a Galois representation.

The field Q, consisting of rational numbers, sits inside a number of larger fields, called
extensions. We define the algebraic closure of Q, Q, to be a field containing Q such that
every element of Q is the root of a polynomial with coefficients in Q, and conversely, every
polynomial of degree n with coefficients in Q factors into n linear factors over Q. One
can define a group GQ, called the absolute Galois group whose members are automorphisms
Q→ Q that fix the subfield Q. There is a natural topology on GQ, called the Krull topology,
which expresses the “closeness” of these automorphisms. Since GQ encloses a wealth of
information about Q and its extensions, it is natural to try to understand its structure. In
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this vein, one can study decomposition groups GQ`
⊂ GQ corresponding to the completion of

the ring Z at the prime `. This is a “local” piece of the group, and one can quite explicitly
determine the structure of GQ`

. However, fully understanding the structure of GQ directly
appears to be intractable. Moreover, since GQ is only determined up to conjugation by one
of its elements, one would hope to study properties that are independent of this ambiguity.

In particular, one might hope to gain an understanding of the representation theory of
GQ, which is the study of the ways in which GQ can act on various objects, such as the
vector spaces Cn or Fn

pk
, where Fpk denotes the finite field of pk elements. Where GQ is

acting on a free module Rn, we may express this as a continuous group homomorphism

GQ → GLn(R).

Representations of GQ on Cn and Fn
pk

have finite image in GLn(C) and GLn(Fpk) (in the

former case, this is for topological reasons). However, if one uses the ring of p-adic integers
Zp for R, one finds a wealth of interesting representations with infinite image.

Over C, an elliptic curve E is topologically shaped like a torus, the product S1 × S1

of two circles. This can also be seen as a sphere with one handle attached, so an elliptic
curve has genus 1. Since the circle S1 has a natural addition via the embedding of S1 as the
complex numbers of unit modulus, one might expect that one can add points on E. In fact,
an elliptic curve indeed has an addition law once a point has been selected as the identity.
Looking at the torus, we see that there are n2 points of order n on the elliptic curve E. One
can show that these points have coefficients in Q, and are permuted by the Galois group in
a manner respecting their addition law. This gives rise to a representation

GQ → GL2(Z/nZ).

For any prime p, one can consider the points of order dividing p, p2, and so on to construct
a continuous representation

GQ → GL2(Zp).

One obtains a family of Galois representations in this manner.
A far deeper theory of Deligne [Del71] and Deligne-Serre [DS74] constructs p-adic Galois

representations associated to certain modular forms f . The Shimura-Taniyama conjecture
predicts that the Galois representations associated to any elliptic curve are equivalent to
Galois representations arising from modular forms. An elliptic curve with this property is
called modular The work of Frey, Serre, and Ribet showed that a solution to the Fermat
equation would produce an elliptic curve that cannot be modular.

1.2 The Work of Wiles and Taylor-Wiles

Wiles’ approach to the conjecture was to show that if a p-adic representation ρ satisfied
certain conditions that all candidate modular representations satisfied, then ρ would be
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equal to one of these representations. To any p-adic representation ρ, one can compose with
the reduction map Zp → Fp to obtain a residual representation

ρ : GQ → GL2(Zp)→ GL2(Fp).

Wiles instead started with a residual representation ρ already known to arise from a modular
form, and showed that all suitable choices of ρ that yield ρ upon reduction modulo p were
modular.

The idea behind this approach originates with a theory of Mazur [Maz89], introduced to
study this very problem. In particular, Mazur viewed the sequence

Z/pZ,Z/p2Z,Z/p3Z, . . .

in the same manner as one might think of higher-order terms in a Taylor expansion. In par-
ticular, he saw elements of Z/pkZ reducing to an element of Z/pZ as deformations of that
element. While there was already existed an algebraic basis for this phenomenon, present
in many other fields, Mazur turned this idea towards Galois representations in order to for-
malize the idea of looking at the geometric deformation space of a residual representation ρ.
He was interested in knowing the precise subspace of this deformation space corresponding
to modular representions, and conjectured that certain minimal conditions were sufficient
to carve out the subspace of modular deformations. Mazur’s main innovation was to real-
ize the deformation space as the spectrum of a ring R, which is a topological space that
corresponds to the geometry of the ring. He transformed the question of whether represen-
tations are modular into a comparison of R with a ring T whose spectrum describes the
space of modular representations. In particular, an isomorphism of R and T, or even a
“near-isomorphism,” in a sense that will be made precise later, would prove that the p-adic
representations parametrized by R are modular.

The work of Wiles and Taylor-Wiles can be divided into three realms.

1. Deformation theory: Studying the size and structure of the deformation spaces of
the rings R.

2. Hecke algebras: Studying the behavior of the rings T.

3. Commutative algebra: Given certain data about the relationship between R and
T, prove that these rings are (near-)isomorphic.

In addition to the global strategy, Wiles and Taylor-Wiles invented techniques in each of
these areas that have been studied and refined thoroughly in the interim years.

1.3 The Aftermath

We can view the work of Wiles and Taylor-Wiles not as an end to an ancient problem
but as a beginning of an entirely new approach to number theory, one that has proven
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successful not only in resolving the full Shimura-Taniyama conjecture, which was achieved
by Breuil, Conrad, Diamond, and Taylor [BCDT01], but in groundbreaking work thereafter
on the Fontaine-Mazur conjecture by Kisin [Kis], on the Serre conjectures by Khare and
Wintenberger [KWa, KWb], and on the Sato-Tate conjecture by Clozel, Harris, Shepard-
Barron, and Taylor [CHT08, Tay08, HSBT]. Our primary interest, however, will not be
in studying the successful generalizations or applications of the work of Wiles and Taylor-
Wiles. Rather, we will examine and demonstrate by example several improvements to Wiles’
methods that have been transformative in enabling these applications.

In this vein, we mention some new improvements of Kisin [Kis], Diamond [Dia97], and
Faltings [TW95, Appendix] to the Wiles and Taylor-Wiles methodology. Kisin developed
a notion of framed deformation of Galois representations. While the spectra of Mazur’s
deformation rings R correspond to distinct equivalence classes of representations, Kisin’s
rings correspond to representations. While the rings in Mazur’s construction occasionally
fails to exist, Kisin’s rings exist in great generality. By locally framing at a prime p, one can
apply deformation conditions at p that may not otherwise have been possible. See Section
2.1.3 for an account of the history and development of Galois deformation theory.

The other major improvement we use is due to Faltings, Diamond, and Kisin. They
reorganized the “patching criterion” of Taylor-Wiles, which is used in the final stages of the
proof that R and T are (near-)isomorphic. The patching criterion we present in Section 6 is
a slight variant on Diamond’s criterion, though it uses ideas of Kisin in order to accomodate
framed deformation rings. The original goal of Diamond’s reorganization of the patching
criterion was to obtain Mazur’s multiplicity one result [Maz78] as a corollary of the Taylor-
Wiles argument rather than to assume it. The step which allows Diamond to conclude
Mazur’s theorem will, in our situation, tell us the precise Krull dimension of all of the
deformation rings involved in our construction.

1.4 Our Goal

Our goal is primarily an expository one, but we do so via an original demonstration of existing
techniques rather than a strict presentation of existing material. Kisin [Kis] proves a very
general modularity lifting theorem using difficult techniques from p-adic Hodge theory and
the theory of finite flat group schemes. We make no use of these techniques here, and work in
a case where these methods can be bypassed. Kisin studies a local lifting ring, applying the
aforementioned techniques to bound its dimension and to work around the possibility that
it may not be an integral domain. We instead carry out an explicit analysis of this ring in a
very special case, allowing us to bound its dimension and show that the ring is an integral
domain. In doing so we make use of the explicit description of the local deformation ring in
a crucial way. We use the same framed deformation techniques, including a modification of
the definition of the Selmer group and the associated duality results, that Kisin employs. In
summary, we illustrate one of Kisin’s innovations in a context where the situation lines up
well, allowing us to proceed without much of the general machinery. While the result itself is
too specialized to find many applications, our methodology explicitly reveals the mechanics
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of local deformation theory as it feeds into the Wiles and Taylor-Wiles strategy.
The technical heart of our work is Section 3, which deals with local deformation theory,

meaning that one looks at how deformations behave only at a subgroup GQp ⊂ GQ corre-
sponding to the prime p. We find ourselves in the situation for which Kisin developed framed
deformation – the local deformation problems cannot be studied using Mazur’s deformation
rings. The global deformation theory is presented in Section 4, which adapts the argument
presented in the survey article of Darmon, Diamond, and Taylor [DDT97] to the framed
setting.

As our demonstration of the aforementioned techniques, we prove a theorem that roughly
says the following.

Main Theorem 1. Let K/Qp be a finite extension with ring of integers OK and residue
field k. Suppose that the continuous group homomorphism ρ : GQ → GL2(OK) satisfies the
following conditions, as well as additional technical limitations on the conductor N(ρ):

1. The residual representation ρ : GQ → GL2(k) is absolutely irreducible, odd, modular,
and unramified outside a finite set of primes.

2. The restriction ρ|GQp
is trivial.

3. The restriction ρ|GQp
is ordinary.

4. For all ` 6= p, ρ is minimally ramified at `.

5. The product ε det ρ is tamely ramified at p.

Then ρ is modular.

The precise statement of this result is Theorem 6.1.
We note that we have only studied the “minimal case” of the modularity lifting problem.

We expect that using additional methods from Kisin’s paper [Kis], one could extend the
results of Sections 5 and 6 to encompass the general case as well. We remark that due to
work of Khare and Wintenberger [KWa, KWb], the first condition in the Main Theorem is
a mild one.

1.5 The Strategy

In order to prove that deformations are modular, we will compare rings R and T. The ring
T acts on a space S of modular forms. In order to understand the relationship between
R,T, and S, we will need to build an entire family of rings Rn and Tn acting on a family
of Tn-modules Sn. Every member of these families will have an action from a group ring
W (k)[∆Qn ] such that Rn/anRn = R and Sn/anSn = S, where an is the augmentation ideal
of W (k)[∆Qn ], which is generated by multiples of g − 1 for g ∈ ∆Qn . The group ∆Qn is the
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product of p-groups of increasing size that are subgroups of (Z/qZ)× for choices of “auxilliary
primes” q. All of these objects fit into the diagram

A

((

ϕn

��>
>>

>>
>>

>

��

B
µn //

ψn
����

End(Sn)

πn
��

R // End(S)

,

where A is a “limiting ring” W (k)[[s1, . . . , sr]] for the rings W (k)[∆Qn ] and B is a ring of
Krull dimension r + 1 that can surject onto each of the Rn.

The main idea is that W (k)[∆Qn ] approximates the free ring W (k)[[s1, . . . , sr]] on a
fixed number of generators as n grows large, while Sn is always free over W (k)[∆Qn ]. By
“sandwiching” a ring Rn of Krull dimension at most r as an intermediate ring for the action
of W (k)[[s1, . . . , sr]] on the ring Sn, we find that Sn should be a “nice” module over Rn.
This conclusion comes from the theory of Cohen-Macaulay modules over a local ring. It is a
simple algebraic maneuver to translate the conclusions one derives from the action of R on
S into a comparison between R and T.

In order to fit all of the objects just described into this picture, we need to know that
Sn/anSn = S and that the Sn are free over W (k)[∆Qn ]. This requires an understanding
of the ∆Qn-action as it factors through Rn. Moreover, the proof makes use of topological
arguments regarding cohomology groups of modular curves. We also need to bound the
dimension of the rings Rn. One can show using the above setup that Rn cannot have Krull
dimension less than r+1, so any argument that achieves the necessary bound has to optimize
each relevant computation in order for the proof to succeed.

If one proceeds as in Wiles and Taylor-Wiles’ proof of the minimal case, one finds quickly
that the behavior at p cannot be measured using their methodology. The Selmer group ap-
proach yields a contribution of 6 to the global Selmer group dimension, when one expects the
contribution to be 4. This inconsistency is a result of singular behavior in the local deforma-
tion theory. As mentioned earlier, we use explicit local deformation theoretic techniques to
replace the Selmer group calculation with a direct determination of the Krull dimension and
other properties of the local ring. Then Kisin’s [Kis] framed deformation theory allows one
to neatly replace the local Selmer group at p with the explicit computation in the argument,
thereby obtaining the needed bound.

1.6 Local Geometry of Ordinary Liftings

Our secondary goal in this thesis is to expose particularly interesting geometry for a certain
deformation problem that has not yet been studied explicitly. In particular, the residual
representations we consider will be trivial when restricted to GQp . The local deformation
theory is peculiar in our case. The restriction ρ|GQp

of the residual representation is ordinary,

11



so we study ordinary liftings of ρ. However, the residual representation does not determine
a filtration of the underlying vector space k2, so the filtration space for ordinary liftings ρ
already has the geometrically interesting structure of P1

k, the projective line over k. As a
result, we find a formal scheme Xloc

p,ord fibered over P1
k rather than a ring as the representing

object for our deformation problem, in contrast to essentially every other 2-dimensional
deformation problem imaginable.

This creates significant troubles when attempting to conduct the usual Taylor-Wiles
argument, since one cannot expect a local ring T to be easily comparable to a formal scheme
fibered over P1

k. The key step is to replace Xloc
p,ord by its image in the formal spectrum of the

local lifting ring Spf Rloc
p . While the resulting ringRloc

p,ord cannot solve the original deformation
problem for all rings, we prove in Proposition 3.7 that when restricting the deformation to
the subcategory of discrete valuation rings (DVR), it suffices. We use the explicit description
of Rloc

p,ord to bound its Krull dimension in Proposition 3.8 and use a criterion of Taylor [Tay09],

presented in Proposition 3.11, to build a local deformation problem out of Rloc
p,ord.

We point out that while the unusual behavior just described is unique to the residually
trivial case in dimension 2, it exists when solving reducible deformation problems in many
cases for higher dimensions. In these cases, depending on the condition being studied, the
formal schemes that arise could be fibered over larger projective spaces or Grassmannians.
Perhaps with more exotic deformation conditions, other spaces may arise. The key advantage
we exploit in our local deformation computations is Fact 2.3, which provides us with a very
convenient structure for the local lifting ring Rloc

p . While in the cases where the residual
representation is not trivial, one cannot apply Fact 2.3 directly, one still can reduce to the
maximal quotient of GQp such that ker ρ becomes pro-p. This could potentially simplify the
deformation problem. The explicit description of the ring Rloc

p,ord was crucial in our proofs of
both Propositions 3.7 and 3.8.

The ring Rloc
p,ord may be used as the base ring for constructing global framing rings sat-

isfying a universal property for DVRs. However, T is not a DVR, so the construction of
a natural map R → T is not entirely automatic. By using the fact that the ring T may
be built (following a construction of Carayol [Car94]) out of a product of discrete valuation
rings, we argue in Proposition 5.8 that the usual R → T map can be constructed and is
unique even though T is not in our category.

1.7 Structure

We have the following organization for the paper.

• Section 2 presents some background on representations, automorphic forms, and alge-
braic geometry.

• Section 3 constructs the ring Rloc
p,ord and proves its necessary properties.

• Section 4 constructs the ring R∅,ord and a family RQn,ord of related rings and proves
several of their key properties.
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• Section 5 constructs T∅ and the family {TQn}, and proves several key properties of
these rings and their modules S∅ and SQn .

• Section 6 uses the preceding objects and an abstract theorem in commutative algebra
to prove the key isomorphism

R∅/N
∼→ T∅,

from which Theorem 6.1 follows.

We assume familiarily with basic algebra, number theory, and topology, but otherwise present
all facts used in Section 2 or in the section where the fact is used. In particular, we assume
no familiarity with modular forms or Galois representation theory.
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Chapter 2

Preliminaries

As described in Section 1, the global structure of the proof of Theorem 6.1 will encompass
three worlds: Galois representations, modular forms, and commutative algebra. In this
section we state some of the results of interest to us in each of these areas, as well as provide
definitions for the basic notions. We also provide in Section 2.1.3 a historic overview of
deformation theory, which is the area in which we most substantially extend the arguments
of Wiles and Taylor-Wiles for the proof of Theorem 6.1.

2.1 Galois Representations

As discussed in Section 1, Galois representation theory is our most promising avenue for
discovering new structural information about the global Galois group GQ. We present some
of the technical algebraic machinery we will need in order to study deformations of Galois
representations in Sections 3 and 4.

2.1.1 Group Theory

We will need to know the possible behaviors for the residual representation ρ. In fact, we
will make use of group cohomology in order to relate the dimension of the space of possible
liftings of ρ to properties of ρ itself. However, in order to compute with group cohomology,
one needs to know the possibilities for a certain action, called the adjoint action, of GQ

induced by ρ. For this we will require a full classification of the 2-dimensional projective
representations of finite groups.

Fact 2.1 ([Lan95]). Let H ⊆ PGL2(Fp) be a finite subgroup. Then one of the following is
true.

• The subgroup H is conjugate to a subgroup of the upper triangular matrices.

• The subgroup H is conjugate to PSL2(Fpr) or PGL2(Fpr) for some r ≥ 1.

14



• The subgroup H is isomorphic to A4, A5, S4, or the dihedral group D2r of order 2r with
r ≥ 2, p - r.

In the case that H is isomorphic to D2r with r ≥ 2, p - r, we may explicitly describe the
embedding of H = 〈s, t : s2 = tr = 1, sts = t−1〉 as being conjugate to

s 7→
(

0 1
1 0

)
, t 7→

(
ζ 0
0 1

)
,

where ζ is a primitive rth root of unity, possibly after an extension of degree 2.
The only subgroups of PGL2(F5) isomorphic to A5 are conjugate to PSL2(F5).

We will also make use of various methods from the area of group cohomology, including
certain arithmetic duality theorems. We refer the reader to an article of Atiyah and Wall
[CF86] for background on group cohomology, though we discuss arithmetic duality in Section
4.5. We will be interested only in the groups H0(G,M) and H1(G,M), where G is a group
and M is a G-module. We define

H0(G,M) = MG = {m ∈M : gm = m for all g ∈ G}

H1(G,M) =
{ϕ : G→M |ϕ(g1g2) = ϕ(g1) + g1ϕ(g2) for all g1, g2 ∈ G}

{φ : g 7→ gm−m|m ∈M}
.

2.1.2 Algebraic Number Theory

The algebraic approach to number theory was initiated by Kummer in his approach to
proving Fermat’s Last Theorem. In this section we briefly describe the basic notions of
algebraic number theory.

We define GK to be the absolute Galois group of a field K. If K is a global field and
S a finite set of places of K, we write GK,S for the Galois group of the maximal extension
unramified away from S. Throughout we will fix a choice of decomposition group GQp ⊆ GQ

for each prime p.
The decomposition group GQp is naturally isomorphic to the absolute Galois group of Qp.

We have subgroups IQp ⊆ GQp and PQp ⊆ GQp corresponding to the maximal unramified
extension Qur and maximal tamely ramified extension Qtr. The group PQp is a p-group. For
the quotient GQp/PQp = Gal(Qtr

p /Qp), we have a structure theorem, due to Iwasawa.

Fact 2.2 ([NSW08, Theorems 7.5.2, 7.5.3]). Let 〈Frobp〉 ∼= Ẑ be the absolute Galois group
of the residue field Fp of Zp. We have

Ẑ(p) =
∏
`6=p

Z`
∼= IQp/PQp .

Moreover, we have a split group extension

0→ Ẑ(p) → Gal(Qtr
p /Qp)→ 〈Frobp〉 → 0

15



where the action of Frobp on τ ∈ Ẑ(p) is

(Frobp)τ(Frobp)
−1 = τ q.

The cyclotomic character εp : GQ → Z×p is defined by taking the limit over n of the
quotient homomorphisms

GQ → Gal(Qζpn/Q) ∼= (Z/pnZ)×.

We shorten εp to ε since we will use only the p-adic cyclotomic character.
There is a natural homomorphism τp : F×p → Z×p , sending each element α ∈ F×p to an

element of Z×p that lifts α and is also a p−1st root of unity. This map is called the Teichmüller
lift. We can construct a character ωp : GQ → Z×p as the composition

ωp : GQ
εp→ Z×p → F×p

τp→ Z×p ,

where the second map is the reduction map modulo p. This will be used in constructing an
explicit residually trivial determinant character for Theorem 6.1.

The exact structure of the groups GQp is known for p > 2. We will only need here a
result concerning the maximal pro-p quotient of this absolute Galois group.

Fact 2.3 ([NSW08, Theorem 7.5.11]). If p > 2, then the group GQp(p) is the free pro-p
group on two generators.

Remark 1. The generators of GQp(p) can be taken to be a Frobenius lift σ and an element
τ ∈ IQp such that ψ(σ) = 1 and ψ(τ) = 1 − p, where ψ is the product of the cyclotomic
character and the multiplicative inverse of the Teichmüller lift. In particular, given some
choice of Frobenius lift σ, we replace it by στ−1

0 where ψ(σ) = ψ(τ0) and τ0 ∈ IQp . This
hypothesis will be used in Section 3.

We lastly mention that we use the notation Frobp for the generator of Gal(Fp/Fp) that
sends x 7→ xp. This map is called the arithmetic Frobenius automorphism. Due to cer-
tain conventions that we have chosen, we will often make use of the geometric Frobenius
automorphism, which we denote by Frob−1

p (as it is the inverse of the arithmetic Frobenius

automorphism). We will also use Frobp and Frob−1
p to denote lifts of these elements to GQp

or GQ.

2.1.3 Deformation Theory

History

Mazur [Maz89] developed a deformation theory for Galois representations. Mazur was ini-
tially interested both in the geometry of the deformation spaces and in using deformation
theory as an algebraic approach to determining which members of a family of p-adic Ga-
lois representations are modular. Motivated by a construction of Hida [Hid86], Mazur and
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Wiles [MW86] constructed a ring T and universal modular representation ρmod parametriz-
ing families of modular p-adic representations. Mazur sought a ring R parametrizing all
representations expected to be modular, so that one could prove modularity for this entire
family via a single isomorphism R ∼= T.

Concretely, a p-adic Galois representation is a morphism

ρ : GQ → GLN(R)

for a ring R such that for all but finitely many primes r, the image of IQr is trivial. The
representations ρ and ρ′ are said to be strictly equivalent if ρ = αρα−1 for α ∈ 12 +M2(mR),
where 12 is the 2 × 2 identity matrix and M2(a) denotes, for an ideal a ⊆ R, the ring of
2×2 matrices with coefficients in a. In the construction of Mazur and Wiles, maps T→ OK

correspond to strict equivalence classes of modular p-adic representations ρ : GQ → GL2(OK)
lifting a fixed residual representation ρ. Mazur [Maz89] compared T to a ring R with the
property that maps R → R′ correspond to strict equivalence classes of representations ρ :
GQ → GL2(R′) lifting ρ that have additional properties, such as having a fixed determinant
and being ordinary when restricted to GQp , that the modular representations parametrized
by T shared. Moreover, the maps ρ are all induced by projection from a single universal
representation ρuniv : GQ → GL2(R).

Using the universal property of R, Mazur was able to show that there existed a natural
surjective homomorphism R � T. In a very special case where the representation ρ is a
fixed dihedral representation, Mazur was able to construct R explicitly and show that the
map R � T is an isomorphism.

The main technical results in deformation theory are various existence theorems. As-
suming that ρ is absolutely irreducible, universal deformation rings exist in a fairly general
setting. However, for representations that are not absolutely irreducible, one needs to con-
struct objects with weaker properties.

The constructions of universal deformation rings tend to be fairly abstract, so it is diffi-
cult to imagine how one would write the rings down explicitly. After Mazur’s introduction of
deformation theory, Boston and Mazur [Bos91, BM89] were able to solve deformation prob-
lems in certain specific cases explicitly. In many cases, such as the aforementioned scenario
where ρ is dihedral, the deformation problem is unobstructed, meaning the ring R is topo-
logically freely generated. The more interesting cases are those where there are nontrivial
relations on the ring R. In this case we say that R is obstructed.

Example 1 ([BU93, Theorem 7.6]). Boston and Ullom have shown that the residual Galois
representation

GQ,{3,7,∞} → GL2(F3)

associated to the 3-division points of the elliptic curve X0(49) has universal deformation ring

Z3[[t1, t2, t3, t4]]/((1 + t4)3 − 1).

Mazur [Maz97] showed that the number of topological generators of R can be measured
using Galois cohomology. The Krull dimension can be bounded above and below in terms
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of cohomology groups. Wiles [Wil95] defined an analogue of the Selmer group of an elliptic
curve for a family of deformation conditions and proved a duality theorem for these groups.
This theorem was then used to bound the size of the deformation rings arising in the proof
of Fermat’s Last Theorem.

The main technical advance in the deformation theory of Galois representations after
Wiles’ work is Kisin’s introduction of framed deformation rings [Kis], which hold informa-
tion about a lifting of the representation at certain primes. Taylor [Tay08] made significant
use of this technique in his work on the Sato-Tate conjecture, particularly to study modu-
larity questions for liftings of representations that are not minimally ramified. Khare and
Wintenberger [KWa, KWb] also made use of framed deformation in their work on the Serre
conjectures. One can write down a Selmer group for framed deformation rings, and a general-
ization of Wiles’ duality theorem holds in this setting. We briefly discuss framed deformation
rings later in this section. We construct relevant framed deformation problems in Sections
4.2 and 4.3 and use duality on Selmer groups to bound the size of deformation rings in
Sections 4.4 and 4.5.

Overview

The deformation theory of p-adic representations is defined with respect to a profinite group
Π, a complete Noetherian local ring A, and fixed base representation ρ : Π → GLN(A). In
practice, A is frequently chosen to be a finite residue field k, and in this case ρ is referred to as
the residual representation. A deformation of ρ to a ring A′ with respect to a homomorphism
f : A′ → A is simply a map ρ : Π → GL2(A′) such that the composition of ρ with the
projection GL2(A′) → GL2(A) induced by f is ρ. We phrase this in terms of a functor D
taking a suitable category of rings A′ to the set of possible deformations.

The goal of deformation theory is to have as “clean” a description as possible for all the
liftings of ρ. The ideal situation is that D be representable, meaning that there exists an
isomorphism D ∼= Hom(A′, ·) for some object A′ in the category under consideration. Thus
the main technical issue within deformation theory is the question of representability of a
given deformation functor.

Grothendieck [Gro95] proved an elegant necessary and sufficient criterion for repre-
sentability, but this criterion is difficult to check in practice. Mazur [Maz89] proved the
existence theorem using a refinement of Grothendieck’s criterion obtained by Schlessinger
[Sch68]. We remark that Lenstra and de Smit [dSL97] and Dickinson [Gou01, Appendix
1] have given proofs of existence for deformation rings for absolutely irreducible ρ directly
from Grothendieck’s criterion in the more general setting of rings that are not necessary
noetherian.

Even in the case where a deformation functor D is not representable, Schlessinger [Sch68]
guarantees the existence of a “hull,” which has the disadvantages that it satisfies a weaker
condition and is not unique up to unique isomorphism. We refer the reader to Mazur’s
survey [Maz97] for the details, since in this paper we instead use the idea of Kisin [Kis] of
changing the functor D to be “framed” in order to avoid issues of non-representability.
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Setting

One works over the category CLNRings(Λ) of complete local Noetherian rings over a fixed
coefficient-ring Λ with finite residue field k. The morphisms in this category are coefficient-
ring homomorphisms, which for a map f : R→ R′ means that f−1(mR′) = mR and R/mR

∼=
R′/mR′ . In particular, all objects CLNRings(Λ) share the residue field k. By the universal
property of the ring W (k) of Witt vectors of k, there is a homomorphism W (k)→ R for any
complete local Noetherian coefficient ring R with residue field k. For this reason, in practice,
we will in fact set Λ = W (k), and abbreviate CLNRings(W (k)) to CLNRings(k). If we are
in the “relative” setting described above, where the base representation is ρ : Π→ GLN(A)
for A 6= k, then one also asks for every object to be equipped with an A-augmentation. This
will not be necessary for our purposes – see Mazur’s survey [Maz97] for a treatment at this
level of generality.

Definition 1. Let ρ : Π → GL2(k) be a representation. We define Dρ : CLNRings(k) →
Sets to be the functor

R 7→ {strict equivalence classes of ρ : Π→ GL2(R) : ρ lifts ρ} .

If Dρ is representable, we call the representing ring Rρ.

Representability

The criteria for representability of functors make central use of the notion of a Cartesian
square. Given a diagram

A
α

��@
@@

@@
@@

B
β

��~~
~~

~~
~

C

,

in a category C, one defines the fiber product A×C B to fill in the diagram

A×C B

πA
zzvvvvvvvvv

πB
$$H

HHHHHHHH

A
α

$$I
IIIIIIIII B

β

zzuuuuuuuuuu

C

(2.1)

and satisfy the universal property that for all objects D with maps D → A and D → B
making

D

��~~
~~

~~
~

  @
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A

  @
@@
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B

~~~~
~~
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~

C
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commute, the maps factor through a unique map D → A ×C B. In the category of sets,
fiber products exist and are given by A×C B = {(a, b) ∈ A×B|α(a) = β(b)}. We call (2.1)
meeting this universal property a Cartesian square.

For a category C, object X ∈ Ob(C), and Cartesian square (2.1) in C, the functor
Hom(X, ·) : C → Sets provides a natural isomorphism

Hom(X,A×C B) ∼= Hom(A)×Hom(X,C) Hom(X,B).

This provides a necessary condition for a functor D to be representable. In particular, for
all Cartesian squares of the form (2.1), we must have an isomorphism of sets

D(A×C B) ∼= D(A)×D(C) D(B).

The category CLNRings(k) is not closed under fiber product, so one needs to work over
the full subcategory CLARings(k) of local Artinian rings over W (k) instead. If a functor
defined on CLARings(k) is representable by an object in CLNRings(k), it is said to be pro-
representable. If a functor D is continuous, meaning that for all rings R ∈ CLNRings(k),

lim
n→∞

D(R/mn
R) = D(R),

then it is representable over CLNRings(k) if and only if it is pro-representable over the
subcategory CLARings(k). Mazur’s survey [Maz97] shows that the deformation functors
Dρ are continuous.

Since we are requiring our representing ring R to be Noetherian, the tangent space
Homk(mR/(m

2
R + mW (k)), k) will be finite-dimensional. In particular, Hom(R, k[δ]/δ2) will

be a finite-dimensional k-vector space. Thus, we expect the set D(k[δ]/δ2), which we think
of as the tangent space of D, to be finite. In fact, these observations provide a necessary
and sufficient criterion for representability.

Fact 2.4 ([Gro95]). Let k be a finite field and let D : CLARings(k) → Sets be a functor
such that such that D(k) consists of a single element. Then D is pro-representable if and
only if D preserves Cartesian squares and D(k[δ]/δ2) is finite.

Schlessinger refines Grothendieck’s result by requiring that only certain Cartesian squares
be preserved. Call a mapping A → B of objects of CLARings(k) small if its kernel is a
principal ideal annihilated by mA.

Fact 2.5 ([Sch68]). Let k and D be as in Fact 2.4. Given a Cartesian square of the form
in (2.1), we denote the induced map by h : D(A ×C B) ∼= D(A) ×D(C) D(B). Then D is
pro-representable if and only if D satisfies the following conditions.

H1. If A→ C is small, then h is surjective.

H2. If A→ C is the map k[δ]/δ2 → k, then h is bijective.

H3. The tangent space D(k[δ]/δ2) is finite.
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H4. If A→ C and B → C are the same map and small, then h is bijective.

Note that if Π is the free group on a countably infinite set of generators and ρ : Π →
GL2(k) is any representation, the space Dρ(k[δ]/δ2) is infinite dimensional. It is not known
whether the Galois group GQ,S is topologically finitely generated (this is a conjecture of Sha-
farevich), so we must find an alternative hypothesis. Mazur [Maz89] bypasses this difficulty
by instead using the p-finiteness condition, which is the statement that Hom(Π,Z/pZ) is
finite. This hypothesis holds by class field theory for the groups GQ,S.

We now state Mazur’s result on representability.

Fact 2.6 ([Maz97]). Let Π be a profinite group satisfying the p-finiteness condition. Let
ρ : Π→ GL2(k) be a residual representation.

• The functor Dρ satisfies H1, H2, and H3 of Fact 2.5.

• If ρ is absolutely irreducible, then Dρ is representable.

Deformation Conditions

Since the representations arising from modular forms satisfy additional properties, we would
like to study deformations of ρ satisfying additional properties. Although ρ must satisfy the
somewhat stringent hypothesis of being absolutely irreducible for Dρ to be representable, it
is somewhat less difficult to apply conditions to the functor Dρ.

Given a representable functor D : CLNRings(k) → Sets such that D(k) contains a
single element, a functor D′ : CLNRings(k)→ Sets is a subfunctor of D if D′(R) ⊆ D(R)
for all R ∈ Ob(CLNRings(k)) and D′(k) = D(k).

A subfunctor D′ of D is called relatively representable if for all Cartesian diagrams of the
form in (2.1) we have a commutative diagram

D′(A×C B) //

⊆
��

D′(A)×D′(C) D
′(B)

⊆
��

D(A×C B) // D(A)×D(C) D(B)

.

If D is representable, then a relatively representable subfunctor D′ of D is representable as
well. We will state sufficient conditions for a collection L of lifts of ρ to constitute a relatively
representable subfunctor of Dρ. For a ring homomorphism f : A→ B, we use the notation
f∗ρ to denote the projection of ρ : Π→ GL2(A) to a map f∗ρ : Π→ GL2(B).

Definition 2. We define a deformation condition for ρ : Π → GL2(k) to be a collection E
of lifts satisfying the following properties.

1. The collection E is closed under strict equivalence and projection.

2. For every diagram of the form in (2.1) in CLNRings(k) and representation ρ : Π →
GL2(A ×C B) lifting ρ, the representation ρ is a member of E if both πA∗ρ and πB∗ρ
are members of E.
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Remark 2. Mazur [Maz97] adds a third condition that Dickinson [Gou01] has proved is
implied by the other two conditions. If both conditions hold, the second condition is auto-
matically an equivalence, since πA∗ρ and πB∗ρ are projections.

The first condition of Definition 2 amounts to saying that E defines a subfunctor DE of
Dρ, and the second condition implies that DE is relatively representable. In particular, we
have the following result.

Fact 2.7. Suppose that E is a deformation condition for ρ : Π→ GL2(k). Then the functor
DE : CLNRings(k)→ Sets defined by

DE : R 7→ {strict equivalence classes of ρ : Π→ GL2(R)|ρ is a member of E}

is a relatively representable subfunctor of Dρ.

As an example, requiring a lifting of ρ : Π→ GL2(k) to have a fixed determinant character
ψ : Π→ W (k) is a deformation condition.

Deformations of Galois Representations

We note that Definition 2 has the interesting property that given a representation ρ : GQ →
GL2(k), if we have a deformation condition Ev for lifts of ρ|Gv for each place v, even if
these restrictions are reducible, they define a global deformation condition E = {Ev} for ρ –
namely, a lift of ρ is in E if its restrictions to Gv are in Ev for all v.

Such a condition E is called a global Galois deformation condition. We will use the notion
of a global Galois deformation condition to enforce particular behaviors at each prime. For
example, we will require our p-adic representations to be ordinary at the prime p, which
means that the representation takes the form

ρ|GQp
∼
(
χ1 ∗
0 χ2

)
with χ1 unramified and χ2 ramified, following the convention of Mazur [Maz97]. Note that
this is the opposite of the convention used in Wiles’s paper [Wil95] and in the survey article
of Darmon, Diamond, and Taylor [DDT97]. We call a residual representation ordinary if

ρ|GQp
∼
(
χ1 ∗
0 χ2

)
with χ1 unramified, but with no condition on χ2. The purpose of Section 3 is to analyze the
local deformation theory for this condition.

Framed Deformations

The framed deformation theory of Kisin can be seen as an enhancement to the locality of
this approach. When possible, one computes local deformation rings in order to determine
the global behavior of a deformation problem. Unfortunately, the local deformation rings
may not exist, as ρ may become reducible upon restriction to a decomposition group GQp .
However, a framed deformation ring exists in all cases.
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Definition 3. Let ρ : Π → GL2(k). We define the framed deformation functor D�
ρ :

CLNRings→ Sets by

D�
ρ : R 7→ {ρ : Π→ GL2(R)|ρ lifts ρ} .

The following result can be deduced from Fact 2.5.

Fact 2.8 ([Kis]). Let Π be a profinite group satisfying the p-finiteness condition. Let ρ :
Π→ GL2(k) be a residual representation. The functor D�

ρ is representable.

In practice, we will think of the framing as occurring at just the prime p in a manner
described in Section 4.

2.2 Automorphic Forms

The second general area of number theory we will deal with is that of automorphic forms.
The notion of an automorphic form generalizes each of the defining properties of a modular
form, defined in Section 2.2.1, so that it may be defined for Lie groups G other than SL2(R),
and with respect to discrete subgroups other than those contained in SL2(R). We will only be
interested in modular forms here, but it is important to note that by work of Langlands, one
expects a correspondence between automorphic forms and certain types of representations
in great generality. Ideas from this area were important in proving some of the results, such
as Fact 2.14, that we assume here.

2.2.1 Modular Forms

Modular forms are studied in many guises in fields outside of number theory, such as com-
binatorics, algebraic geometry, and physics. Modular forms can be viewed as functions on
moduli spaces of elliptic curves, and they were first approached in the 19th century in this
context. We will be interested primarily in their behavior as a module for the Hecke alge-
bra. In fact, we will be less interested in modular forms in the usual sense than in modular
curves themselves. In particular, we will not work with the spaces Sk(Γ,C), but with the
cohomology of modular curves. However, we will present the theory in the classical setting,
and then explain how to pass to the cohomology of modular curves.

Definition

We denote by Γ(1) = SL2(Z) the modular group, which is defined by

SL2(Z) =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.
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More generally, we define certain subgroups of SL2(Z), such as

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣( a b
c d

)
≡
(

1 0
0 1

)
mod N

}
,

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣( a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}
, and

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣( a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N

}
.

Any subgroup of SL2(Z) containing Γ(N) for some N is called a congruence subgroup. For
a congruence subgroup Γ, the minimal N such that Γ ⊇ Γ(N) is called the level of Γ and
is denoted NΓ. We define the quotient YΓ = Γ\H and define XΓ to be the compactification
obtained by adjoining cusps, which will be discussed shortly.

Given any γ = ( a bc d ) ∈ SL2(Z), we define the factor of automorphy j(γ, z) = cz+ d. One
defines a meromorphic function f : H→ C to be weakly modular of weight k for Γ if

f(γτ) = j(γ, τ)kf(τ) for all γ ∈ Γ.

Since Γ(N) contains the element ( 1 N
0 1 ), every congruence subgroup Γ contains

(
1 tΓ
0 1

)
for

some minimal tΓ ∈ Z>1. One calls tΓ the width of the cusp at ∞. If f is weakly modular of
any weight k for Γ, then f(τ + tΓ) = f(τ). Thus one can expand f as a power series

f(τ) =
∞∑

n=−∞

anq
n
tΓ

centered at ∞, where q = exp(2πiτ). If, in fact,

f(τ) =
∞∑
n=0

anq
n
tΓ ,

then we say f is holomorphic at infinity. From here on, we restrict our attention to subgroups
Γ containing Γ1(N) for some N . In this case, ( 1 1

0 1 ) ∈ Γ, so tΓ = 1, and every weakly modular
function can be expanded as a power series

f(τ) =
∞∑

n=−∞

anq
n.

We define an(f) to be the corresponding coefficient of the expansion of f at infinity.
However, for a congruence subgroup Γ, ∞ is not the only point of H where f may have

interesting limiting behavior. The point ∞ is equivalent via SL2(Z) to the points of Q. We
call the Γ-equivalence classes of points in Q ∪ {∞} cusps. By applying γ ∈ Γ to move a
given cusp a

b
∈ Q to infinity, one can use the discussion of the preceding paragraph to define

holomorphicity at any cusp.
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We define a modular form f of weight k for Γ to be a weakly modular form of weight k
such that f is holomorphic on H and holomorphic at the cusps. We define a modular form
f to be a cusp form if a0(f(γτ)) = 0 for all choices of γ ∈ SL2(Z). In other words, a cusp
form vanishes at every cusp.

We denote by Mk(Γ,C) and Sk(Γ,C) the spaces of modular forms and cusp forms,
respectively. The product of a modular form of weight k with a modular form of weight k′ is
a modular form of weight k+ k′, so one can define a graded ring of modular forms. In what
follows, however, we will be primarily interested in modular forms of weight 2.

We can decompose
Mk(Γ,C) = Sk(Γ,C)⊕ Ek(Γ,C)

where the space Ek(Γ,C) is spanned by a set of forms, called Eisenstein series, each of which
are 1 at a single cusp and vanish at the others.

Petersson Inner Product

We define an inner product 〈·, ·〉Γ : Sk(Γ,C)× Sk(Γ,C)→ C by

〈f, g〉Γ = Vol(Γ)−1

∫
YΓ

f(τ)g(τ)yk−2dxdy,

where

Vol(Γ) =

∫
YΓ

dxdy

y2
.

2.2.2 Hecke Algebras

Our primary interest will be not in the spaces of modular forms themselves, but in their
interaction with a natural algebra TΓ,Z, called the Hecke algebra, that acts on a space of
modular forms. We will see that the Hecke algebra can be used to build the ring T described
in Section 2.1.3. It will be sufficient for our purposes to set Γ = Γ1(N). The books of Miyake
[Miy89] and Diamond and Shurman [DS05] provide general treatments of the subject.

Hecke Operators

We begin by defining the Hecke operator 〈d〉. We first observe that there is a homomorphism
ϕ : Γ0(N)→ (Z/NZ)× defined by

ϕ :

(
a b
c d

)
7→ d mod N.

We have kerϕ = Γ1(N). For a function f ∈ Mk(Γ1(N),Z) and matrix γ ∈ Γ0(N), consider
the definition

(γf)(τ) = j(γ, z)−kf(γτ).
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Since f is a modular form for Γ1(N), γf = f for γ ∈ Γ1(N). On the other hand, for
γ′ ∈ Γ1(N), we have

(γf)(γ′τ) = j(γ, z)−kf(γγ′τ) = j(γ, z)−kf(γ′′γτ)

= j(γ, z)−kj(γ′′, z)kf(γτ) = j(γ′′, z)k(γf)(τ)

for γ′′ ∈ Γ1(N) by the normality of Γ1(N) ⊆ Γ0(N). This defines an action of (Z/NZ)× on
(Z/NZ)× that we denote by 〈·〉.

Following Diamond and Shurman [DS05, Proposition 5.2.2], we will define the Hecke
operators Tp for primes p via their action on the Fourier series of a modular form at ∞. Let
f(τ) =

∑
n≥0 anq

n be a weight k modular form on Γ1(N). Then we have

(Tpf)(τ) =

{∑∞
n=0

(
anp(f) + pk−1an

p
(〈p〉 f)

)
qn if p - N∑∞

n=0 anp(f)qn otherwise.

If p|N , we will frequently denote Tp by the alternate symbol Up to emphasize the distinction.
We note that the operators Tp and 〈d〉 commute. One can extend the definition of Tn to

Z by the definitions

Tpr = TpTpr−1 − pk−1 〈p〉Tpr−2 and TnTm = Tnm

where (n,m) = 1 and p is prime. Then the Tn and 〈d〉 commute for all n.

Definition of the Hecke Algebra

For a congruence subgroup Γ, we define TΓ,Z to be the subring of End(S2(Γ,Z)) generated
by the Hecke operators Tn and 〈d〉 for all n and d. We define TΓ,R = TΓ,Z⊗ZR for any ring
R. We will frequently drop the Γ from the notation for TΓ,R when it is understood.

The Hecke operators are normal with respect to the Petersson inner product, so one
can choose an orthogonal basis for S2(Γ,C) of simultaneous eigenforms for TΓ,C. From the
definitions, one finds that a1(Tnf) = an(f). If f is an eigenform under all of the Hecke
operators, then an(f) = a1(Tnf) = λna1(f), where λn is the Tn-eigenvalue of f . Thus if f is
normalized to have a1(f) = 1, then an(f) = λn for all n. In particular, the multiplicativity
relations for the Tn apply to the an. In fact, Hecke defined the Hecke operators in order to
explain the multiplicativity of the coefficients of modular forms such as ∆.

We have the following statement regarding the generators of TΓ,Z.

Fact 2.9 ([DDT97, Lemma 4.1]). The Hecke algebra TZ for a congruence subgroup Γ of
level N is generated by either of the following:

1. Tn for n ≥ 1.

2. Tp for primes p and 〈d〉 for d ∈ (Z/NZ)×.
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Nebentypus

The Hecke operators 〈·〉 provide a decomposition of the space of modular forms on Γ1(N).
In particular, we have

Sk(Γ1(N),C) =
⊕
ψ

Sk(Γ0(N), ψ,C)

where the functions in Sk(Γ0(N), ψ,C) satisfy

f(γτ) = ψ(d)j(γ, τ)kf(γ)

for all γ ∈ Γ0(N), and the summand is over all characters ψ : (Z/NZ)× → C×. We say that
such an f has Nebentypus character ψ. For f ∈ Sk(Γ0(N), ψ,C) can see that 〈d〉 f = ψ(d)
directly from the definition.

Atkin-Lehner Theory

If we further decompose the spaces Sk(Γ0(N), ψ,C), we can find eigenforms under all the
Tp for p - N . One notices that Sk(Γ0(N), ψ,C) ⊆ Sk(Γ0(M), ψ,C) if N |M . We would
like to distinguish modular forms f that are “old” in the sense that they come from a
smaller level from those that are “new.” Assume that M = Np. One can check that
if f(τ) ∈ Sk(Γ0(N), ψ,C), one also has pk−1f(pτ) ∈ Sk(Γ0(Np), ψ,C). Thus, there are
two distinct ways of producing forms of higher level from a given form f – inclusion and
precomposition with multiplication. We call an eigenform created in this manner an oldform
of level N , and call an eigenform in the orthogonal complement to the space of oldforms a
newform of level N . These spaces are preserved by the action of the Hecke algebra.

The theory of Atkin and Lehner [AL70] precisely describes the decomposition of the
space Sk(Γ1(N), ψ,C) into spaces of oldforms and newforms. Let T′Γ1(N),Z be the subring of

TΓ1(N),Z generated by the Tn for (n,N) = 1.

Fact 2.10 ([DDT97, Theorem 1.22]). We can decompose the space Sk(Γ1(N),C) into an
orthogonal direct sum of subspaces Sf defined by

Sf =
{
g ∈ Sk(Γ1(N),C)|Tg = λf (T )g for T ∈ T′Γ1(N),Z

}
,

where λf is defined by λf (T )f = Tf , and f is a newform of level Nf . Moreover, Sf has as
a basis f(dτ) for all d| N

Nf
.

One can prove this using the following result.

Fact 2.11 ([DS05, Theorem 5.7.1]). If f ∈ Sk(Γ1(N),C) has an(f) = 0 for (n,N) = 1, then

f =
∑
p|N

p prime

fp(pτ)

for fp ∈ Sk
(

Γ1

(
N
p

)
,C
)

.
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If we are working with a space Sk(Γ1(N),C) of modular forms, we will call an eigenform f
of the operators Tn with (n,N) = 1 a newform (without specifying a level) if f is a newform
of any level Nf |N , and call f an oldform if it arose from a space of smaller level using
the method of precomposition just described. Every oldform in Sk(Γ1(Nf ),C) is associated
to some newform. One can reinterpret Fact 2.11 as saying that we can detect whether an
eigenform is an oldform or newform simply by examining whether its first coefficient vanishes.
Moreover, it is not difficult to see that a newform is invariant under the entire Hecke algebra.
In particular, for a newform f , the difference Tnf−an(f)f is a newform. On the other hand,
it has a vanishing first coefficient, so it is also an oldform. Thus Tnf = an(f)f .

Using Atkin-Lehner theory, one finds that over an algebraically closed field, the Hecke
algebra behaves particularly neatly.

Fact 2.12 ([DDT97, Lemma 1.35]). Let F be an algebraically closed field. Let {gi} be a
complete set of newforms for S2(Γ1(N),F), and let

g =
∑
i

gi

(
N

Ng

τ

)
.

Then the map T 7→ Tg makes S2(Γ1(N),F) into a rank 1 TΓ1(N),F-algebra.

Newforms

We state without proof some properties of coefficients of weight 2 newforms. Note that item
(1) below is a deep result of Deligne.

Fact 2.13 ([DDT97, Theorem 1.27]). Let f be a weight 2 newform of level Nf and character
ψ. Let the conductor of ψ be denoted Nψ.

1. If p - Nf , then |ap| ≤ 2
√
p.

2. If p exactly divides Nf and p - Nψ, then a2
p = ψ0(p), where ψ0 is the primitive character

associated to ψ.

3. If p|Nf and p - Nf
Nψ

, then |ap| =
√
p.

4. If p2|Nf and p|Nf
Nψ

, then ap = 0.

Cohomology of Modular Curves

Using the action of the Hecke algebras on lattices, it is possible to define a Hecke action
directly on the cohomology group H1(XΓ,Z). The Z-rank of this group is twice the rank of
S2(Γ,Z). However, the action of complex conjugation on the underlying curve XΓ commutes
with the Hecke algebra, so that we obtain Hecke modules H1(XΓ,Z)+ and H1(XΓ,Z)−

corresponding to the eigenspaces of this action. Moreover, the eigenforms in H1(XΓ,Q)− give
the same eigenvalues as the eigenforms in S2(Γ,Q), and similarly for any other algebraically
closed field.

28



While the Z-structure of the spaces S2(Γ,Z) and H1(XΓ,Z)− are different, which com-
plicates certain arithmetic geometry arguments, it will suffice for our purposes to work with
H1(XΓ,Z)−.

We make the following definitions. Since the normalization a1(f) = 1 does not make
sense in this context, we instead consider 1-dimensional subspaces, and define an(f) for a
Tn-eigenform f to be the Tn-eigenvalue of f . Denoting the projectivization of the vector
space V by PV , we say that [f ] ∈ PH1(X1(N),Q)− is a newform of level Nf if [f ] has the
same eigenvalues as a newform in S2(Γ1(Nf ),Q). (This allows us to apply the aforemen-
tioned results of the classical theory of modular forms.) We say that [f ] is a newform in
PH1(X1(N),Q)− if it is a newform of any level Nf dividing N .

2.2.3 Representations Attached to Modular Forms of Weight Two

Eichler and Shimura showed that weight 2 newforms give rise to p-adic Galois representations.
To a newform f of weight k ≥ 3, Deligne [Del71] later was able to attach p-adic Galois
representations using substantially more difficult methods. Deligne and Serre [DS74] next
attached Galois representations to newforms of weight 1, but the image in this case is finite
and can be embedded into C. We will be interested, however, only in the representations
arising from the Eichler-Shimura construction.

The coefficients ar of the modular form f correspond to the traces of ρ(Frob−1
r ) when

r - Nf , while the character (and weight, though this is fixed in our case) of f corresponds
to the determinant of ρ(Frob−1

r ), multiplied by the cyclotomic character. We point out that
our definition of ρf corresponds to the tensor product of the representation ρ′f of the survey
article of Darmon, Diamond, and Taylor [DDT97] with (det ρ′f )

−1. If r divides the level Nf ,
the representation may be ramified at r. There is also a special consideration at the prime
p.

In the following fact we collect a number of results concerning the representations ρf in
the weight 2 case. The survey article of Darmon, Diamond, and Taylor [DDT97] provides
comments and references for the proofs of these statements.

Fact 2.14 ([DDT97, Theorem 3.1]). Let f be a newform of weight 2, level Nf , and character
ψf , and let ρf be the p-adic representation associated to f . Moreover, let Kf be the extension
generated over the fraction field of W (k) by the Hecke eigenvalues of f and let Of be the
ring of integers of Kf .

We use ρIQr and ρIQr to denote the IQp-invariants and coinvariants, respectively, of the
underlying GQ-module of ρ. We have the following statements regarding the representation
ρf .

1. For a prime r - Nfp, the representation ρf is unramified at r and ρf (Frob−1
r ) has

characteristic polynomial
X2 − arX + rψf (r).

2. The character det(ρf ) is the product of ψ−1
f with ε−1.
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3. For a complex conjugation c, ρf (c) is conjugate to ( 1 0
0 −1 ).

4. The representation ρf is absolutely irreducible.

5. The prime to p part of the conductor of the representation ρf is the maximal divisor
of Nf prime to p.

6. Let r 6= p where r exactly divides Nf , and let χ : GQr � GFr → Kf be an unramified
character defined by Frob−1

r 7→ ar. If r does not divide the conductor of ψf , then

ρf |GQr
∼
(
χ ∗
0 χε−1

)
.

If r divides the conductor of ψf , then

ρf |GQr
∼
(
χ 0
0 χ−1ε−1ψ−1

f

)
.

7. Suppose that p > 2. If ap is a unit in Of , then ρf |GQp
is ordinary. If p||Nf , then

ρIQp (Frob−1
p ) = ap.

For a DVR OK , we define ρ : GQ → GL2(OK) to be modular if there exists some newform
f such that ρ ⊗OK

Of is equivalent to ρf , where Of is here the ring of integers of the field
Kf/K generated by the coefficients of f .

2.3 Algebra and Algebraic Geometry

In this section we briefly discuss certain objects and results from commutative algebra and
algebraic geometry that we make use of in Sections 3 and 6. In particular, we discuss
the dimension theory of modules and state some results that allow one to derive some
consequences from “extremal” situations. We then discuss the definitions for the theory of
formal schemes.

2.3.1 Cohen-Macaulay Rings and Modules

Recall that the Krull dimension of a ring R is the length of the longest chain of prime
ideals in R. The Krull dimension of an R-module M is the dimension of R/Ann(M). One
can also define dimension in a different way that extends to modules. This definition is a
generalization of the notion of a system of parameters for the completion of an ideal at a
smooth point.

In particular, for a complete noetherian ring R, one calls R regular if m can be generated
by dimR elements. In this case, a set of dimR elements generating R is called a regular
system of parameters.
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For a general complete local Noetherian ring R, we call elements a1, . . . , an ∈ R a regular
sequence if (a1, . . . , an) 6= R and for each k, xk+1 is a nonzerodivisor of R/(x1, . . . , xk). In the
case where R is a regular local ring, a regular system of parameters is a regular sequence, as
one can show using the fact that regular local rings are integral domains. Any rearrangement
of a regular sequence for a local ring is a regular sequence. We define the depth of R to be
the longest regular sequence for R.

We define a regular sequence for an R-module M to be a sequence a1, . . . , an ∈ R such
that (a1, . . . , an)M 6= M and ak+1 is a nonzerodivisor for M/(a1, . . . , ak)M . The length of
the longest regular sequence for M is called the depth of M . The notions of depth and
dimension have a fundamental relationship.

Fact 2.15 ([Eis95, Theorem A4.3]). Let M be a finitely generated module over a local ring
R. Then

depthRM ≤ dimRM ≤ dimR.

Setting R = M in Fact 2.15, we find that depthR ≤ dimR. If equality holds, we say
that R is Cohen-Macaulay.

For a general module, in the case where equality holds in Fact 2.15, by which we mean
depthRM = dimRM = dimR, we call M a Cohen-Macaulay R-module, in analogy with
the definition of a Cohen-Macaulay ring. Even if R is not Cohen-Macaulay, the module M
behaves well with respect to R. In particular, we have the following result.

Fact 2.16 ([Eis95, Proposition 21.9]). Suppose that R is a local ring and that M is a finitely
generated R-module such that depthRM = dimR. Then every element outside of the mini-
mal primes of R is a nonzerodivisor of M .

We end by mentioning a basic fact that will be used in Section 6.

Fact 2.17 ([Eis95, Theorem 10.8]). Let R be a ring and let M be a finitely generated R-
module. For any ideal a ⊆ R,

Rad(Ann(M/aM)) = Rad(a + AnnM).

2.3.2 Formal Schemes

We will need to use formal schemes in Section 3 in order to parametrize a deformation space
fibered over P1

k. We mention the definitions and basic constructions of formal schemes,
though we will not need any results.

Following Hartshorne [Har77, Pg. 72-3], we briefly review the definitions for the category
of schemes. A ringed space is a pair (X,OX) of a topological space X and a sheaf OX of rings
on X. A morphism of ringed spaces (X,OX)→ (Y,OY ) is a continuous map f : X → Y of
topological spaces and a map f# : OY → f∗OX of sheaves of rings on Y . A locally ringed
space is a ringed space (X,OX) such that the stalks of OX are local rings. Morphisms of
local ringed spaces must induce local homomorphisms f#

x : OY,f(x) → OX,x on the stalks. A
scheme is a locally ringed space (X,OX) such that every point x ∈ X has a neighborhood U
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that is isomorphic to SpecR for a ring R, and a morphism of schemes is simply a morphism
of locally ringed spaces.

Passing from schemes to formal schemes is the scheme-theoretic generalization of the
process of completion of a ring R at an ideal a to produce a ring R̂ that is complete with
respect to the a-adic topology. Following Hartshorne [Har77, Pg. 194-5], we restrict our
discussion to the noetherian case. Given a noetherian scheme X and closed subscheme Y
defined by an ideal sheaf I, one constructs the formal completion of X along Y to be the
locally ringed space (X̂,OX̂) given by the topological space Y and sheaf of rings

OX̂ = lim←−OX/I
n.

In the case where X = SpecR is affine and the completion is with respect to the ideal a, one
obtains a scheme Spf R which is called the formal spectrum of R.

A formal scheme, in analogy to a scheme, is a locally ringed space locally isomorphic to
the formal completion of a noetherian scheme along a closed subscheme, and a morphism of
formal schemes is a morphism of locally ringed spaces. The category of noetherian formal
schemes is an enlargement of the category of schemes, as can be seen by setting X = Y in
the definition of the formal completion. Note that one cannot relate the dimension of the
underlying topological space of a formal scheme to the local dimension at the stalks – the
structure sheaf contains information about the infinitesimal deformations of the underlying
scheme Y that are hidden to the topological space.
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Chapter 3

Explicit Deformation of Residually
Trivial Representations of GQp

In this section we explicitly study ordinary deformations of residually trivial representations.
Let p be an odd prime. Our focus is on understanding ordinary deformations of the form
GQp → GL2(OK), where K/Qp is a finite extension. While the general deformation problem
will be represented by a formal scheme Xloc

p,ord, we will construct an auxiliary ring Rloc
p,ord that

solves this problem for the smaller category of discrete valuation rings. The main difficulty
with solving the deformation problem is that the unramified subspaces of the possible or-
dinary liftings of ρ are not residually determined, since the residual representation is the
identity. Thus our solution to the deformation problem will pass through the construction
of a formal scheme Xfilt representing the choice of filtration.

We begin by simplifying the deformation problem in Section 3.1, allowing us to explicitly
solve the lifting problem with a determinant condition in Section 3.2. We define the defor-
mation problem Dloc

p,ord in Section 3.3 and explain the obstruction to its representability. In

Sections 3.4 and 3.5 we construct the representing formal scheme Xloc
p,ord. In Sections 3.6, 3.7,

and 3.8, we define Rloc
p,ord and prove its various properties.

Define ρ to be the trivial representation and define ψ : GQp → W (k)× to be the fixed
determinant character ε−1

p ωp.

3.1 Factoring through GQp(p)

In order to simplify the deformation problem, we show that residually trivial representations
out of GQp factor through its maximal pro-p quotient. In the following, let R denote a
complete local Noetherian ring with residue field k, a finite field of characteristic p, and
maximal ideal m.

Proposition 3.1. The group ker(GLN(R)→ GLN(k)) is a pro-p group.
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Proof. Since

ker(GLN(R)→ GLN(k)) = lim←−
n

ker(GLN(R/mn)→ GLN(k)),

it suffices to show that ker(GLN(R/mn)→ GLN(k)) is a p-group for all n.
We have ker(GLN(R)→ GLN(k)) = 1N + mMN(R). We have

(1N + mMN(R))p
k

=

pk∑
i=0

miMN(R)i
(
pk

i

)
.

Since (p) ⊆ m,

miMN(R)i
(
pk

i

)
⊆ m

i+vp

(
(p
k

i )
)
MN(R)i,

where vp denotes the p-valuation. Kummer’s criterion for the p-valuation of
(
pk

i

)
implies that

k− vp(i) ≤ vp

((
pk

i

))
. Choose k = 2n. Then for i = 1, . . . , pn− 1, we have n ≤ vp(

(
pk

i

)
). For

i ≥ pn, the power on m is at least pn ≥ n. Thus in GLN(R/mn),

(1n + mMN(R))p
k

=

pk∑
i=0

miMN(R)i
(
pk

i

)
= 1n,

corresponding to the i = 0 term. We note that R/mn is finite by the Noetherian hypothesis
(since dimFp m`/m`+1 <∞ for each `), so GLN(R/mn) is finite.

This implies that the image of a residually trivial morphism ρ : GQp → GL2(R) is pro-p,
giving the following corollary.

Corollary 3.2. Any residually trivial representation ρ : GQp → GL2(R) factors through
GQp(p).

3.2 The Deformation Problem Dloc
p

We define a functor
Dloc
p : CLNRings(k)→ Sets

from the category of complete local Noetherian rings over W (k) to the category of sets by
the assignment

Dloc
p : R 7→

ρ : GQp → GL2(R)

∣∣∣∣∣∣∣
ρ satisfies

1. ρ lifts ρ

2. det ρ ≡ ψ

 .
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Note that det ρ takes values in R, while ψ takes values in W (k). We define det ρ ≡ ψ to
mean that the diagram

GQp

ρ //

ψ
��

GL2(R)

det

��
W (k)× // R×

commutes, where the bottom arrow comes from the W (k)-algebra structure of R.
Using Proposition 2.3, we may explicitly find a universal framed deformation ring for

Dloc
p . As prescribed in Remark 1, let σ and τ denote lifts to GQp of the two topological

generators of the maximal pro-p quotient GQp(p), with σ a lift of Frobenius and τ ∈ IGQp
,

such that ψ(σ) = 1 and ψ(τ) = 1− p.

Proposition 3.3. The ring

Rloc
p,0 = W (k)[[A11, A12, A21, A22, B11, B12, B21, B22]]/((1 + A11)(1 + A22)− A12A21 − ψ(σ),

(1 +B11)(1 +B22)−B12B21 − ψ(τ))

represents the functor Dloc
p by associating to a morphism ϕ : Rloc

p,0 → R the projetion along ϕ
of the representation ρloc

p,0 : GQp → GL2(Rloc
p,0) given by

ρloc
p,0(σ) 7→

(
1 + A11 A12

A21 1 + A22

)
and ρloc

p,0(τ) 7→
(

1 +B11 B12

B21 1 +B22

)
.

Note that in this definition, we are implicitly using the fact that ρloc
p,0 factors through GQp(p).

Proof. We note that the homomorphism ρloc
0,p exists by the completeness of the ring Rloc

p,0.
Given a complete local noetherian ring R, observe that a morphism ρ : GQp → GL2(R)
is determined by the images of σ and τ . Consequently, there exists a unique morphism
ϕ : Rloc

p,0 → R such that ρ = ϕ∗ρ
loc
p,0, determined by sending Aij and Bij to the associated

entries of the matrices for ρ(σ) and ρ(τ). Note that since ρ has determinant ψ, the map
factors through the relations in Rloc

p,0. Conversely, a morphism ϕ determines a homomorphism
by projection.

Proposition 3.4. The ring

Rloc
p = W (k)[[A12, A21, A22, B12, B21, B22]]

and representation ρloc : GQp → GL2(Rloc
p ) given by

ρloc
p (σ) =

(
(ψ(σ) + A12A21)(1 + A22)−1 A12

A21 1 + A22

)
and

ρloc
p (τ) =

(
(ψ(τ) +B12B21)(1 +B22)−1 B12

B21 1 +B22

)
represents the functor Dloc

p .
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Proof. We claim that the map Rloc
p → Rloc

p,0 sending Aij 7→ Aij, Bij 7→ Bij is an isomorphism.
Note that A11 and B11 are the images of the elements

(ψ(σ) + A12A21)(1 + A22)−1 − 1 and (ψ(τ) +B12B21)(1 +B22)−1 − 1,

respectively, so that the map is surjective. Conversely, there are no relations among the six
generators A12, A21, A22, B12, B21, B22 of Rloc

0 , so the map is both surjective and injective.

3.3 The Deformation Problem Dloc
p,ord

In this section we restrict to those deformations that are ordinary. We define a functor

Dloc
p,ord : CLNRings(k)→ Sets

by the assignment

Dloc
p,ord : R 7→

ρ : GQp → GL2(R)

∣∣∣∣∣∣∣∣∣
ρ satisfies

1. ρ ≡ 1 : GQp → GL2(k)

2. det ρ ≡ ψ

3. ρ ∼
( χ1 ∗

0 χ2

)
with χ1 unramified

 .

Our hope would be to find an object of CLNRings(k) representing this functor. We remark
that the third condition in the definition of Dloc

p,ord together with the definition of ψ forces
the lifting to be ramified. In particular, any lifting ρ has a 1-dimensional subspace fixed by
ρ|IQp .

Unfortunately, the deformation problem Dloc
p,ord is not representable by a local ring R.

To see why, consider the same problem with GQp replaced (for simplicity) by Zp = 〈σ〉,
where · here denotes the pro-p completion. Define Rγ = k[γ]/(γ2), Rδ = k[δ]/(δ2), and
Rγ,δ = k[γ, δ]/(γ, δ)2. Define representations ργ : Zp → GL2(Rγ) and ρδ : Zp → GL2(Rδ) by
σ 7→

(
1 γ
0 1

)
and σ 7→ ( 1 0

δ 1 ), respectively. We have the diagram of rings

Rγ,δ

πγ}}{{
{{

{{
{{

πδ !!C
CC

CC
CC

C

Rγ

""D
DD

DD
DD

DD
Rδ

}}zz
zz

zz
zz

z

k

induced by the maps

πγ : γ 7→ γ, δ 7→ 0 and πδ : δ 7→ δ, γ 7→ 0.
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While both ργ and ρδ are ordinary, the lifting ργ,δ : σ 7→
(

1 γ
δ 1

)
is not. The obstruction is

that while ργ and ρδ are both ordinary, as can be seen by conjugating the latter by ( 0 1
1 0 ),

the 1-dimensional unramified subspaces for these representations are residually distinct, so
no residually trivial base change matrix could be used to align them.

In order to continue we will need to expand our category to one where we may find an
object to represent Dloc

p,ord.

3.4 Choosing a Filtration

For any ordinary representation ρ, the 1-dimensional submodule U fixed by ρ|IQp gives a

filtration 0 ⊆ U ⊆ R2 that yields a complete flag 0 ⊆ U ⊆ k2 for the residual vector space
k2. As noted in Section 3.3, two representations with distinct flags cannot be conjugated to
each other by a residually trivial matrix. Thus we expect to need a family of local rings –
one for each of the possible choices for the 1-dimensional subspace of k2 – to represent Dloc

p,ord.
These local rings will arise as the localizations of a formal scheme, so that a morphism from
a complete local noetherian ring to this formal scheme is equivalent to a morphism out of
one of these local rings. In order to do this, we need to first build a formal scheme whose
points correspond to choices for the complete flag on k2, which in turn corresponds to a
choice of a 1-dimensional subspace of k2.

Formally, we would like to represent the functor Dfilt : CLNRings(k) → Sets defined
by

Dfilt : R 7→
{
U ⊆ R2|U ∼= R, 0 6= U ⊆ k2

}
.

A 1-dimensional subspace of k2 is spanned by a single vector, which we may take to be
either ( x1 ) for x ∈ k or ( 1

0 ). We can view the latter as a special case of the set
(

1
y

)
, so

that we may glue together the affine formal schemes Spf W (k) 〈x〉 and Spf W (k) 〈y〉, whose
topologies are Spec k[x] and Spec k[y], respectively, in order to produce a formal scheme with
spectrum P1

k. The notation 〈·〉 is defined for a topological ring R by

R 〈x〉 =

{
∞∑
n=0

rnx
n

∣∣∣∣∣rn → 0

}
.

The gluing map is defined to send k \0 ⊆ Spec k[x] to k \0 ⊆ Spec k[y] via the map α 7→ α−1

on the level of topological spaces. This corresponds to the ring homomorphism defined by
x 7→ y−1 taking the open subscheme Spf W (k) 〈x, x−1〉 of Spf W (k) 〈x〉 isomorphically to the
open subscheme Spf W (k) 〈y, y−1〉 of Spf W (k) 〈y〉. Let Xfilt denote this formal scheme.

Proposition 3.5. The formal scheme Xfilt represents the functor Dfilt. Moreover, for any
complete local noetherian ring R with residue field kR a finite extension of k, we have

Hom(Spf R,Xfilt) ∼=
{
U ⊆ R2|U ∼= R, 0 6= U ⊆ k2

R

}
.
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Proof. A morphism ϕ : Spf R→ Xfilt of formal schemes over W (k) either sends the nontrivial
point of Spf R to the point (y) + (π) ⊆ W (k) 〈y〉, where π ∈ W (k) is a uniformizer, or to
a point of Spf W (k) 〈x〉 = Spec k[x]. By symmetry, we may suppose the latter without loss
of generality. Let the image of the nontrivial point be α ∈ k, corresponding to the ideal
pα ∈ Spec k[x]. Then we are given a morphism of rings ϕ#

m+pα : W (k) 〈x〉m+p̃α
→ R, where

p̃α ⊆ W (k) 〈x〉 is the ideal generated by an arbitrary lift of the generator of the principal

ideal pα to W (k) 〈x〉. To this morphism we associate the subspace spanned by
(
ϕ#

m+p̃α
(x)

1

)
.

The former case is treated in the same manner. This associates a unique filtration to ϕ such
that the residue is a complete flag.

We claim, conversely, that to any filtration with complete flag residue there exists a

morphism ϕ. The filtration is determined by U ⊆ R2 with U ∼= R, so we can take U = R
(
α̃
β̃

)
for α̃, β̃ ∈ R reducing to α, β ∈ kR. One of α or β is nonzero since U is by assumption
residually nontrivial. Without loss of generality, suppose that β is nonzero. Then replacing(
α̃
β̃

)
with

(
α̃β̃−1

1

)
yields the same filtration. We may then define the ring homomorphism

W (k) 〈x〉m+p̃αβ−1
→ R by mapping x to a lift of αβ−1 ∈ R. This gives rise to a morphism of

formal schemes, ϕ : Spf R→ Xfilt, completing the proof.

3.5 Representation by a Formal Scheme Xloc
p,ord

We seek a formal scheme Xloc
p,ord representing the functor Dloc

p,ord. The idea behind the con-

struction is to note that on each point of Xfilt, we can explicitly write the condition for
a representation with the corresponding residual filtration to be ordinary. Thus, by using
a scheme fibered over Xfilt, with fibers corresponding to the deformation problem for each
choice of residual filtration, we may represent Dloc

p,ord.
Specifically, we fix the basis used in Section 3.4 to write ρ(σ) as a 2×2 matrix over R for

each σ ∈ GQp . Written in the basis ( 1
x ) , ( 0

1 ) or ( y1 ) , ( 1
0 ) corresponding to the filtration for the

ordinary representation, ρ(τ0) for any τ0 ∈ IQp should be of the form
(

1 w
0 ψ(σ)

)
for some w ∈

mR. For general elements σ0 ∈ GQp , we know that ρ(σ0) is of the form
(

(1+z0)−1 z1
0 (1+z0)ψ(σ)

)
in this basis. Since the representation factors through GQp(p), Proposition 2.3 and Remark 1
imply that the aforementioned condition for ρ to be ordinary is equivalent to the requirement
that (

x 1
1 0

)−1

ρ(σ)

(
x 1
1 0

)
=

(
1 + z11 z12

0 ψ(σ)(1 + z11)−1

)
(3.1)

and (
x 1
1 0

)−1

ρ(τ)

(
x 1
1 0

)
=

(
1 w12

0 ψ(τ)

)
(3.2)

when the filtration is of the form ( 1
x ) , ( 0

1 ), and that(
1 0
y 1

)−1

ρ(σ)

(
1 0
y 1

)
=

(
1 + z′11 z′12

0 ψ(σ)(1 + z′11)−1

)
(3.3)
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and (
1 0
y 1

)−1

ρ(τ)

(
1 0
y 1

)
=

(
1 w′12

0 ψ(τ)

)
(3.4)

when the filtration is of the form ( y1 ) , ( 1
0 ).

In order to glue these two charts together, we observe that by defining x 7→ y−1, we
obtain (

1 + z11 z12

0 ψ(σ)(1 + z11)−1

)
=

(
x 1
1 0

)−1(
1 0
y 1

)(
1 + z′11 z′12

0 ψ(σ)(1 + z′11)−1

)(
1 0
y 1

)−1(
x 1
1 0

)
=

(
1 + z′11 −y (1 + z′11)−1 ((ψ(σ)− 1)− 2z′11 − z′211 + yz′12 + yz′11z

′
12)

0 (1 + z′11)−1

)
and (

1 w12

0 ψ(τ)

)
=

(
x 1
1 0

)−1(
1 0
y 1

)(
1 w′12

0 ψ(τ)

)(
1 0
y 1

)−1(
x 1
1 0

)
=

(
1 −y ((ψ(τ)− 1) + yw′12)
0 1− p

)
.

Thus, we construct Xloc
p,ord by gluing the rings

X1 = Spf W (k) 〈x〉 [[z11, z12, w12]] and X2 = Spf W (k) 〈y〉 [[z′11, z
′
12, w

′
12]]

along the open subschemes

Spf W (k)
〈
x, x−1

〉
[[z11, z12, w12]] and Spf W (k)

〈
y, y−1

〉
[[z′11, z

′
12, w

′
12]]

via the map ϕ : W (k) 〈x, x−1〉 [[z11, z12, w12]]→ W (k) 〈y, y−1〉 [[z′11, z
′
12, w

′
12]] defined by

x 7→ y−1

z11 7→ z′11

z12 7→ −y (1 + z′11)
−1 (

(ψ(σ)− 1)− 2z′11 − z′211 + yz′12 + yz′11z
′
12

)
w12 7→ −y ((ψ(τ)− 1) + yw′12) .

Proposition 3.6. The formal scheme X represents the functor Dloc
p,ord. Moreover, for any

complete local noetherian ring R with residue field kR a finite extension of k, we have

Hom(Spf R,Xloc
p,ord) ∼=

ρ : GQp → GL2(R)

∣∣∣∣∣∣∣∣∣
ρ satisfies

1. ρ ≡ 1 : GQp → GL2(kR)

2. det ρ ≡ ψ

3. ρ ∼
( χ1 ∗

0 χ2

)
with χ1 unramified

 .
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Proof. Suppose we are given an ordinary, residually trivial representation ρ : GQp → GL2(R)
with determinant ψ. Recall from Corollary 3.2 that ρ factors through a map GQp(p) →
GL2(R), so it is defined by the images of the elements σ and τ defined earlier. Since ρ
is ordinary, ρ is upper triangular in some basis {( ab ) , ( cd )} of R2, and the inertia group
acts trivially on the space generated by ( ab ). As mentioned earlier the choice of subspace
acted upon trivially by the inertia group is unique since the determinant condition forces
a nontrivial action by inertia on the whole space. Since at least one of a or b is residually
nontrivial (in kR), we can rewrite ( ab ) in the form ( x1 ) (if b is nontrivial) or

(
1
y

)
(otherwise)

by dividing both entries by the residually nontrivial element. If we replace ( cd ) with ( 1
0 )

in the first case and ( 0
1 ) in the second, ρ must still have the form ( χ ∗0 ∗ ) with χ unramified

with respect to this basis. Note that aside from the choice of chart when both a and b are
residually nontrivial, there is a unique choice of x (or y) provided by this procedure. We
finally define the morphism Spf R → Xloc

p,ord by topologically sending the ideal of R to the
residual filtration, and on rings, defining the map using (3.1) and (3.2) or (3.3) and (3.4).

Conversely, given a map Spf R→ Xloc
p,ord, we define ρ(σ) and ρ(τ) by filling in the images

under the map (on rings) of the variables in the formulas

ρ(σ) =

(
x 1
1 0

)(
1 + z11 z12

0 ψ(σ)(1 + z11)−1

)(
x 1
1 0

)−1

and

ρ(τ) =

(
x 1
1 0

)(
1 w12

0 ψ(τ)

)(
x 1
1 0

)−1

and similarly for y. This clearly reverses the construction in the previous paragraph, so we
have the desired isomorphism.

3.6 Specializing to Discrete Valuation Rings

Since the representations of interest take values in an extension K/Qp, we may potentially
be able to simplify our representing object for Dloc

p,ord by specializing to the subcategory of
discrete valuation rings.

We obtain our candidate ring to represent Dloc
p,ord by considering the image Rloc

p,ord of the

natural morphism Rloc
p → Γ(Xloc

p,ord,OXloc
p,ord

).

Since Γ(Xloc
p,ord,OXloc

p,ord
) is a subring of W (k) 〈x〉 [[z11, z12, w12]], we can regard Rloc

p,ord as the

image of the morphism Rloc
p → W (k) 〈x〉 [[z11, z12, w12]] induced by the natural morphism.

In particular, using the description of Rloc
p given in Proposition 3.4, and solving for ρ(σ) and

ρ(τ) in the formulas (3.1) and (3.2), we can identify Rloc
p,ord as the image of the morphism
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explicitly defined by

A12 7→ x(1 + z11)− x(1 + z11)−1 − x2z12

A21 7→ z12

A22 7→ z11 − xz12

B12 7→ −px− x2w12

B21 7→ w12

B22 7→ −xw12.

We can write Rloc
p,ord = W (k)[[a12, a21, a22, b12, b21, b22]]/b, where b is the ideal of relations

existing among the generators when Rloc
p,ord is identified with the image of the ring Rloc

p in
W (k) 〈x〉 [[z11, z12, w12]] via Aij 7→ aij and Bij 7→ bij.

Our first observation is to note that

−b21b12 + b22p− b2
22, (3.5)

a12(b2
21 + b2

21a22 − b22b21a21) + b22(2a22b21 + a2
22b21 − b22a22a21 − b22a21), (3.6)

and

a12(p−b22)((p−b22)+(p−b22)a22−b12a21)+b12(2(p−b22)a22 +(p−b22)a2
22−b12b22a21−b12a21)

(3.7)
are relations in Rloc

p,ord, as can be verified by explicit computation. A fourth relation, not
implied by these, is given by

− a12a22b21b22 + b21b12a
2
22 − b12b22a21a22 − a12b21b12a21 (3.8)

+ pa12a22b21 − a12b21b22 + 2b21b12a22 − b12b21a21 + pa12b21,

which can also be verified by explicit computation. We define b0 to be the ideal generated
by these four relations. We have b0 ⊆ b, inducing a map Rloc

p /b0 → Rloc
p,ord.

We need Rloc
p,ord to solve the deformation problem Dloc

p,ord for discrete valuation rings. In

order to prove that Rloc
p,ord solves this deformation problem, we will show that Rloc

p /b0 solves

this deformation problem, and deduce the result using the natural map Rloc
p /b0 → Rloc

p,ord.

Proposition 3.7. When restricted to the category DVR(k) of discrete valuation rings over
W (k), the ring Rloc

p,ord represents the functor Dloc
p,ord. Moreover, for any discrete valuation ring

OK with residue field kK that is a finite extension of k,

Hom(Rloc
p,ord,OK) ∼=

ρ : GQp → GL2(OK)

∣∣∣∣∣∣∣∣∣
ρ satisfies

1. ρ ≡ 1 : GQp → GL2(kK)

2. det ρ ≡ ψ

3. ρ ∼
( χ1 ∗

0 χ2

)
with χ1 unramified

 .
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Section 3.7 is devoted to the detailed verification of the computational steps of Proposition
3.7. We give an overview of the proof as follows.

Given f : Rloc
p,ord → OK for OK with valuation vK and residue field kK , we would like to

fill in the dotted arrow in the commutative diagram

Xloc
p,ord

��
Spf OK

f∗ //

f̃∗
66mmmmmmmm

Spf Rloc
p,ord

such that the diagram commutes. In particular, we desire a lift f̃ ∗ of the morphism f ∗ :
Spf R→ Spf Rloc

p,ord induced by f . Note that since the map f is determined by the lifting f̃ ∗

(via the inclusion Rloc
p,ord ↪→ Γ(Xloc

p,ord,OXloc
p,ord

)), constructing a lifting for all f shows that the

functors Hom(·, Spf Rloc
p,ord) and Hom(·,Xloc

p,ord) are isomorphic on the category of DVRs OK

with residue field kK a finite extension of k.
A map f̃ ∗ : Spf OK → Xloc

p,ord is a map of the underlying topological spaces Spec k →
Spec k[x], together with a morphism of sheaves OXloc

p,ord
→ (f̃ ∗)∗OSpf OK

.

Thus in order to construct a lifting, we first need to determine the morphism f̃ ∗ as it
acts on topological spaces. In particular, this corresponds to a choice of residual filtration
for the representation. Algebraically, we can see from the morphism defined earlier in this
section that if − b22

b21
is defined, it would provide the value of x, which determines the filtration.

Alternatively, if − b21

b22
is defined, it would provide the value of y. Thus we can break into

cases based on whether vK(f(b22)) is greater than, equal to, or less than vK(f(b21)), and in
each of these, it is just a matter of explicit algebra to determine the lifting. However, it is
possible that f(b21) = f(b22) = 0, in which case another approach must be taken.

In this case, we extract x from f(b12) by computing −p−1f(b12) if it is defined. If not, we
may use −pf(b12)−1 to define y. Again, one breaks into subcases depending on the valuations
vK(p) and vK(f(b12)). Thus, through the explicit determination in each of a total of four
cases/subcases carried out in Section 3.7, one proves Proposition 3.7. We remark that in
this proof, we will not make use of (3.8).

3.7 Proof of Proposition 3.7

Before we check each of the cases, we will compute the composition Rloc
p → R1 〈x−1〉 → R2,

where
R1 = W (k) 〈x〉 [[z11, z12, w12]] and R2 = W (k) 〈y〉 [[z′11, z

′
12, w

′
12]]

are the two rings whose formal spectra are glued to construct Xloc
p,ord and R1[x−1] → R2 is

the gluing homomorphism ϕ.
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In particular, we have

a12 7→y−1

z′11 + (1 + z′11)
−1 (−2z′11 − z′211 + yz′12 + yz′11z

′
12

)︸ ︷︷ ︸
image of a22

+
z′11

1 + z′11


= z′12

a21 7→ − y (1 + z′11)
−1 (−2z′11 − z′211 + yz′12 + yz′11z

′
12

)
a22 7→z′11 − y−1

(
−y (1 + z′11)

−1 (−2z′11 − z′211 + yz′12 + yz′11z
′
12

))︸ ︷︷ ︸
image of a21

= z′11 + (1 + z′11)
−1 (−2z′11 − z′211 + yz′12 + yz′11z

′
12

)
b12 7→ − y−1(p+ y−1 (−y (p+ yw′12))) = −y−1(p− (p+ yw′12)) = w′12

b21 7→ − y (p+ yw′12)

b22 7→ − y−1 (−y (p+ yw′12))︸ ︷︷ ︸
image of b21

= p+ yw′12.

In all cases, we will proceed in the following manner. We pick a point of Spec k[x] (or
Spec k[y]) that corresponds to the residual image of x (or y). Denote this point by px (or
py). We define the underlying map of topological spaces Spec k → Spec k[x] to send the
point of Spec k to the ideal px (or py). In the case analysis, we will construct an explicit ring
homomorphism g : OXloc

p,ord,px+m1
→ OK , where m1 = (p, z11, z12, w12) ⊆ R1, or in the case of

y, OXloc
p,ord,py+m2

→ OK , where m2 = (p, z′11, z
′
12, w

′
12) ⊆ R2. Once this map has been defined,

we define f̃ ∗ by defining a map to the open subscheme Spf R1 (or Spf R2) and extending by
zero to Xloc

p,ord.

More formally, for any open set U ⊆ Spf Xloc
p,ord containing px ∈ Spec k[x] (or py), we have

a map
OXloc

p,ord
(U)→ OXloc

p,ord,m1+px or OXloc
p,ord

(U)→ OXloc
p,ord,m2+py

by the universal property of the stalk. By composing this with our map

R1,m1+px = OXloc
p,ord,m1+px → OK or R2,m2+py = OXloc

p,ord,m2+py → OK

and extending by 0 on open sets not containing px (or py), we obtain the map

OXloc
p,ord
→ f̃∗OSpf OK

of sheaves on Xloc
p,ord.

Once the morphism g is defined, it suffices to check that the diagram of rings

R1,m1+px

g
wwn n n n n n n

OK Rloc
p,ord

foo

h

OO
(3.9)

commutes. Note that we denoted the inclusion Rloc
p,ord ↪→ R1,m1+px by h.
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Case 1: vK(f(b21)) ≤ vK(f(b22)) <∞ or vK(f(b21)) < vK(f(b22)) =∞
We keep the above notation, and denote the maximal ideal of OK by mK . Define α =
−f(B22)
f(B21)

∈ OK , which has residue α ∈ OK/mK . Let px ∈ k[x] be the prime corresponding to

the point α. We will define a map g : R1,m+px → OK and check that (3.9) commutes.
We define g via the natural map W (k)→ OK on the coefficient ring and by

g(x) = −f(b22)

f(b21)

g(z11) = f(a22)− f(b22)

f(b21)
f(a21)

g(z12) = f(a21)

g(w12) = f(b21)

on the generators, using the valuation condition to define the image of x. We note that the
images under g ◦ h of W (k), a21, a22, b21, and b22 clearly match their images under f by the
definitions presented. It suffices to check the compatibility, then, for the images of a12 and
b12.

We have h(b12) = −x(p + xw12) ∈ R1,m+px . Observe that if f(b21) 6= 0, which must be
the case if either vK(f(b21)) ≤ vK(f(b22)) < ∞ or vK(f(b21)) < vK(f(b22)) = ∞, we have
f(b12) = f(b21)−1(f(b22)p− f(b22)2) ∈ K by (3.5). Then

f(b12) = f(b21)−1(f(b22)p− f(b22)2) = −g(x)p+ g(x)f(b21)
f(b22)

f(b21)
= −g(x)p+ g(x)2g(w21)

= g(h(b12)),

as needed.
Our next claim is that

f(b21)2 + f(b21)2f(a22)− f(b22)f(b21)f(a21) 6= 0.

Suppose otherwise. Since f(b21) 6= 0, f(b21) + f(b21)f(a22) − f(b22)f(a21) = 0, or f(b21) =
(1 + f(a22))−1f(b22)f(a21), which is absurd since vK(f(b22)) ≥ vK(f(b21)) and vK(a12) > 0.

We have

h(a12) = x(1 + z11)− x(1 + z11)−1 − x2z12 = x

(
z11 − xz12 +

z11

1 + z11

)
. (3.10)
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By (3.6) and the preceding claim,

f(a12) =− (f(b21)2 + f(b21)2f(a22)− f(b22)f(b21)f(a21))−1f(b22)

· (2f(a22)f(b21) + f(a22)2f(b21)− f(b22)f(a22)f(a21)− f(b22)f(a21))

=g(x)

(
1 + f(a22)− f(b22)

f(b21)
f(a21)

)−1

f(b21)−1

· (2f(a22)f(b21) + f(a22)2f(b21)− f(b22)f(a22)f(a21)− f(b22)f(a21))

=g(x)(1 + g(z11))−1

(
f(a22) + f(a22)

(
f(a22)− f(b22)

f(b21)
f(a21)

)
+f(a22)− f(b22)

f(b21)
f(a21)

)
=g(x)(1 + g(z11))−1 (f(a22) + f(a22)g(z11) + g(z11))

=g(x)

(
f(a22)− f(b22)

f(b21)
f(a21) +

f(b22)

f(b21)
f(a21) +

g(z11)

1 + g(z11)

)
=g(x)

(
g(z11) + xg(z12) +

g(z11)

1 + g(z11)

)
=g(h(a12)).

Case 2: vK(f(C)) < vK(f(w12))

In this case, we define
g : OXloc

p,ord,m+(y) = R2,m+(y) → OK ,

setting py = (y). We define g via the natural map W (k) on the coefficient field and by

g(y) = −f(b21)

f(b22)

g(z′11) = −
(
f(a22) +

f(b21)

f(b22)
f(a12)

)(
1 + f(a22) +

f(b21)

f(b22)
f(a12)

)−1

g(z′12) = f(a12)

g(w′12) = f(b12)

on the generators, using the valuation condition to define the image of y.
We need to check that g ◦ h = f , which is immediately true for the images of W (k), a12,

and b12. By (3.5), we have −f(b21)f(b12) = −pf(b22) + f(b22)2. Note that f(b22) 6= 0 by the
inequality on the valuation, so we may rearrange to find

f(b22) = −f(b21)

f(b22)
f(b12) + p = g(yw′12 + p) = g(h(b22)).
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Since g(h(b22)) = f(b22), we have

g(h(b21)) = g(−y(p+ yw′12)) = −g(y)g(p+ yw′12) =
f(b21)

f(b22)
g(h(b22)) = f(b21)

as well. We are left to prove that the images of a21 and a22 are correct.
Rearranging the definition of g, we find

−f(b21)

f(b22)
f(a12)− f(a22) = g(z′11)

(
1 + f(a22) +

f(b21)

f(b22)
f(a12)

)
.

Collecting terms in f(a22), we find

−f(a22)(1 + g(z′11)) =g(z′11) +
f(b21)

f(b22)
f(a12)g(z′11) +

f(b21)

f(b22)
f(a12)

f(a22) =−
(
g(z′11) +

f(b21)

f(b22)
g(z′11)f(a12) +

f(b21)

f(b22)
f(a12)

)
(1 + g(z′11))

−1

f(a22) =g(z′11) + (1 + g(z′11))−1

·
(
−2g(z′11)− g(z′11)2 − f(b21)

f(b22)
f(a12)− f(b21)

f(b22)
g(z′11)f(a12)

)
f(a22) =g(z′11) + (1 + g(z′11))−1

(
−2g(z′11)− g(z′11)2 + g(yz′12) + g(yz′11z

′
12)
)

f(a22) =g(h(a22)).

By (3.6), we have

f(a12)(f(b21)2 + f(b21)2f(a22)− f(b22)f(b21)f(a21)) =

−f(b22)(2f(a22)f(b21) + f(a22)2f(b21)− f(b22)f(a22)f(a21)− f(b22)f(a21)),

which, separating out terms with f(a21), rearranges to

f(a21)
(
f(a12)f(b22)f(b21) + f(b22)2f(a22) + f(b22)2

)
=

2f(b22)f(a22)f(b21) + f(b22)f(a22)2f(b21) + f(a12)f(b21)2 + f(a12)f(b21)2f(a22).

Noting that f(b22) is invertible by the valuation condition, we have

f(a21)

(
1 + f(a12)

f(b21)

f(b22)
+ f(a22)

)
=

2f(a22)
f(b21)

f(b22)
+ f(a22)2f(b21)

f(b22)
+ f(a12)

f(b21)2

f(b22)2
+ f(a12)f(a22)

f(b21)2

f(b22)2
.
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We solve for f(a21) in order to complete the proof of commutativity:

f(a21) =− f(b21)

f(b22)

(
−2f(a22)− f(a22)2 − f(a12)

f(b21)

f(b22)
− f(a12)f(a22)

f(b21)

f(b22)

)
(

1 + f(a12)
f(b21)

f(b22)
+ f(a22)

)−1

f(a21) =g(y)

(
−f(a22)− f(a22)2 −

(
f(a22) + f(a12)

f(b21)

f(b22)

)
+ g(z′12)f(a22)g(y)

)
(

1 + f(a12)
f(b21)

f(b22)
+ f(a22)

)−1

f(a21) =g(y)
(
−f(a22)− f(a22)2 + g(z′12)f(a22)g(y)

)
(1− g(z′12)g(y) + f(a22))

−1
+ g(y)g(z′11)

f(a21) =− g(y)f(a22) + g(y)g(z′11).

Since we proved that f(a22) = g(h(a22)),

f(a21) = −g(y)g(h(a22)) + g(yz′11) (3.11)

= g
(
−y
(
z′11 + (1 + z′11)

−1 (−2z′11 − z′211 + yz′12 + yz′11z
′
12

))
+ yz′11

)
= g

(
−y (1 + z′11)

−1 (−2z′11 − z′211 + yz′12 + yz′11z
′
12

))
= g(h(a21)),

completing the proof of Case 2.

Case 3: f(b22) = f(b21) = 0

If f(b22) = f(b21) = 0, relations (3.5) and (3.6) are automatically satisfied, so f(a12), f(a21),
f(a22), and f(b12) are subject only to relations (3.7) and (3.8). In fact, we will just use the
consequence

f(a12)p(p+pf(a22)− f(b12)f(a21)) (3.12)

=− f(b12)(2pf(a22) + pf(a22)2 − f(b12)f(a22)f(a21)− f(b12)f(a21))

of (3.7) in the proof of this case. Let the ramification index of K/Qp be denoted e. The
definition of the map h suggests that to choose the image of x in this case, one might
use the definition g(x) = p−1f(b12) if the right hand side exists in OK . Else, one can use
g(y) = pf(b12)−1 on the chart Spf R2. Thus, we break into two subcases.
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Subcase 3.1: vK(f(b12)) ≥ e

We define px using the residue of p−1f(b12) as in Case 1, and construct a map out of R1,m+px .
We define g via the natural map on the coefficient field W (k), and by

g(x) = −p−1f(b12)

g(z11) = f(a22)− p−1f(b12)f(a21)

g(z12) = f(a21)

g(w12) = f(b21) = 0

on the generators.
By remarks at the beginning of the section, it suffices to check that f = g ◦ h, which

is immediately true for the images of W (k), a21, a22, b12, b21, and b22 (since g(h(b22)) =
p−1f(b12)f(b21) = 0).

Thus it suffices to show that g(h(a12)) = f(a12). By (3.12), we have

f(a12) =− p−1f(b12)(2f(a22) + f(a22)2 − p−1f(b12)f(a22)f(a21)− p−1f(b12)f(a21))

· (1 + f(a22)− p−1f(b12)f(a21))−1.

=g(x)(f(a22)
(
1 + f(a22)− p−1f(b12)f(a21)

)
+ f(a22)− p−1f(b12)f(a21))

· (1 + f(a22)− p−1f(b12)f(a21))−1.

=g(x)
(
f(a22) + g(z11)(1 + f(a22)− p−1f(b12)f(a21))−1

)
=g(x)

(
g(z11) + p−1f(b12)f(a21) + g(z11)(1 + g(z11))−1

)
=g(x)

(
g(z11)− g(x)g(z12) + g(z11)(1 + g(z11))−1

)
=g(h(a12)),

where the last equality follows from (3.10).

Subcase 3.2: vK(f(b12)) < e

As in Case 2, we define a map

g : OXloc
p,ord,m+(y) = R2,m+(y) → OK .

We define g by the natural map on the coefficient ring W (k) and by

g(y) = −pf(b12)−1

g(z′11) = −
(
pf(b12)−1f(a12) + f(a22)

) (
1 + f(a22) + pf(b12)−1f(a12)

)−1

g(z′12) = f(a12)

g(w′12) = f(b12),

where the definition of g(y) is possible by the valuation condition.
It suffices to check that f = g ◦h, which is immediately true for the images of W (k), a12,

b12, b21, and b22. We are left to prove that f(a21) = g(h(a21)) and f(a22) = g(h(a22)).
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Rearranging the definition of g(z′11), we have

−pf(b12)−1f(a12)− f(a22) = g(z′11)
(
1 + f(a22) + pf(b12)−1f(a12)

)
.

Rearranging to group the terms with f(a22) together, we find

−f(a22)(g(z′11) + 1) =g(z′11) + pf(b12)−1g(z′11)f(a12) + pf(b12)−1f(a12)

f(a22) =−
(
g(z′11) + pf(b12)−1g(z′11)f(a12) + pf(b12)−1f(a12)

)
(g(z′11) + 1)

−1

f(a22) =g(z′11) + (1 + g(z′11))
−1 (−2g(z′11)− g(z′11)2 − pf(b12)−1f(a12)

−pf(b12)−1g(z′11)f(a12)
)

f(a22) =g(z′11) + (1 + g(z′11))
−1 (−2g(z′11)− g(z′11)2 + g(yz′12) + g(yz′11z

′
12)
)

f(a22) =g(h(a22)).

By (3.12), we have

f(a12)p(p+pf(a22)− f(b12)f(a21))

=− f(b12)(2pf(a22) + pf(a22)2 − f(b12)f(a22)f(a21)− f(b12)f(a21)).

Collecting terms in f(a21), we have

−f(a21)f(b12) (pf(a12) + f(b12)(1 + f(a22)))

= −f(a12)p2(1+f(a22))− f(b12)(2pf(a22) + pf(a22)2).

Since f(b12) is invertible by assumption, we have

f(a21)
(
1 + pf(b12)−1f(a12) + f(a22)

)
=

f(a12)p2f(b12)−2(1+f(a22)) + pf(b12)−1(2f(a22) + f(a22)2).

We now move 1 + pf(b12)−1f(a12) + f(a22) to the right and evaluate as follows.

f(a21) =− pf(b12)−1
(
−f(a12)pf(b12)−1(1 + f(a22))− 2f(a22)− f(a22)2

)(
1 + f(a22) + pf(b12)−1f(a12)

)−1

f(a21) =− pf(b12)−1
(
−f(a12)pf(b12)−1f(a22)− f(a22)− f(a22)2

)(
1 + f(a22) + pf(b12)−1f(a12)

)−1
+ g(y)g(z′11)

f(a21) =g(y)
(
g(z′12)g(y)f(a22)− f(a22)− f(a22)2

)
(1 + f(a22)− g(y)g(z′12))

−1
+ g(y)g(z′11)

f(a21) =− f(a22)g(y) + g(y)g(z′11).

Since we have shown already that f(a22) = g(h(a22)), the remainder of the computation
proceeds exactly as in (3.11).
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3.8 Additional Properties of Rloc
p,ord

We need to know additional facts concerning the ring Rloc
p,ord. The first is a bound on the

Krull dimension, which will be necessary in producing a well-behaved family of deformation
rings RQ that are essential to the argument of Section 6.

Proposition 3.8. We have dimRloc
p,ord ≤ 5.

Remark 3. We will show in Corollary 6.4 that in fact dimRloc
p,ord = 5.

Proof. Note that for any ideal a of a ring R, dimR ≥ dimR/a, since the primes of R are in
order-preserving bijection with the primes of R containing a. Let b1 be the ideal generated
by relations (3.5) and (3.6). If we show that 5 ≥ dimRloc

p /b1, then

5 ≥ dimRloc
p /b1 ≥ dimRloc

p /b0 ≥ dimRloc
p /b = Rloc

p,ord, (3.13)

as desired.
LetR0 = W (k)[[B12, B21, B22]], an integral domain of dimension 4 and, by Gauss’s lemma,

a UFD. Then the ideal (−B21B12 +B22p−B2
22) is prime by the following claim.

Claim 3.9. The element
−B21B12 +B22p−B2

22

is an irreducible element of W (k)[[B12, B21, B22]].

Proof. Suppose that −B21B12 +B22p−B2
22 = fg for f, g ∈ W (k)[[B12, B21, B22]]. Moreover,

suppose that f, g are not units. Consider both sides modulo m3
R0

. Since f, g ∈ mR0 , we can
ignore all monomials of degree 2 or higher (in p,B12, B21, and B22) in either f or g, since
these vanish in the product modulo m3

R0
. Thus,

−B21B12 +B22p−B2
22 = (αp+ α12B12 + α21B21 + α22B22)(βp+ β12B12 + β21B21 + β22B22),

where the values of α, β are only important modulo m, and thus can be assumed to take
values in the image of the Teichmüller lift of k, which we will identify with k. From the
term −B2

22 we may already deduce β22 = −α−1
22 , and neither of these values vanish. Next

note that α12β12 = 0 and α21β21 = 0, but if both α12 and α21 vanish or both β12 and β21

vanish then the term −B21B12 cannot possibly appear on the left. Thus we must either have
α12 = β21 = 0 or α21 = β12 = 0. Since B21 and B12 are symmetric in both expressions, we
can assume without loss of generality that α12 = β21 = 0. Looking at the right hand side, we
also have αβ = 0. Without loss of generality, we may assume β = 0, since we may otherwise
switch the two factors. Finally note that α21β12 = −1, so β12 = −α−1

21 and α · (−α−1
22 ) = 1,

so α = −α22. Thus, we have

−B21B12 +B22p−B2
22 = (−α22p+ α21B21 + α22B22)(−α−1

21 B12 − α−1
22 B22),

with neither α22 nor α21 equal to 0. Since the right hand side has a nontrivial B12B22

term not present on the left, this factorization is impossible, and −B21B12 + B22p − B2
22 is

irreducible as claimed.
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Note that −B21B12 + B22p − B2
22 strictly contains the prime ideal 0. Defining R1 =

R0/(−B21B12 + B22p − B2
22), we must have dimR1 < dimR0, since any maximal chain of

prime ideals in R0 must begin with (0), which does not correspond to a prime ideal of R1.
In particular, dimR1 ≤ 3, and by Claim 3.9, R1 is an integral domain. (It is easy to see, in
fact, that dimR1 = 3.)

Define R2 = R1[[A12, A21, A22]], also an integral domain, now satisfying dimR2 ≤ 5.
Define

R3 = R2/(A12(B2
21 +B2

21A22 −B22B21A21) +B22(2A22B21 +A2
22B21 −B22A22A21 −B22A21).

Let
a = B2

21 +B2
21A22 −B22B21A21

and
b = B22(2A22B21 + A2

22B21 −B22A22A21 −B22A21),

so that R3 = R2/(A12a+ b).

Claim 3.10. The element A12a+ b is nonzero in R2.

Proof. It suffices to show that a is nonzero, since b (which has no factor of A12) cannot be
equal to −A12a if it is nonzero. We can factor

a = B2
21 +B2

21A22 −B22B21A21 = B21 (B21 +B21A22 +B22A21) . (3.14)

Since
R2 = W (k)[[A12, A21, A22, B12, B21, B22]]/(−B21B12 +B22p−B2

22)

is an integral domain by Claim 3.9, it suffices to show that neither factor of (3.14) is contained
in (−B21B12 + B22p − B2

22). But B21 ∈ mR2 \ m2
R2

, as is B21 + B21A22 + B22A21, so neither
of these can be a multiple of −B21B12 +B22p−B2

22 ∈ m2
R2

.

Since R2 is an integral domain of dimension at most 6, and by Claim 3.10, (A12a + b)
strictly contains the prime ideal (0), dimR3 < dimR2 ≤ 6 by the same argument as used
earlier. Thus dimR3 ≤ 5, and since R3 = Rloc

p /b1, we find dimRloc
p,ord ≤ 5 by (3.13).

The second property of Rloc
p,ord we need is that maps out of Rloc

p,ord satisfy a key property

that holds for ordinary deformations. In particular, conjugation of a map Rloc
p,ord → R by a

residually trivial element of GL2(R) should yield another such map. A special case of this
fact is that the ideal b defined in Section 3.6 is invariant under the action of 12 + M2(Rloc

p )
given by conjugation of the underlying representation. We will prove the following result of
Taylor [Tay09] showing that under some weak hypotheses that hold in the case of Rloc

p,ord, this
special case implies the general statement that we need.
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Proposition 3.11 ([Tay09]). Let ρloc
p : GQ → GL2(Rloc

p ) be the universal lifting, and let a ⊂
Rloc
p be an ideal closed under the action of 12+M2(Rloc

p ) defined by sending α ∈ 12+M2(Rloc
p )

to the morphism Aij 7→ (αAα−1)ij, Bij 7→ (αBα−1)ij. Moreover, assume that the ring Rloc
p /a

is reduced and not equal to the residue field k. Then the functor Da : CLNRings → Sets
defined by

Da : R 7→
{
r : Rloc

p → R|r(a) = (0)
}

defines a local deformation condition at p.

We will need to use the following result in the proof of Proposition 3.11.

Lemma 3.12. Let R be a reduced complete Noetherian local ring with residue field k, and
assume R 6= k. Let F ∈ R[[x]]. If F (x) = 0 for all x ∈ mR, then F = 0.

Proof. Since R is reduced, R ↪→ ⊕pR/p, where the direct sum is over all prime ideals of R.
If F vanishes on mR, then it vanishes on mR/p = mR/p. Thus, if the lemma holds for integral
domains, then it holds for all rings meeting the conditions of the lemma.

Write F (x) =
∑

i Fix
i with Fi ∈ R. If F (x) = xnG(x) with n maximal, then for all

nonzero elements a ∈ mR, an 6= 0, so G(a) = 0. Moreover, letting ai ∈ mi
R and letting

G =
∑

iGix
i, we have G(0)−G(ai) = G(0) ∈ mi

R, so G(0) ∈
⋂
i m

i
R = (0). Thus G satisfies

the same property that F does, so we may assume that F0 6= 0.
Next choose a ∈ mR \ 0 and consider

F−1
0 F (F0ax) =

∑
i

FiF
i−1
0 xiai = 1 + F1ax+ F2F0a

2x2 + . . . .

We note that F−1
0 F (F0ax) = 0 for all x ∈ mR – otherwise, multiplying by F0 on both sides

yields a contradiction (since R is an integral domain and F0 6= 0). Let G(x) = F−1
0 F (F0ax) =∑

iGix
i. Then G(x) satisfies G0 = 1 and Gi ∈ mR for i > 1. In particular, G(x) is the sum

of a unit and an element of mR for all x ∈ mR, a contradiction.

Proof of Proposition 3.11. The functor Da defines a relatively representable subfunctor of
Dloc
p since it is representable by Hom(Rloc

p /a, ·). Thus it suffices to prove that for a represen-
tation ρ : GQ → GL2(R) lifting ρ such that the natural map r : Rloc

p → R satisfies r(a) = 0
and any α ∈ 12 + M2(R), the natural map rα : Rloc

p → R associated to the representation
αρα−1 : GQp → GL2(R) satisfies rα(a) = 0 as well.

Consider the map σ : Rloc
p → Rloc

p [[C11, C12, C21, C22]] induced by the representation(
1 + C11 C12

C21 1 + C22

)
ρloc

(
1 + C11 C12

C21 1 + C22

)−1

: GQp → GL2(Rloc
p ).

Then for all a ∈ Rloc
p ,

σ(a) ≡ 1Rloc
p

(a) mod (C11, C12, C21, C22),

where 1Rloc
p

is the identity map.
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For any ring R, let CR = (c11, c12, c21, c22) ∈ m4
R. Then define

evCR
: R[[C11, C12, C21, C22]]→ R

to be the homomorphism Cij 7→ cij. In this language, we can rephrase the condition that
a ⊂ Rloc

p be closed under the action of 12 + M2(Rloc
p ) as the statement that for all choices of

CRloc
p

, evC
Rloc
p

(σ(a)) ⊆ a.

Suppose that ρ : GQp → GL2(R) is such that the induced homomorphism r : Rloc
p → R

satisfies r(a) = 0, and let CR = (c11, c12, c21, c22) ∈ m4
R. The representation(

1 + c11 c12

c21 1 + c22

)
ρ

(
1 + c11 c12

c21 1 + c22

)−1

induces a second homomorphism r′ : Rloc
p → R. It suffices to show that r′(a) = 0.

Claim 3.13. We have r′ = evCR
◦ r ◦ σ.

Proof. Our claim is that r′ is the composition

Rloc
p

σ→ Rloc
p [[C11, C12, C21, C22]]

r→ R[[C11, C12, C21, C22]]
evCR→ R.

The claim follows by noting that the sequence of homomorphisms corresponds to the follow-
ing sequence of representations

ρloc
p →

(
1 + C11 C12

C21 1 + C22

)
ρloc
p

(
1 + C11 C12

C21 1 + C22

)−1

→
(

1 + C11 C12

C21 1 + C22

)
ρ

(
1 + C11 C12

C21 1 + C22

)−1

→
(

1 + c11 c12

c21 1 + c22

)
ρ

(
1 + c11 c12

c21 1 + c22

)−1

via projection.

If we prove that σ(a) ⊆ a[[C11, C12, C21, C22]], then Claim 3.13 implies that r′(a) = 0.
So let a ∈ a, and consider the function F = σ(a) mod a ∈ Rloc

p /a[[C11, C12, C21, C22]].
Recall that evC

Rloc
p

(F ) = 0 mod a for all CRloc
p
∈ m4

Rloc
p

, so we also have evC
Rloc
p /a

(F ) =

0 mod a for all CRloc
p
∈ m4

Rloc
p /a

.

For any (c11, c12, c21) ∈ m3
Rloc
p /a

, we substitute these values for c11, c12, c21 to obtain 0 = F

by Lemma 3.12, considered as an element of Rloc
p /a[[C22]]. Thus, writing F =

∑
i FiC22, all

of the coefficients Fi ∈ Rloc
p /a[[C11, C12, C21]] vanish for all choices of (c11, c12, c21) ∈ m3

Rloc
p /a

.

Applying Lemma 3.12 repeatedly in this fashion, we find that F vanishes.
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Proposition 3.14. The ideal b ⊆ Rloc
p satisfies the conditions of Proposition 3.11. In fact,

the ideal b is GL2(Rloc
p )-invariant.

Proof. Since
Rloc
p,ord ↪→ Γ(Xloc

p,ord,OXloc
p,ord

) ↪→ W (k) 〈x〉 [[z11, z12, w12]],

it is an integral domain. Since Rloc
p,ord includes W (k), it is not equal to its residue field. Thus,

Rloc
p,ord = Rloc

p /b meets both of the supplementary hypotheses for Proposition 3.11.

Next, recall that b is the kernel of the morphism ψ : Rloc
p → Γ(Xloc

p,ord,OXloc
p,ord

). We will

define an action of GL2(Rloc
p ) on Γ(Xloc

p,ord,OXloc
p,ord

), and show that ψ is equivariant under

this action in the sense that for any element α ∈ GL2(Rloc
p ) and element r ∈ Rloc

p we have
ϕ(r)α = ϕ(rα).

Since a morphism out of Xloc
p,ord corresponds to a representation that is ordinary, and

the class of ordinary representations are closed under conjugation, there is already a natural
action of GL2(Rloc

p ) on Xloc
p,ord that “automatically” agrees with the action on Rloc

p . In particu-

lar, we defined Xloc
p,ord by gluing together the formal schemes X1 = Spf W (k) 〈x〉 [[z11, z12, w12]]

and X2 = Spf W (k) 〈y〉 [[z′11, z
′
12, w

′
12]], so it suffices to define the morphism on these. The

former corresponds to the representation given by (3.1) and (3.2) as

ρ(σ) =

(
x 1
1 0

)(
1 + z11 z12

0 ψ(σ)(1 + z11)−1

)(
x 1
1 0

)−1

and

ρ(τ) =

(
x 1
1 0

)(
1 w12

0 ψ(τ)

)(
x 1
1 0

)−1

,

and the latter can be written using (3.3) and (3.4) similarly. Thus, one can compute the
conjugate αρα−1 of this representation by α ∈ GL2(Rloc

p ) by computing

(αρα−1)(σ) = αρ(σ)α−1 = α

(
x 1
1 0

)(
1 + z11 z12

0 ψ(σ)(1 + z11)−1

)(
x 1
1 0

)−1

α−1

(3.15)
and

(αρα−1)(τ) = αρ(τ)α−1 = α

(
x 1
1 0

)(
1 w12

0 ψ(τ)

)(
x 1
1 0

)−1

α−1, (3.16)

where one uses the natural map Rloc
p → Γ(Xloc

p,ord,OXloc
p,ord

) and inclusion Γ(Xloc
p,ord,OXloc

p,ord
) ↪→

W (k) 〈x〉 [[z11, z12, w12]] to regard the entries of α as elements of the ringW (k) 〈x〉 [[z11, z12, w12]].
The image of x is determined by taking the image of the basis ( x1 ) , ( 1

0 ) under left-multiplication
by α and right-multiplying by another matrix m to renormalize it to appear in the form
( x1 ) , ( 1

0 ) or
(

1
y

)
, ( 0

1 ). If we constrain m to only scale the left column of the matrix α ( x 1
1 0 ),

the conjugated matrices

m

(
1 + z11 z12

0 ψ(σ)(1 + z11)−1

)
m−1 and m

(
1 w12

0 ψ(τ)

)
m−1
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will be in the form necessary of an ordinary representation (since the underlying filtration
of R2 hasn’t changed) and the choice of m is unique by the same argument as used in the
proof of Proposition 3.6.

It is clear from the definitions that the GL2(Rloc
p )-action is equivariant on the map

Xloc
p,ord → Spf Rloc

p , since both of these are identical to conjugation of the underlying rep-

resentation. We note that the GL2(Rloc
p ) action on Xloc

p,ord yields an action of GL2(Rloc
p )

on Γ(Xloc
p,ord,OXloc

p,ord
) as follows. An element α ∈ GL2(Rloc

p ) acts as an invertible morphism

Xloc
p,ord → Xloc

p,ord, so in particular it must be an isomorphism on the topological spaces. Thus
the map

α# : OXloc
p,ord
→ α∗OXloc

p,ord

includes as part of its data a map

Γ(Xloc
p,ord,OXloc

p,ord
)→ Γ(Xloc

p,ord,OXloc
p,ord

).

In particular, we have an equivariant morphism of rings Rloc
p → Γ(Xloc

p,ord,OXloc
p,ord

).

Finally, for any a ∈ b, we have ψ(aα) = ψ(a)α = 0α = 0, so b is closed under the
GL2(Rloc

p )-action.

Remark 4. One can check computationally that b0 ⊆ b above is also GL2(Rloc
p )-invariant.

The fourth relation (3.8) is essential for this fact.
The GL2(Rloc

p )-invariance in Proposition 3.14 is a consequence of the residual triviality
of the representation ρ. Otherwise, only matrices that preserve the residual filtration for the
ordinary representation ρ could possibly leave b invariant.

We define the functor Dloc
p,ord = Db in the language of Proposition 3.11. Combining

Proposition 3.14 with Proposition 3.11 yields the following result.

Corollary 3.15. Let ρ be the trivial representation on GQp, and let

Dρ : CLNRings(k)→ Sets

be defined by

R 7→ {strict equivalence classes of representations ρ : GQ → GL2(R)|ρ lifts ρ} .

The functor Dloc
p,ord is a subfunctor of Dρ and defines a local deformation condition.
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Chapter 4

Construction of a Family
{
RQn,ord

}
of

Global Deformation Rings

Let k be a field of characteristic p, and fix an absolutely irreducible residual representation
ρ : GQ → GL2(k) that is residually trivial when restricted to GQp . Let T = N(ρ), and let Q
be a finite set of primes not dividing Tp. Assume that T is squarefree. Recall from Section
3 the construction of a ring Rloc

p,ord representing the local deformation problem defined in
Section 3.3 when restricted to the subcategory DVR(k). By applying results from Section
2.1.3, we will define rings representing the solutions to various global deformation problems.

Specifically, we construct rings RQ,ord and R�
Q,ord, where the latter is framed. These rings

will be used in Section 6 to prove that lifts of ρ are modular. For the proof, we will need to
know bounds on the Krull dimension of the rings RQ,ord and R�

Q,ord. For this purpose, it will
nearly suffice to use the dimension of the tangent space as a crude bound on the number
of variables adjoined to the coefficient ring. However, looking at Rloc

p,ord, one finds that the
Krull dimension of the ring, which was bounded in Proposition 3.8 by 5, is substantially less
than the bound of 7 given by a cohomological calculation. For this reason, while we will use
cohomological methods for the places away from p, we will make use of the explicit local
deformation theory in computing our final global bound. Moreover, we will work with the
framed ring R�

Q,ord in order to make this computation possible, but in the end we will also
conclude a bound for the Krull dimension of RQ,ord.

We will only consider lifts of ρ that are minimally ramified, which is a deformation-
theoretic condition that we will define in Section 4.1. The definition corresponds exactly to
the possible structures for the representations ρf associated to modular forms f of level Nf

such that for each t ∈ T , t exactly divides Nf .
In Sections 4.2 and 4.3, we construct RQ,ord and R�

Q,ord. In Sections 4.4 and 4.5, we use

cohomological techniques to prove bounds on the dimensions of RQ,ord and R�
Q,ord in terms

of properties of ρ at the primes in Q. In Section 4.7, we prove additional properties of the
rings RQ,ord and R�

Q,ord assuming certain properties of the primes in Q. In Section 4.8, we
construct a family of sets of primes Qn meeting the conditions for the bound.
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4.1 Minimal Ramification Conditions

Since T = N(ρ) is squarefree, we may assume that by Fact 2.14 that for each t|T , ρ has
either

ρ|IQt ∼
(

1 ∗
0 1

)
(4.1)

or

ρ|IQt ∼
(

1 0
0 ∗

)
. (4.2)

Thus it suffices to define minimally ramified representations in these two cases. For conve-
nience, we will also define a lifting at a prime r at which ρ is unramified to be minimally
ramified if ρ is unramified.

In the case where ρ|IQt has the form in (4.1), we will define ρ lifting ρ to be minimally
ramified if

ρ|IQt ∼
(

1 ∗
0 1

)
.

In the case where ρ|IQt has the form in (4.2), we will define ρ lifting ρ to be minimally
ramified if

#ρ(IQt) = #ρ(IQt).

We prove that both of these are deformation conditions in the sense defined in Section
2.1.3.

Proposition 4.1 ([Maz97, §29]). Suppose that ρ|IQt has the form in (4.1) and that t 6= p.
Then the condition that ρ be minimally ramified is a deformation condition.

We begin by proving a lemma that we will use to simplify the statement of the condition.

Lemma 4.2 ([Maz97, §29]). Let R be a complete noetherian local ring with residue field k,
and let V be a free R-module of rank 2. The following are equivalent.

1. The map η : V → V satisfies (η− 12)2 = 0 and that η does not descend to the identity
in V ⊗R k.

2. There is an R-basis of V such that

η =

(
1 1
0 1

)
in this basis.

Proof. The reverse implication is immediate, so we prove the forward implication. Define
η0 = η − 12. Then since η2

0 = 0, we must have im η0 ⊆ Annη0(V ). In particular, we can
decompose the map η0 : V → V into the composition

V → η0(V ) ↪→ Annη0(V ) ↪→ V.
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Since the composite map is nonzero upon tensoring with k, it factors through the inclusion
Annη0(V ) ↪→ V , so there is some element v1 ∈ Annη0(V ) with nontrivial residue modulo k.
We use Nakayama’s lemma to extend v1 to the basis {v1, v2}. Then the map η0 must take
the form

η0 =

(
0 r1

0 r2

)
in this basis. Moreover, since η0 does not induce the 0 map on V ⊗R k, one of r1, r2 must be
invertible. Since η2

0 = 0, we have r1r2 = 0 and r2
2 = 0, meaning that r1 must be invertible

and thus r2 = 0. Replacing x with r1x, we obtain

η0 =

(
0 1
0 0

)
in this basis. Then η0 + 12 = η has the desired form.

Proof of Proposition 4.1. It is immediate from the definition that the property of being min-
imally ramified is preserved by changing ρ within its strict equivalence class.

Suppose that ρ : GQt → GL2(R) is a minimally ramified lifting of ρ. Observe that the
subgroup of GL2(R) of elements of the form ( 1 ∗

0 1 ) is isomorphic to the additive group R+ of
r, which is a pro-p group. Note that by Fact 2.2, the maximal pro-p quotient of IQt is Zp.
In particular, any morphism ρ : GQt → GL2(R) for t 6= R is determined by the image of a
lift η ∈ GQt of a generator of the quotient Zp. Moreover, η must satisfy the conditions of
Lemma 4.2, because if η acts trivially on the residual vector space, then ρ was not ramified.
By Lemma 4.1, we can choose a basis so that η = ( 1 1

0 1 ). It is then clear that projections of ρ
are minimal from the reverse implication of Lemma 4.2 and the observation that the image
of η under projection is, taking the image of the basis under η for the basis of the image,
also ( 1 1

0 1 ).
Given a diagram as in (2.1) and ρ : GQt → GL2(A ×C B), suppose that the projections

πA∗ρ and πB∗ρ are minimally ramified, and consider the matrix ρ(η), where η is chosen using
Lemma 4.2 on k. Since the projections to A and B are minimally ramified, we have

(πA∗ρ(η)− 12)2 = 0 and πB∗(ρ(η)− 12)2 = 0.

Thus the equality holds for A ×C B as well. The residue of ρ(η) in GL2(k) is the same as
that of its projections, so by Lemma 4.2, we find that ρ is minimally ramified.

Proposition 4.3 ([Maz97, §29]). Suppose that ρ|IQt has the form in (4.2) and that t 6= p.
Then the condition that ρ be minimally ramified is a deformation condition.

Proof. As in the proof of Proposition 4.1, it is immediate that being minimally ramified is
preserved by changing ρ within its strict equivalence class. Since projection cannot increase
the size of ρ(IQt), minimal ramification is preserved under projection.

Given a diagram as in (2.1) and ρ : GQt → GL2(A ×C B), suppose that the projections
πA∗ρ and πB∗ρ are minimally ramified. It suffices to show that ker ρ = ker ρ. But a matrix
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in GL2(A ×C B) is trivial if its projections are trivial, and kerπA∗ρ = ker πB∗ρ = ker ρ by
the minimal ramification condition, so ker ρ = ker ρ.

4.2 Unconstrained Deformation Rings

By Fact 2.6 and Propositions 4.1 and 4.3, there exists a ring RQ representing the functor
DQ : CLNRings(k)→ Sets defined by

DQ : R 7→


strict equivalence classes of

representations
ρ : GQp → GL2(R)

∣∣∣∣∣∣∣∣∣
ρ satisfies
1. ρ lifts ρ
2. ρ is minimally ramified at all primes

` /∈ Q ∪ {p}
3. det ρ ≡ ψ

 .

Note that while GQ does not have the p-finiteness property, the restriction that ρ be min-
imally ramified at ` /∈ Q ∪ {p} implies that the representation factors through the group
GQ,{p}∪T∪Q – the Galois group of the maximal extension unramified outside {p} ∪ T ∪ Q –
which does has the p-finiteness property.

We may also define R�
Q representing the framed version of this deformation problem. In

particular, R�
Q represents the functor D�

Q : CLNRings(k)→ Sets defined by

D�
Q : R 7→



strict equivalence classes of
pairs (ρ, α) where

ρ : GQp → GL2(R) is a
representation and
α ∈ 12 + M2(mR)

∣∣∣∣∣∣∣∣∣
ρ satisfies
1. ρ lifts ρ
2. ρ is minimally ramified at all primes

` /∈ Q ∪ {p}
3. det ρ ≡ ψ


.

We define (ρ, α) and (ρ′, α′) to belong to the same strict equivalence class if ρ′ = βρβ−1 and
α′ = βα for some β ∈ 12 + M2(mR). We assocate to the pair (ρ, α) the lifting α−1ρα|GQp

of ρ to GQp . This association of a lifting to the strict equivalence class (ρ, α) allows us to
regard the universal deformation ring R�

Q as an Rloc
p -algebra. We use the notation [ρ, α] to

denote the strict equivalence class of framed deformations containing (ρ, α) as a member.
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4.3 Deformation Rings with Constraints at p

We seek to solve the deformation problem DQ,ord : DVR(k)→ Sets defined by

DQ,ord : R 7→


strict equivalence classes of

representations
ρ : GQp → GL2(R)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ satisfies
1. ρ lifts ρ
2. ρ is minimally ramified at all primes

` /∈ Q ∪ {p}
3. det ρ ≡ ψ
4. ρ|GQp

∼
( χ1 ∗

0 χ2

)
with χ1 unramified


,

where ∼ means that ρ|GQp
can be conjugated by an element of GL2(R) into the designated

form. By Corollary 3.15, Fact 2.7, and the representability of DQ, Dord,Q is representable by
a ring Rord,Q.

We finally seek to solve the deformation problem D�
ord,Q : DVR(k)→ Sets defined by

D�
Q,ord : R 7→



strict equivalence classes of
pairs (ρ, α) where

ρ : GQp → GL2(R) is a
representation and
α ∈ 1n +Mn(mR)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ satisfies
1. ρ lifts ρ
2. ρ is minimally ramified at all primes

` /∈ Q ∪ {p}
3. det ρ ≡ ψ
4. ρ|GQp

∼
( χ1 ∗

0 χ2

)
with χ1 unramified


.

While it follows from Corollary 3.15 that D�
Q,ord is representable by a ring R�

Q,ord, one can
construct the ring directly.

There is a natural map Rloc
p → R�

Q given by restriction of ρ : GQ → GL2(R) to GQp . We

may then define the ring R�
Q,ord = R�

Q⊗̂Rloc
p
Rloc
p,ord.

Proposition 4.4. The ring R�
Q,ord represents the functor D�

Q,ord.

Proof. The completed tensor product fits into a diagram

R�
p

yyssssssssssss

&&MMMMMMMMMMMM

R�
Q

%%KKKKKKKKKKK Rloc
p,ord

xxrrrrrrrrrr

R�
Q⊗̂R�

p
Rloc
p,ord

that satisfies the univeral property for a Cartesian square. In particular, a map from
R�
Q⊗̂R�

p
Rloc
p,ord is in natural correspondence with a pair of maps from R�

Q and Rloc
p,ord agree-

ing on Rloc
p . But such data specifies exactly an extension of an ordinary representation
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ρ0 : GQp → GL2(R) to a global representation ρ : GQ → GL2(R) satisfying the constraints
of the deformation problem D�

Q. Conversely, a global representation ρ : GQ → GL2(R)

satisfying the constraints of D�
Q,ord yields by restriction the ordinary representation ρ|GQp

:

GQp → GL2(R), so by the universal properties of the rings Rloc
p,ord and R�

Q, the data of this

pair of agreeing maps and thus a map from R�
Q,ord = R�

Q⊗̂Rloc
p
Rloc
p,ord exists and is unique.

4.4 Selmer Groups

In Section 2.1.3, we stated that certain kinds of subfunctors – those defining local deformation
conditions – were relatively representable. We defined a global Galois deformation problem
for GQ to be a collection of local deformation problems for each place of Q. In this section, we
describe an algebraic analogue of a global deformation problem. Since we will be considering
both archimedean and nonarchimedean places simultaneously, we use the notation Gv and
Iv for the local absolute Galois group and its inertia subgroup, respectively.

To any deformation problem D, one can associate the tangent space D(k[δ]), which is
isomorphic to the tangent space of the ring R representing D. In this manner, given a family
of local deformation problems, one might consider trying to relate the local tangent spaces to
the global tangent space. Observe that a local deformation condition defines a subspace of
the unrestricted local deformation problem, and similarly for the global case. In an algebraic
manner, one can define a deformation condition by specifying these subspaces.

Let M be a finite, discrete, and continuous GQ-module. For example, one might use M ∼=
k2 with GQ acting via ρ. One can define the local deformation conditions by choosing for each
place v a subgroup Lv of the tangent space H1(Gv,M) of the full local deformation functor.
To the data L = {Lv}, one can algebraically define the global Selmer group H1

L(GQ,M) by

H1
L(GQ,M) =

{
ξ ∈ H1(GQ,M)|Resv(ξ) ∈ Lv for all places v

}
,

where Resv : H1(GQ,M)→ H1(Gv,M) is the restriction homomorphism.
Many key properties of the deformation rings RQ and R�

Q can be derived through under-
standing of these Selmer groups. Unfortunately, the Selmer groups only provide an upper
bound for the Krull dimension of these rings, so at places where the deformation problem is
obstructed, one needs to handle the analysis specially. In our case, the only such place will
be p. Following Clozel, Harris, and Taylor [CHT08], one may construct a variation on the
cochain defining the Selmer groups as follows.

Definition 4. Let L = {Lv} be a set of local conditions, and let Q be the set of places other
than p where Lv 6= H1(Gv/Iv, ad ρIv). We define H i

L,p(GQ,M) to be the cohomology of the
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cochain complex defined by

C0
L,p = C0(GQ,M)

C1
L,p = C1(GQ,M)⊕ C0(GQp ,M)

C2
L,p = C2(GQ,M)⊕ C1(GQp ,M)⊕

⊕
q∈Q∪{p}

C1(Gq,M)/L̃q

Ci
L,p = Ci(GQ,M)⊕

⊕
q∈Q∪{p}

Ci−1(Gq,M) for i ≥ 3

with the boundary map(
ξ, ηp, {νq}q∈Q) 7→ (∂ξ, ξ|GQp

− ∂ηp,
{
ξ|GQq

− ∂ηq
}
q∈Q

)
and where L̃q is the preimage of Lq in C1(Gq,M).

We will be interested only in H1
L,p(GQ,M), which can be defined as

H1
L,p(GQ,M) =

Z1
L,p(GQ,M)

B1
L,p(GQ,M)

=

{
(ξ, ηp) ∈ Z1(GQ,M)⊕ C0(GQp ,M) : Resp(ξ) = ∂ηp,Resq(ξ) ∈ L̃q for all q ∈ Q

}
{

(∂ξ, ξ|GQp
)
}
ξ∈C0(GQ,M)

.

(4.3)

We will be able to bound the size of R�
Q via a careful study of Selmer groups.

In order to apply the results on Selmer groups to the remaining places, we first observe
that R�

Q is an algebra over Rloc
p,ord, so we may think of this local deformation ring as if it were

a coefficient ring for our representation. With this in mind, we define the tangent space

t�Q = Homk(mR�
Q
/(m2

R�
Q
, π,mRloc

p,ord
), k),

where π is a uniformizer for W (k), and we write the subscript k to emphasize that these are
k-vector space homomorphisms. Then dimk t

�
Q + dimRloc

p,ord is an upper bound for the Krull

dimension of the ring R�
Q.

We will construct a deformation problem LQ = {Lv,Q} in order to measure dimk t
�
Q in

terms of a Selmer group. Specifically, we set

Lv,Q =

{
H1(Gv/Iv, ad0 ρIv) if v /∈ Q ∪ {p}
H1(Gv, ad0 ρ) if v ∈ Q ∪ {p} .

(4.4)

With this definition, we may connect the tangent space to H1
LQ,p

(GQ, ad0 ρ).
The proof of the following Proposition 4.5 is no more than a long definition chase, but it

illustrates three key ideas:
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• There are many equivalent ways of writing down t�Q.

• The proof of Subclaim 4.8 shows that the Selmer group restriction corresponding to
the requirement of minimal ramification is identical to the restriction that forces a
residually unramified representation to have an unramified lifting.

• The proof of Claims 4.7 and 4.7 illustrate that the notions of deformation and of framed
deformation are perfectly compatible with the Selmer cohomology group definition. In
view of the results of Section 4.5 showing that the Selmer cohomology group satisfies
elegant duality relations, the definition of the framed deformation should hopefully
appear less artificial.

Proposition 4.5 ([CHT08, Proposition 2.2.9]). We have a canonical isomorphism

t�Q
∼= H1

LQ,p
(GQ, ad0 ρ).

Proof. We begin by identifying t�Q with a space of deformations of ρ.

Claim 4.6. The space t�Q may be canonically identified with the subspace of framed defor-

mations [ρ, α] ∈ D�
Q(k[δ]/δ2) such that α−1ρα|GQp

is the trivial lifting.

Proof. Given a complete noetherian local ring R with W (k)-algebra structure given by φR :
W (k)→ R and an ideal a ⊆ mR, we first show that there is an isomorphism

Homk(mR/(m
2
R, π, a), k) ∼= HomW (k)(R/a, k[δ]/δ2).

First note that in a morphism R/a → k[δ]/δ2, any element of m2
R must map to δ2 = 0 in

k[δ]/δ2, while π must map to 0 to respect the W (k)-algebra structure. Thus, we have a
bijection

Homk(R/(m
2
R, π, a), k)→ HomW (k)(R/a, k[δ]/δ2)

sending a map ψ to itself. Next observe that since R/(m2
R, π, a) ∼= k⊕mR/(m

2
R, π, a), and the

image of k is forced by the k-algebra structure, a map in Homk(R/(m
2
R, π, a), k) is determined

by its restriction to mR/(m
2
R, π, a).

In particular,

Homk(mR�
Q
/(m2

R�
Q
, π,mRloc

p,ord
), k) ∼= HomW (k)(R

�
Q/mRloc

p,ord
, k[δ]/δ2).

A map in HomW (k)(R
�
Q, k[δ]/δ2) is simply an element of D�

Q(k[δ]/δ2). Note that R�
Q/mRloc

p,ord

∼=
R�
Q/mRloc

p
, where mRloc

p
is defined by the pushforward of the natural map Rloc

p → R�
Q. Then

the composite map Rloc
p → R�

Q/mRloc
p,ord
→ k[δ]/δ2 is the quotient by mRloc

p
, so by the explicit

bijection in Proposition 3.4, the lift α−1ρα|GQp
is trivial (meaning equal to ρ|GQp

).

Remark 5. Mazur [Maz97] shows that one can also induce a natural k-vector space structure
on D�

Q(k[δ]/δ2) that matches that of t�Q – this is not necessary for our purposes.

63



We next characterize a lifting of the form described in Claim 4.6 in terms of a cocycle.

Claim 4.7. The space of framed liftings (ρ, α) ∈ D�
Q(k[δ]/δ2) such that ρ|GQp

is the trivial

lifting may be canonically identified with Z1
L,p(GQp , ad0 ρ).

Proof. We follow closely an argument of Mazur [Maz97, Proposition 1, §21]. Observe that
there exists a short exact sequence

0→ 12 + δ ad ρ→ GL2(k[δ]/δ2)→ GL2(k)→ 0,

forgetting for now the GQ-action on ad ρ. We may replace the multiplicative group 1+δ ad ρ
by the additive group ad ρ. The inclusion GL2(k) ↪→ GL2(k[δ]/δ2) provides a splitting, so
that

GL2(k[δ]/δ2) ∼= ad ρo GL2(k)

via the conjugation action.
A framed lifting (ρ, α) of ρ is simply a morphism

ρ : GQ → GL2(k[δ]/δ2) ∼= ad ρo GL2(k)→ GL2(k)

with composition ρ. An example of such a morphism is the trivial lift ρ0 of ρ. For any other
ρ with this property, define ξρ ∈ ad ρ by ρ = (1 + ξρ)ρ0. We have ξρ ∈ Z1(GQp , ad ρ), since
for g, h ∈ GQ we have

(1 + ξρ(gh))ρ0(gh) = (1 + ξρ(g))ρ0(g)(1 + ξρ(h))ρ0(h)

ρ0(gh) + δξp(gh)ρ0(gh) = ρ0(gh) + δ(ξρ(g)ρ0(gh) + ρ0(g)ξp(h)ρ0(h))

ξp(gh) = ξp(g) + ρ0(g)ξp(h)ρ0(g)−1.

Note, moreover, that for m ∈ ad ρ, det(12 + δm) = 1 + δTrm, so det ρ = det ρ0 exactly
when Tr(ξρ) = 0. The determinant condition then implies that ξρ lies in Z1(GQp , ad0 ρ).

By (4.3), at primes away from pT , it is tautological that ρ meets the deformation con-

ditions exactly when Resq ξρ ∈ L̃q,Q. We have to check, however, that the notion of being
minimally ramified at t|T corresponds to the Selmer group conditions in (4.4).

Subclaim 4.8. The restriction of a cocycle ξρ associated to a representation ρ : GQ →
GL2(k[δ]/δ2) to GQt is an element of H1

LQ,p
(GFt , ad0 ρIQt ) if and only if ρ is minimally

ramified at t.

Proof. Suppose that ρ|IQt has the form in (4.1). By Lemma 4.2, we choose η ∈ IQt such that
ρ(η) and thus ρ0(η) has the form ( 1 1

0 1 ). Suppose that ρ is minimally ramified. By Lemma
4.2, we may suppose that ρ(η) = ( 1 1

0 1 ) + δ ( a bc d ) for ( a bc d ) ∈M2(k) where (ρ(η) − 12)2 = 0.
Observe that

(ρ(η)− 12)2 =

(
aδ 1 + bδ
cδ dδ

)2

=

(
cδ (a+ d)δ
0 cδ

)
,
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which implies that c = 0 and a = −d, so that ρ(η) =
(

1+aδ 1+bδ
0 1−aδ

)
. But(

1 + bδ 0
−aδ 1

)(
1 + aδ 1 + bδ

0 1− aδ

)(
1 + bδ 0
−aδ 1

)−1

=

(
1 1
0 1

)
,

so ρ|IQt is in the same strict equivalence class as ρ0|IQt . Conversely, if ρ|IQt is in the same
strict equivalence class as ρ0|IQt , then ρ is certainly minimally ramified by definition. We
lastly need to know that changing the strict equivalence class of ρ changes ξρ by a coboundary.
This is proved in Claim 4.9.

Suppose that ρ|IQt has the form in (4.2) and ρ is a minimally ramified lifting. The quotient
GQt/ ker ρ is cyclic, so choose a lift η of the generator. We can write ρ(η) = ( 1 0

0 α ) + δ ( a bc d )
where 1 6= α ∈ k and ( a bc d ) ∈M2(k). We can use the change of basis(

1 b(α− 1)−1δ
c(1− α)−1δ 1

)−1(
1 + aδ bδ
cδ α + dδ

)(
1 b(α− 1)−1δ

c(1− α)−1δ 1

)
=

(
1 + aδ 0

0 α + dδ

)
to write ρ(η) in diagonal form. Note that #(GQt/ ker ρ)|p− 1, so we must have(

1 + aδ 0
0 α + dδ

)p−1

=

(
1 + (p− 1)aδ 0

0 αp−1 + (p− 1)αp−2dδ

)
=

(
1 + (p− 1)aδ 0

0 1 + (p− 1)αp−2dδ

)
=

(
1 0
0 1

)
and thus a = d = 0. In particular, the cocycle ξρ has trivial restriction to IQt and thus lies
in H1

LQ,p
(GFt , ad0 ρIQt ).

Conversely, if ξρ lies in H1
LQ,p

(GFt , ad0 ρIQt ), it is trivial on IQt , and thus ρ|IQt = ρ0|IQt .
But ρ0 is the trivial lifting of ρ and thus minimally ramified.

Finally, writing α = 1− δa, the triviality of Resp α
−1ρα means that

(1 + δa)(1 + δξρ)ρ0|GQp
(1− δa) = ρ0|GQp

.

Rearranging (and suppressing the restriction to GQp), this implies

(1 + δ(a+ ξρ))(ρ0 + δρ0a) = (ρ0 + δ(aρ0 + ξρρ0 − ρ0a)) = ρ0

and thus ξρ = ρaρ−1 − a, which is exactly the statement that ξρ = ∂a. Thus (ξρ, a) ∈
Z1

L,p(GQp , ad0 ρ), and conversely.

To finish the proof, we need only check that the equivalence relation corresponds to the
space of coboundaries.
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Claim 4.9. Two framed liftings (ρ, α) and (ρ′, α′) are equivalent exactly when they differ by
an element of B1

L,p(GQp , ad0 ρ).

Proof. Using the definitions of Claim 4.7, one needs β = 12 + δb such that ρ′ = βρβ−1 and
α′ = βα. Thus ξρ′ = ξρ + b − ρ0bρ0 and m′ = m + b by a computation identical to that in
Claim 4.7.

4.5 Arithmetic Duality Theorems

In this section we state without proof some cohomological results from [Mil06] and [CHT08].
These result come from the world of arithmetic duality. For GQ-modules, we define the GQ-

module Hom(M,N) via the map ψ
g7→ g ◦ ψ ◦ g−1 for all g ∈ GQp . For a finite GQ-module

M , we define its dual
M∗ = Hom(M,µn(Q)),

where µn(Q) is the subgroup of nth roots of unity Q with induced GQ-action and nM = 0.
There are a number of results of Tate relating modules to their duals.

Fact 4.10 ([Mil06, §1.2]). Let v be a place of Q and let M be a finite GQ-module. Then

1. The group Hr(Gv,M) is finite for all r.

2. If v - ∞, then Hr(Gv,M) = 0 for r > 2, and we have the local Euler characteristic
formula

χ(Gv,M) =
#H0(Gv,M)#H2(Gv,M)

#H1(Gv,M)
= #(M ⊗ Zv)

−1.

3. If v -∞, there is a perfect pairing

H i(Gv,M)×H2−i(Gv,M
∗)→ H2(Gv, µn(Q)).

We would like a second interpretation of the notion of duality in the case of ad0 ρ to aid
in the explicit computation of its cohomology. The cyclotomic character ε : GQ → Z×p gives
rise to the GQ-module Zp(1), which as an abelian group is isomorphic to Zp, but has an
action of GQ-multiplication via ε. Given a finite module M , one defines its twist M(1) by
the formula M(1) = M ⊗ Zp(1). We can relate the twist ad0 ρ(1) to the dual (ad0 ρ)∗.

Proposition 4.11. We have the isomorphism ad0 ρ(1) ∼= (ad0 ρ)∗.
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Proof. Consider the perfect pairing

ad0 ρ× ad0 ρ(1)→ k(1)

sending (x, y) 7→ Tr(xy). Note that for g ∈ GQ,

(xg, yg) 7→ Tr(gxg−1ε(g)gyg−1) = ε(g) Tr(xy),

so the pairing is GQ-equivariant. Thus we have the isomorphism

ad0 ρ(1) ∼= Homk(ad0 ρ, k)(1).

Observe that
Homk(ad0 ρ, k)(1) ∼= HomFp(ad0 ρ,Fp)(1),

where the isomorphism sends ψ 7→ Trk/Fp ◦ψ. But since Fp(1) ∼= µp(Q), we have

HomFp(ad0 ρ,Fp)(1) ∼= (ad0 ρ)∗,

as desired.

The main result in arithmetic duality that we will need is a result of Wiles [Wil95]. Since
we are using Selmer groups for framed deformations, we will use a slightly modified form of
the result.

Fact 4.12 ([CHT08, Lemma 2.3.4]). Let L be a set of conditions that is unramified outside
a finite set. We have the equality

dimkH
1
L,p(GQp , ad0 ρ) = dimkH

0(GQp , ad0 ρ)− dimkH
0(GQp , ad0 ρ(1))

+ dimkH
1
L⊥,p(GQp , ad0 ρ(1)) +

∑
v 6=p

(dimk Lv − dimkH
0(Gv, ad0 ρ)),

where

H1
L⊥,p(GQp , ad0 ρ(1)) = ker

(
H1(GQ, ad0 ρ(1))→

⊕
v 6=p

H1(Gv, ad0 ρ(1))/L⊥v

)

and L⊥v is the annihilator of Lv under the pairing

H1(Gv, ad0 ρ)×H1(Gv, ad0 ρ(1))→ k(1).

We remark that the primary ingredient of the proof of Fact 4.12 is an application of the
Poitou-Tate exact sequence.
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4.6 Computations of Local and Global Galois Coho-

mology Groups

In this section, we apply Fact 4.12 to compute dimkH
1
LQ,p

, where LQ is the set of conditions

defined in (4.4).

Proposition 4.13. We have dimkH
0(GQ, ad0 ρ) = 0 and dimkH

0(GQ, ad0 ρ(1)) = 0.

Proof. An element of ad0 ρGQ is a GQ-equivariant homomorphism Mρ → Mρ, which must
be scalar multiplication by Schur’s lemma. But ad0 ρ consists only of traceless matrices, so
in fact we must have dimkH

0(GQ, ad0 ρ) = 0.
Similarly, a nonzero element of (ad0 ρ(1))GQ is a GQ-equivariant homomorphism Mρ →

Mρ(1), which implies that Mρ
∼= Mρ(1) by Schur’s lemma. Thus det ρ = det ρ · ε2, so every

element of k must square to 1. This implies that p = 3, which we excluded.

Proposition 4.14 ([DDT97, Pg. 61]). Let L be any set of local conditions for a finite GQ-
module M . For nonarchimedean places v such that Lv = H1(Gv/Iv,M

Iv),

dimk Lv = dimkH
0(Gv, ad0 ρ).

Proof. Let Frobv be a choice of Frobenius element in Gv. Then

0→ H0(Gv,M)→M Iv Frobv−1→ M Iv → H1(Gv/Iv,M
Iv)→ 0,

is exact, where the first map is the inclusion MGv ↪→M Iv and the third is the map m 7→ ψm,
where ψm(Frobv) = m. Since the middle terms have the same order, dimkH

0(Gv,M) =
H1(Gv/Iv,M

Iv).

Proposition 4.15. Let v = ∞ denote the real infinite place of Q. Then dimk L∞ = 0 and
dimkH

0(G∞, ad0 ρ) = 1.

Proof. The first statement can be verified explicitly as follows. The kernel of the map
ad0 ρ � B1(G∞, ad0 ρ) defined by m 7→ (σ 7→ σ ·m −m) is the 1-dimensional subspace of
diagonal matrices, so dimk B

1(G∞, ad0 ρ) = 2. Setting G∞ = {1, c}, note that a cocycle ψ
sends 1 to 0, and that ψ(c · c) = 0 = c · ψ(c) + ψ(c), so that ψ(c) lies in the −1 eigenspace,
which has dimension 2. Thus 2 = dimk Z

1(G∞, ad0 ρ) and the result follows.
The second statement is immediate since ρ is odd.

Proposition 4.16. For q ∈ Q, we have

dimk LQ,q − dimkH
0(GQq , ad0 ρ) = dimkH

0(GQq , ad0 ρ(1))
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Proof. By the local Euler characteristic formula (Fact 4.10),

dimk LQ,q − dimkH
0(GQq , ad0 ρ) = dimkH

1(GQq , ad0 ρ)− dimkH
0(GQq , ad0 ρ)

= dimkH
2(GQq , ad0 ρ),

since ad0 ρ⊗ Zq = 0. Since by Fact 4.10 and Proposition 4.11, there is a perfect pairing

H2(GQq , ad0 ρ)×H0(GQq , ad0 ρ(1))→ H2(GQq , µn(Q)),

we must have dimkH
2(GQq , ad0 ρ) = dimkH

0(GQq , ad0 ρ(1)).

Combining Propositions 4.13, 4.14, 4.15, and 4.16 with Fact 4.12 and Proposition 4.5,
we can bound the size of R�

Q,ord.

Corollary 4.17. The ring R�
Q,ord has tangent space dimension as an Rloc

p,ord-algebra given by
the formula

dimk t
�
Q = dimkH

1
L⊥Q,p

(GQ, ad0 ρ(1)) +
∑
q∈Q

dimkH
0(GQq , ad0 ρ(1))− 1.

From Proposition 3.8, we find the following result.

Corollary 4.18. The ring R�
Q,ord satisfies the bound

dimR�
Q,ord ≤ dimkH

1
L⊥Q,p

(GQ, ad0 ρ(1)) +
∑
q∈Q

dimkH
0(GQq , ad0 ρ(1)) + 4.

We finally relate dimR�
Q,ord to dimRQ,ord, since the latter will be important in Section 6.

Proposition 4.19. The choice of a member ρQ,ord of the equivalence class of the universal
deformation [ρQ,ord : GQ → GL2(RQ,ord)] induces an isomorphism

RQ,ord[[c1, c2, c3]]→ R�
Q,ord.

Proof. By Schur’s lemma, since ρ is irreducible, the module of elements of the form 12 +
( c1 c2c3 0 ) acts faithfully on liftings of [ρQ,ord] by conjugation. Conversely, conjugating a lifting
within its strict equivalence class, which corresponds to conjugation by a matrix of the

form
(

1+c′1 c′2
c′3 1+c′4

)
, is equivalent to conjugation by

(
(1+c′1)(1+c′4)−1 c′2(1+c′4)−1

c′3(1+c′4)−1 1

)
. Thus, the pair

(ρQ,ord,12 +
(

1+c1 c2
c3 1

)
) is a univeral framed deformation of ρ, so the rings RQ,ord[[c1, c2, c3]]

and R�
Q,ord are isomorphic.

Combining Proposition 4.19 with Corollary 4.18, we obtain the following.

Corollary 4.20. The ring RQ,ord satisfies the bound

dimRQ,ord ≤ dimkH
1
L⊥Q,p

(GQ, ad0 ρ(1)) +
∑
q∈Q

dimkH
0(GQq , ad0 ρ(1)) + 1.
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4.7 Definition and Properties of the Sets of Primes Q

In this section we define conditions on the sets of primes Q to guarantee tameness of the rings
RQn,ord. In particular, we will choose conditions that allow us to relate RQn,ord with the ring
R∅,ord and that force the restriction ρ|GQq

to decompose into the direct sum of characters.
We assume without loss of generality that ρ(σ) has k-rational eigenvalues for all σ – if

not, one can extend k by degree 2 without shrinking the space of deformations. All primes
in Q will satisfy the following properties.

• We have q ≡ 1 mod p.

• The restriction ρ|GQq
is unramified.

• The matrix ρ(Frob−1
q ) has distinct eigenvalues, which we call αq and βq.

• The character ψ is unramified at q.

For q meeting these properties, the univeral lifting ρ�
Q,ord has a particularly nice form when

restricted to GQq .

Proposition 4.21 ([DDT97, Lemma 2.44]). For all q ∈ Q,

ρ�
Q,ord|GQq

∼
(
ξ 0
0 ψξ−1

)
for a character ξ with ξ(Frob−1

q ) = αq, and similarly for ρQ,ord.

Before proving Proposition 4.21, we will prove a consequence of Hensel’s lemma that will
be important here and elsewhere.

Lemma 4.22. Let R be a complete Noetherian local ring with residue field k. Suppose(
α 0
0 β

)
∈M2(k) is a diagonal matrix with α, β distinct and nonzero, and suppose that

(
A C1
C2 B

)
lifts this matrix to M2(R). Then

(
A C1
C2 B

)
∼
(
α̃ 0
0 β̃

)
, where α̃ and β̃ lift α and β, respectively.

Proof. By Hensel’s lemma, there exist roots to the equations x2C1 + x(A−B)−C2 = 0 and
y2C2 + y(B − A) − C1 that are close to 0, and thus in mR (here we are using the fact that
A−B = α− β 6= 0). In particular, we have(

1 y
x 1

)−1(
A C1

C2 B

)(
1 y
x 1

)
=

(
α̃ 0

0 β̃

)
where α̃ and β̃ reduce to α and β.

We will also prove another lemma that will find use here and elsewhere.
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Lemma 4.23. Let R be a complete Noetherian local ring with residue field k. Suppose that
ρ : GQq → GL2(R) has the property that ρ is unramified and that in some basis {e1, e2},
ρ(Frob−1

q ) =
(
α 0
0 β

)
with α 6= β for some choice of Frob−1

q . Then in this basis, ρ is diagonal.

Proof. We need only show that ρ(σ) is diagonal for σ ∈ IQq . Let ρ(σ) = 12 + ( a bc d ).
Since ρ is unramified, Proposition 3.1 implies that ρ is tamely ramified. By Fact 2.2,
ρ(Frob−1

q )−1ρ(σ)ρ(Frob−1
q ) = ρ(σ)q. In particular,

12 +

(
a b β̃q

α̃q

c α̃q
β̃q

d

)
=

q∑
i=0

(
q

i

)(
a b
c d

)i
.

Subtracting 12 + q ( a bc d ) from both sides, a b
(
β̃q
α̃q
− q
)

c
(
α̃q

β̃q
− q
)

d

 =

q∑
i=2

(
q

i

)(
a b
c d

)i
.

The upper right diagonal entry of ( a bc d )
i

for i ≥ 2 lies in bmR, and the lower left entry lies in

cmR. On the left, α̃q

β̃q
− q and β̃q

α̃q
− q are invertible, so the ideal generated by the upper right

and lower left entries is (b, c). Thus (b, c) ⊆ mR(b, c), which implies b = c = 0 by Nakayama’s
lemma.

Proof of Proposition 4.21. Let ρ = ρQ,ord or ρ�
Q,ord, and similarly let R = RQ,ord or R�

Q,ord.

Choose a basis where ρ(Frob−1
q ) =

(
αq 0
0 βq

)
, so that ρ(Frob−1

q ) =
(
A C1
C2 B

)
where A and B

reduce to αq and βq (fixing a particular Frob−1
q ∈ GQp). Using Lemma 4.22, perform a

change of basis so that ρ(Frob−1
q ) =

(
α̃q 0

0 β̃q

)
where α̃q and β̃q reduce to αq and βq.

By Lemma 4.23, ρ is diagonal. Let ξ be the character in the upper right corner. Then

the form

(
ξ 0
0 ψξ−1

)
is implied by the determinant condition.

Following [DDT97], we define ∆q to be the maximal quotient of (Z/qZ)× of p-power
order, and define ∆Q =

∏
q∈Q ∆q. For each q there exists a map

χq : GQ → Gal(Q(ζq)/Q) ∼= (Z/qZ)× � ∆q,

and we define χQ : GQ → ∆Q to be the product of these maps.
Let aQ be the augmentation ideal of W (k)[∆Q]. We have an isomorphism

W (k)[[{Sq}q∈Q]]/((1 + Sq)
#∆q − 1)q∈Q ∼= W (k)[∆Q],

obtained by mapping each Sq to gq − 1, g a generator of ∆q.
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Let the characters obtained in Proposition 4.21 be denoted ξq,Q : GQq → R×Q,ord and

ξ�
q,Q : GQq → R�×

Q,ord. Since ρQ,ord and ρ�
Q,ord are tamely ramified, the restrictions ξq,Q|IQq and

ξ�
q,Q|IQq factor through χq.

Since a character of GQ is determined by its restriction to inertia groups at all prime,

if there exist maps ξQ : GQ → R×Q,ord and ξ�
Q : GQq → R�,×

Q,ord whose restrictions to IGq are

equal to the corresponding restrictions of ξq,Q and ξ�
q,Q, respectively, and which are unramified

elsewhere, then the maps are unique. (Every nontrivial extension of Q is ramified at some
prime p.) On the other hand, since these characters are tamely ramified at all q ∈ Q, they
must factor through GQ � Gal(Q(ζQ)/Q) ∼= ∆Q, so we can construct these maps explicitly
using the definitions of the maps ξq,Q or ξ�

q,Q.

We define maps πQ : W (k)[∆Q] → RQ,ord and π�
Q : W (k)[∆Q] → R�

Q,ord by sending an

element of ∆Q to its image under ξ−2
Q or ξ�−2

Q , respectively (which is defined since these maps
factor through χQ, as noted earlier).

Proposition 4.24 ([DDT97, Corollary 2.45]). The natural maps

RQ,ord → R∅,ord and R�
Q,ord → R�

∅,ord

have kernels given by the pushforwards of aQ under πQ,ord and π�
Q,ord, respectively.

Proof. As in the proof of Proposition 4.21, we let π : W (k)[∆Q] → R → R∅ and ρ denote

the objects in either of the two cases. It suffices to show that the composite map GQ
ρ→

GL2(R) → GL2(R/aQ) is unramified at q ∈ Q and that if a ⊂ R is another ideal with this
property, then aQ ⊆ a. But the identifications of the images of the elements of ∆Q with 1,
together with the explicit description of ρ|GQq

in Proposition 4.21, imply that the first of
these claims hold, since they show that ρ|IQq is trivial (using the fact that ψ is unramified
away from p). Conversely, if a had this property, it must identify ξ(σ) = 1 for all σ ∈ ρ|IQq .
But aQ is generated by ξ(σ)− 1 for σ ∈ ρ|IQq , so aQ ⊆ a.

We next compute certain local cohomology groups for q ∈ Q, taking advantage of the
simple structure of ρ(Frobq).

Proposition 4.25 ([DDT97, Lemma 2.46]). We have

dimkH
0(GFq , ad0 ρ) = dimkH

0(GFq , ad0 ρ(1)) = 1

and
dimkH

1(GFq , ad0 ρ) = dimkH
1(GFq , ad0 ρ(1)) = 1.

Proof. Note that the actions of GFq on ad0 ρ and ad0 ρ(1) are the same, so it suffices to

consider just ad0 ρ. It is clear that dimkH
0(GFq , ad0 ρ) = 1 since

(
αq 0
0 βq

)
commutes only

with the subspace generated by ( 1 0
0 −1 ) in ad0 ρ.
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For H1(GFq , ad0 ρ), note that a cocycle is determined exactly by the image of Frobenius,
so dimk Z

1(GFq , ad0 ρ) = 3. Since ad0 ρ � B1(GFq , ad0 ρ) via m 7→ (σ 7→ σ · m − m), it
suffices to compute the dimension of the kernel of this map. But the kernel is just (ad0 ρ)Frobq ,
which as mentioned earlier has dimension 1. Thus, dimkH

1(GFq , ad0 ρ) = 1.

We next determine a condition under which RQ,ord has Krull dimension at most #Q.

Proposition 4.26 ([DDT97, Lemma 2.46]). Suppose that

H1
L⊥∅ ,p

(GQ, ad0 ρ(1)) ∼=
⊕
q∈Q

H1(GFq , ad0 ρ(1))

via the map ξ 7→ (ResGFq
ξ)q∈Q. Then dimR�

Q,ord ≤ #Q+ 4 and dimRQ,ord ≤ #Q+ 1.

Proof. Note first that by Proposition 4.25,
∑

q∈Q dimkH
0(GQq , ad0 ρ(1)) = #Q. Thus, both

bounds will follow from Corollaries 4.18 and 4.20 if we show that H1
L⊥Q,p

(GQ, ad0 ρ(1)) = 0.

By definition,

H1
L⊥Q,p

(GQ, ad0 ρ(1)) = ker

(
H1(GQ, ad0 ρ)→

⊕
v 6=p

H1(Gv, ad0 ρ(1))/Lv,Q

)
.

But using the restriction homomorphism on components in Q and the 0 map elsewhere, we
have a composite map

H1(GQ, ad0 ρ)→
⊕
v 6=p

H1(Gv, ad0 ρ(1))/Lv,Q →
⊕
q∈Q

H1(GFq , ad0 ρ(1))

that is an isomorphism, so the kernel of the first map must vanish, as needed.

4.8 Construction of Appropriate Sets of Primes Qn

In this section, we prove the existence of a family of sets Qn with the properties described
in Section 4.7. Moreover, these sets will be chosen to optimize the Krull dimensions of the
rings RQ,ord. We will choose the sets Qn to meet the conditions of Proposition 4.26.

Proposition 4.27 ([DDT97, Theorem 2.49]). There exists an integer r ≥ 0 such that for
every n we can construct a set Qn with the following properties.

1. For each q ∈ Qn, q ≡ 1 mod pn.

2. For each q ∈ Qn, ρ is unramified at q and ρ(Frobq) has distinct k-rational eigenvalues.

3. We have #Qn = r.
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4. The set Qn contains no primes where ψ is ramified.

5. We have the bounds dimRQn,ord ≤ #Q+ 1 and dimR�
Qn,ord ≤ #Q+ 4.

Proof. Let r = dimkH
1
L∅,p

(Q, ad0 ρ(1)). By Proposition 4.26 and Proposition 4.25, it suffices
to find a set Qn such that the following hold.

1. For each q ∈ Qn, q ≡ 1 mod pn.

2. For each q ∈ Qn, ρ is unramified on GQq and ρ(Frob−1
q ) has distinct k-rational eigen-

values.

3. The character ψ is unramified at each q ∈ Qn.

4. We have the isomorphism

H1
L⊥∅ ,p

(GQ, ad0 ρ(1)) ∼=
⊕
q∈Q

H1(GFq , ad0 ρ(1)).

Moreover, since the H1(GFq , ad0 ρ(1)) are one-dimensional, an inclusion

H1
L⊥∅ ,p

(GQ, ad0 ρ(1)) ↪→
⊕
q∈Q

H1(GFq , ad0 ρ(1))

will suffice, as we can remove factors until the map is an isomorphism. Thus, it suffices to
show that for every [ξ] ∈ H1

L⊥∅ ,p
(GQ, ad0 ρ(1)), there exists a prime q such that the following

hold.

1. We have q ≡ 1 mod pn.

2. The representation ρ is unramified on GQp and ρ(Frobq) has distinct k-rational eigen-
values.

3. The character ψ is unramified at q.

4. The image of [ξ] in H1(GFq , ad0 ρ(1)) is nontrivial.

Claim 4.28. We claim, in fact, that it suffices to show that there exists σ ∈ GQp with the
following properties.

1. We have σ|Q(ζpn ) = 1.

2. The action of ρ(σ) on ad0 ρ has an eigenvalue other than 1.

3. We have ξ(σ) /∈ (σ − 1) ad0 ρ(1) = B1(〈̂σ〉, ad0 ρ(1)), where ·̂ denotes the profinite
completion.

Proof. We show that each of the earlier conditions hold.
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1. By the C̆ebotarev density theorem, Frobenius elements are dense in GQp . If Frob−1
q is

sufficiently close to σ, so that they have the same action on Q(ζpn), then ε−1(Frob−1
q ) =

q = 1 mod pn.

2. Suppose that ρ(σ) has an eigenvalue other than 1. First note that we may choose a
basis so that either ρ(σ) = ( α 1

0 α ) or
(
α 0
0 β

)
. In the first case, we can write the matrix

for the action on the ordered basis ( 0 1
0 0 ) , ( 1 0

0 −1 ) , ( 0 0
1 0 ) as 1 2

α
− 1
α

0 1 − 1
α2

0 0 1

 ,

so there are no eigenvalues other than 1. In the second case, the eigenvalues are 1, α
β
,

and β
α

, so β 6= α exactly when the matrix has an eigenvalue other than 1.

3. By the C̆ebotarev density theorem, we can avoid the finite set of primes where ψ is
ramified.

4. For a sufficiently close approximation Frob−1
q to σ, the third condition implies that the

image of [ξ] in H1(GFq , ad0 ρ(1)) must be nontrivial.

We next define a family of fields Fm for m ≥ 0 by letting Fm be the kernel of the
representation ad0 ρ|GQ(ζpm )

. In other words, if F is the fixed field of the representation

ad0 ρ, then Fm is the compositum F ·Q(ζpm).

Claim 4.29. The image ξ(GFn) ⊆ ad0 ρ(1) is nontrivial.

Proof. Consider the inflation homomorphism

H1(Gal(Fn/Q), ad0 ρ(1))→ H1(GQ, ad0 ρ(1)),

noting that GFn acts trivially on ad0 ρ(1) since Fn ⊆ Q(ζp). If ξ(GFn) is trivial, then ξ pulls
back to a nontrivial element of H1(Gal(Fn/Q), ad0 ρ(1)) since it is nontrivial as an element
of H1(GQ, ad0 ρ(1)). Thus, it suffices to show that H1(Gal(Fn/Q), ad0 ρ(1)) = 0.

Consider the inflation-restriction exact sequence

0→ H1(Gal(F0/Q), (ad0 ρ(1))GF0 )→ H1(Gal(Fn/Q), ad0 ρ(1))

→ H1(Gal(Fn/F0), ad0 ρ(1))Gal(F0/Q) = H1(Gal(Fn/F0), ad0 ρ(1))GQ ,

where the action of g ∈ Gal(F0/Q) sends η 7→ (h 7→ g−1η(ghg−1)). Since Gal(F1/F0) has
order dividing p− 1 and thus prime to p, the restriction map

H1(Gal(Fn/F0), ad0 ρ(1))→ H1(Gal(Fn/F1), ad0 ρ(1))
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is an isomorphism, as one can see using the fact that the restriction-corestriction sequence

H1(Gal(Fn/F0), ad0 ρ(1))→ H1(Gal(Fn/F1), ad0 ρ(1))→ H1(Gal(Fn/F0), ad0 ρ(1))

is an isomorphism. Note that the action of GQ-conjugation is trivial on Gal(Fn/F1) since
it factors through the abelianization of GQ. Since Gal(Fn/F1) ∼= Z/pn−1Z is cyclic, and
the cocycle relation holds, the map is determined by the image of a generator h. Then for
ϕ ∈ H1(Gal(Fn/F1), ad0 ρ(1))GQ defined by ϕ(h) = m, ϕ is GQ-invariant if for g ∈ GQ,
g−1ϕ(ghg−1) = g−1ϕ(h) = g−1m = m, meaning that m is GQ-invariant. Conversely, such a
choice of m defines a cocycle. In particular, we have

H1(Gal(Fn/F1), ad0 ρ(1))GQ ∼= Hom(Gal(Fn/F1), (ad0 ρ(1))GQ).

Finally, observe that (ad0 ρ(1))GQ = 0 by Proposition 4.13.
Next, consider H1(Gal(F0/Q), (ad0 ρ(1))GF0 ). Note that (ad0 ρ(1))GF0 is trivial unless F0

contains Q(ζp), since otherwise some element of GF0 acts on ad0 ρ(1) nontrivially by multi-
plication by the cyclotomic character ε. If p - Gal(F0,Q), then H1(Gal(F0/Q), (ad0 ρ(1))GF0 )
vanishes since it injects into the cohomology with respect to a Sylow p-subgroup. Thus we
are reduced to the case where p|# Gal(F0/Q) and has Gal(Q(ζp)/Q) as a quotient. Note
also that Gal(F0/Q) is the projective image of ρ (since the kernel of the action on ad ρ is
given by the scalar matrices in GL2(k)). We will show that these conditions are impossible
to meet, completing the proof.

Fact 2.1 classifies all possibilities for Gal(F0/Q). Since we have assumed p > 3, the
condition that p|# Gal(F0/Q) leaves us with the cases D2r, A5, PSL(Fpr), PGL(Fpr), and
subgroups of the upper triangular matrices. Since PSL(Fpr) is simple for p > 3 and the
only nontrivial proper normal subgroup of PGL(Fpr) is of index 2, these cases are ruled
out since Gal(F0/Q) must have a quotient of order p − 1. The group A5 is ruled out for
the same reason, as it is simple, and D2r since p - r in the statement of the proposition.
If Gal(F0/Q) is conjugate to a subgroup of the upper triangular matrices, then ρ is not
absolutely irreducible.

Claim 4.30. The restriction ρ|GQ(ζpn )
is absolutely irreducible.

Proof. We first show that ρ|GL is absolutely irreducible, where L = Q

(√
(−1)

p−1
2 p

)
. Note

that Q

(√
(−1)

p−1
2 p

)
has discriminant p, so that the extension is ramified only at p. Since

ρ is unramified at p, the image ρ(GQ) is the same as ρ(GL), so ρ|GL is absolutely irreducible.
Now suppose that ρ|GQ(ζpn ) is not absolutely irreducible. We consider the cases described

in Fact 2.1 for the image Gal(F0/Q).

• Since ρ is absolutely irreducible, we can exclude the case where Gal(F0/Q) is conjugate
to a subgroup of the upper triangular matrices.
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• In the case of PSL2(Fpr), since this group is simple, if ρ|GQ(ζpn )
is not absolutely irre-

ducible, then F0 ⊆ Q(ζpn), which means that Gal(F0/Q) is abelian, contradicting hy-
pothesis. In the case of PGL2(Fpr), the subgroup can only be a conjugate of PSL2(Fpr)
or trivial, but the first still makes ρ absolutely irreducible and the second is impossible
for the same reason as for PSL2(Fpr).

• Since A5 is simple, we may apply the same argument as earlier. The explicit represen-
tation of D2r in Fact 2.1 shows that if the subgroup of Gal(F0/Q) yields a ρ that is no
longer absolutely irreducible, the subgroup must be contained in 〈t〉. But then ρ|GL is
already reducible, since the associated subgroup is 〈t〉, which has diagonal image. In
the A4 and S4 cases, ρ(GQ(ζpn )) must be nontrivial by the preceding argument since A4

and S4 are nonabelian. The smallest nontrivial normal subgroup in either case is the
Klein four group, which falls under the dihedral case in the enumeration in Fact 2.1,
and is thus irreducible by the explicit enumeration of dihedral subgroups in PGL2(Fp).

Now consider the image ξ(GFn). Since Gal(F0/Q) = GQ/GF0 acts on ad0 ρ, so does
Gal(Fn/Q(ζpn)) = GQ(ζpn )/(GF0∩GQ(ζpn )). Moreover, ξ(GFn) is preserved by the conjugation
action by GQ(ζpn ) since for τ ∈ GFn and σ ∈ GQ(ζpn ), we have

ξ(στσ−1) = ξ(σ)+σ·ξ(τσ−1) = ξ(σ)+σ·ξ(τ)+στ ·ξ(σ−1) = ξ(σ)+σ·ξ(τ)+σ·ξ(σ−1) = σ·ξ(τ)

by the cocycle relation and the fact that τ acts trivially on ad0 ρ, and στσ−1 ∈ GFn by the
normality of the extension Fn. The image ξ(GFn) is also closed under addition, since for
τ1, τ2 ∈ ξ(GFn),

ξ(τ1) + ξ(τ2) = τ2 · ξ(τ1) + ξ(τ2) = ξ(τ2τ1),

and τ2τ1 ∈ GFn . Thus ξ(GFn) is a Gal(Fn/Q(ζpn))-submodule of ad0 ρ.

Claim 4.31. There exists an element g ∈ Gal(Fn/Q(ζpn)) with order not dividing p that
fixes a nonzero element of ξ(GFn).

Proof. First note that the map Gal(Fn/Q(ζpn))→ GL2(k) is absolutely irreducible by Claim
4.30. By Fact 2.1, we are reduced to three cases for the image. We further remark that if
we prove the statement for the case where Gal(Fn/Q(ζpn)) has image H, then the statement
holds for any group G containing H.

• By absolute irreducibility, we can exclude the case where Gal(F0/Q(ζpn)) is conjugate
to a subgroup of the upper triangular matrices.

• By the preceding remark, we need only consider the case of PSL2(Fpr). Note that
ad0 ρ is a simple module under the action of PSL2(Fpr), so ψ(GFn) = ad0 ρ in this
case. Since p > 3, the matrix

(
α 0
0 α−1

)
for α ∈ Fpr such that α 6= α−1 fixes the nonzero

element ( 1 0
0 −1 ). Note that this element has order dividing p− 1.
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• By the preceding remark, it suffices to consider the cases of D4 and D2r where r
is odd, since A4, S4, and A5 contain the Klein four group as a subgroup. Using the
explicit description of D4 in Fact 2.1, we find that ad0 ρ decomposes into 1-dimensional
irreducible submodules

ad0 ρ ∼=
(

0 a
a 0

)
⊕
(

0 −b
b 0

)
⊕
(
c 0
0 −c

)
, a, b, c ∈ k,

and it is easy to find a nontrivial element for each of the three submodules that preserves
the space. In fact, each of the elements of D4 act as ±1 on any particular 1-dimensional
irreducible submodule, and there are three nontrivial elements, so one of them must
act trivially. All of these elements have order 2.

In the case of D2r for r odd, we have the decomposition

ad0 ρ ∼=
(
a 0
0 −a

)
⊕
(

0 b
c 0

)
, a, b, c ∈ k

into D2r-submodules. We claim that the submodule of matrices of the form ( 0 b
c 0 )

is irreducible. If not, there is a 1-dimensional irreducible submodule given by the
multiples of some element

(
0 α
β 0

)
. Acting by ( 0 1

1 0 ), we see that d
(

0 α
β 0

)
=
(

0 β
α 0

)
for

d ∈ k, meaning that if, say, α 6= 0, then α = dβ = d2α, or d2 = 1. Thus either α = −β
or α = β. Acting by

(
1 0
0 ζr

)
, we find that neither of these 1-dimensional subspaces are

preserved. Thus the given decomposition is the irreducible decomposition of ad0 ρ. We
find that

(
1 0
0 ζr

)
preserves the first irreducible component and ( 0 1

1 0 ) fixes ( 0 1
1 0 ) in the

second. Since p - #D2r, the order of g does not divide p.

We will next show that ξ(GFn) 6⊆ (g − 1) ad0 ρ(1). For this we need the following.

Claim 4.32. The representation of Gal(Fn/Q(ζpn)) on ad0 ρ(1) is semisimple.

Proof. Using Fact 2.1, we are reduced to three cases as before, and the case where the image
of Gal(Fn/Q(ζpn)) is conjugate to a subgroup of the upper triangular matrices is eliminated
by the fact that the representation is absolutely irreducible. The action of PGL2(Fpr) or
PSL2(Fpr) on ad0 ρ, so we are reduced to D2r, A4, S4, and A5. Maschke’s theorem and the
assumption p > 3 reduces us to A5 and p = 5. But Fact 2.1 shows that the image A5 is
conjugate to PSL2(F5), a case just worked out.

We have ξ(GFn) 6⊆ (g − 1)ξ(GFn) since the existence of an element of ξ(GFn) fixed by
g implies that the linear operator g − 1 has an image in ψ(GFn) of positive codimension.
Since ad0 ρ = ξ(GFn)⊕M for some Gal(Fn/Q(ζpn))-module M by Claim 4.32, we must have
ξ(GFn) 6⊆ (g − 1) ad0 ρ(1) as well.

Lifting g to an element σ0 ∈ GQ(ζpn ), we claim we can chose an element τ ∈ GFn such that
σ = τσ0 satisfies the requisite properties stated in Claim 4.28. Observe that any such σ fixes
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Q(ζpn), so σ satisfies the first property. Since ξ(GFn) 6⊆ (g − 1) ad0 ρ(1) = (σ − 1) ad0 ρ(1),
we can pick τ such that

ξ(τσ0) = ξ(τ) + τ · ξ(σ0) = ξ(τ) + ξ(σ0) /∈ (σ − 1) ad0 ρ(1),

so σ satisfies the third property. Finally, observe that after conjugation, ρ(σ) is of the form
( α 1

0 α ) or
(
α 0
0 β

)
, since the eigenvalues of ρ are assumed k-rational. Observe that ( α 1

0 α )m =(
αm mαm−1

0 αm

)
. For this to vanish, since αm−1 is nonzero, we must have p|m. Since g has order

not dividing p, ρ cannot have the form ( α 1
0 α ). We can also rule out the case where ρ(σ) =(

α 0
0 β

)
with α = β since g /∈ GFn and thus acts nontrivially on ad0 ρ. Thus ρ(σ) =

(
α 0
0 β

)
with α 6= β, completing the proof of the proposition.
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Chapter 5

Families of Hecke Algebras Acting on
Weight Two Cusp Forms

In Sections 3 and 4, we constructed a ring R∅,ord such that when restricted to DVR(k),
Hom(R∅,ord, ·) parametrizes liftings that we expect to be modular. In order to show that all
of the deformations of a residual representation ρ meeting the conditions defined in Section 4
are modular, we must compare the ring R∅,ord to a ring T∅ that has the property that when
the functor Hom(T∅, ·) is restricted to the subcategory DVR(k), it parametrizes modular
liftings of ρ. Moreover, T∅ acts on a space S∅ of modular forms that give rise to these
modular representations.

In order to perform this comparison, we will need to build and relate families of rings
{RQn,ord} and {TQn} that are endowed with actions from p-groups ∆Qn of increasing size.
The family {TQn} acts on a family {SQn} of spaces of modular forms. Moreover, the quotient
of the rings RQn,ord and spaces SQn by the action of ∆Qn should collapse them to R∅,ord and
S∅. We constructed rings RQn,ord, bounded their tangent space dimensions, and checked that
RQn,ord/aQnRQn,ord = R∅,ord in Section 4. In this section, we will construct the family {TQn}
and analyze its properties.

We will need to have two views of the Hecke algebras TQn . Following Carayol [Car94],

the first, presented in Section 5.1, will be as a subring of a product T̃Qn of rings of integers
associated to certain newforms f . With this definition, it will be automatic to define a
universal modular Galois representation ρ̃mod

Qn
: GQ → GL2(T̃Qn). From this we will construct

a representation valued in TQn . We will next view TQn as a localization of the usual Hecke
algebra acting on the cohomology of modular curves. We will prove an isomorphism between
the two possible constructions of TQn in Section 5.2.

We will construct surjective morphisms R∅,ord � T∅ and RQn,ord � TQn in Section 5.3.
Moreover, we will find that the natural action of ∆Qn on TQn coming from the diamond
operators 〈d〉 agrees with the action induced via the RQn,ord � TQn morphism in Section
5.4. Both this compatibility and the isomorphism between the two definitions of TQn will
make use of the deep structure theorems for the representations ρf presented in Fact 2.14.

We will finally prove in Section 5.5 an analogue of Proposition 4.24 for the cohomology
groups of modular curves, viewed as TQn and T∅-modules. This will be the last ingredient
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necessary for the Taylor-Wiles argument presented in Section 6.

5.1 Definition of the Rings TF and Associated Repre-

sentations ρmod
F

We will construct the ring TF in a general setting. Let T denote the product of primes where
ρ is ramified. As before, let p > 3 denote a prime and ψ : GQ → W (k) a fixed character
that is unramified outside a finite set of primes. We define ψ′ via ψ = ε−1ψ′, so that ψ′ is
the character of the newforms f whose representations have the correct determinant. We
assume that T is squarefree and that for all primes t|T , p - t− 1.

Let N be a positive integer such that pT |N and let H1(X1(N),W (k))− be the negative
eigenspace of the induced action on H1(X1(N),W (k)) of the complex conjugation z 7→ −z
on X1(N). We have a Hecke algebra TΓ1(N),W (k) acting on H1(X1(N),W (k))−.

Denote by F (k) the fraction field of W (k). For a newform f ∈ PH1(X1(N), F (k))−,
we denote by Kf the finite extension of F (k) generated by its eigenvalues under the Hecke
algebra TΓ1(Nf ),W (k), where Nf denotes the level of f . Recall from Section 2.2.2 that we
consider f to be a newform for Γ if its Hecke eigenvalues are identical to those of a newform
of level Nf . Denote by Of the ring of integers of Kf and by kf its residue field. Denote by
ψf the Nebentypus character of f .

Denote the Galois representation attached to a newform f by ρf : GQ → GL2(Of ).

Given a family F = {fi} of newforms in PH1(X1(N), F (k)) such that ρfi lifts (a conjugate
of) ρ for each i, we may construct a Galois representation

ρ̃mod
F : GQ →

∏
i

GL2(Ofi)
∼= GL2

(∏
i

Ofi

)
.

We define T̃F =
∏

i Ofi and TF to be the W (k)-subalgebra of T̃F generated by elements of

the form Tr = (ar(fi)) ∈ T̃F for r - N . We also add the element Up = (ap(fi)) ∈ T̃F.

Proposition 5.1 ([DDT97, Lemma 3.27]). We may conjugate ρ̃mod
F : GQ → GL2(T̃F) to

yield a representation
ρmod

F : GQ → GL2(TF).

Proof. Fix a complex conjugation c, and conjugate ρ so that ρ(c) = ( 1 0
0 −1 ). Conjugate each

factor of ρ̃mod
F so that it reduces to ρ modulo every maximal ideal. By applying 4.22 to each

factor of T̃F, we may choose a basis (e+, e−) such that ρ̃mod
F (c) =

(
1̃ 0
0 −̃1

)
, where 1̃ lifts 1 ∈ k

and −̃1 lifts −1 ∈ k. Note that 1̃ must square to 1 in each factor Ofi and lift 1, so it is 1,

and similarly, −̃1 = −1. Thus ρ̃mod
F (c) = ( 1 0

0 −1 ).
Next recall that by Fact 2.14, Tr = Tr ρfi(Frob−1

r ) for primes r - NΓ. Each of the ρfi is

continuous, so ρ̃mod
F is continuous. Thus the C̆ebotarev density theorem implies that Tr ρ̃mod

F
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takes values in TF. Let g ∈ GQ, and write ρ̃mod
F (g) = ( a bc d ). Then ρ̃mod

F (cg) =
(
a b
−c −d

)
, so

since p 6= 2, both

a =
Tr ρ̃mod

F (g) + Tr ρ̃mod
F (cg)

2
and d =

Tr ρ̃mod
F (g)− Tr ρ̃mod

F (cg)

2

lie in TF.

Since ρ is irreducible, there is some σ ∈ GQ so that ρ(σ) = ( ∗ b∗ ∗ ) where b 6= 0. Let b̃
denote the lift of b. If we rescale e+, ρ̃mod

F (c) does not change, so the preceding argument

still implies that the diagonal entries are in TF. Thus, if we replace e+ with b̃−1e+, we have
ρ̃mod

F (σ) = ( a 1
c d ). For any g ∈ GQ, writing ρ̃mod

F (g) =
(
a′ b′

c′ d′

)
, we have

ρ̃mod
F (σg) =

(
a′a+ c′ ab′ + d′

ca′ + dc′ cb′ + dd′

)
,

so using the fact that a, a′ ∈ TF just proved, c′ ∈ TF.
Finally, we use the absolute irreducibility of ρ to choose τ ∈ GQ so that ρ(τ) = ( ∗ ∗c ∗ )

where c 6= 0. Then ρ̃mod
F (τ) =

(
a b
c0 d

)
where c0 ∈ T×F by the preceding paragraph. In

particular, for any g ∈ GQ, writing g =
(
a′ b′

c′ d′

)
, we have

ρ̃mod
F (τg) =

(
a′a+ bc′ ab′ + bd′

c0a
′ + dc′ c0b

′ + dd′

)
,

so b′ ∈ TF since d, d′ ∈ TF as proved earlier and c0 ∈ T×F . Thus, when written in this basis,
ρ̃mod

F is a representation

ρmod
F : GQ → GL2(TF).

5.2 Definition and Properties of the Families {TQn} and

{SQn}
Let Qn be as in Section 4 and define qn =

∏
q∈Qn q. We define TQn = TFn , where Fn is the

collection of newforms

Fn =

f ∈ PH1(X1(pqnT ), F (k))−

∣∣∣∣∣∣∣∣∣
ρf satisfies

1. ρf
∼= ρ⊗k kf

2. Uq(f) ≡ αq mod p

3. det ρf |(Z/pTZ)× ≡ ψ|(Z/pTZ)×

 . (5.1)

Define ρmod
Qn

to be the representation given by Proposition 5.1. Note that the third condition

in (5.1) allows ρf to have a nontrivial character on (Z/qnZ)×.
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We similarly define T∅ = TF∅ , where F∅ is the collection of newforms

F∅ =

f ∈ PH1(X1(pT ), F (k))−

∣∣∣∣∣∣∣
ρf satisfies

1. ρf
∼= ρ⊗k kf

2. det ρf ≡ ψ

 . (5.2)

Define ρmod
∅ to be the representation given by Proposition 5.1.

We will relate TQn and T∅ to Hecke algebras acting on spaces of modular forms. From Sec-
tion 2.2.2, we recall that we may construct the Hecke algebra TQn,Z acting onH1(X1(pqnT ),Z)−

as the subring of End(H1(X1(pqnT ),Z)−) generated by the Hecke operators Tm for m ≥ 1
and 〈d〉 for d ∈ (Z/pqnTZ)×. We construct T∅,Z ⊆ End(H1(Γ1(pT ),Z)−) in the same
manner. Tensoring with W (k), we obtain Hecke algebras

TQn,W (k) ⊆ End(H1(X1(pqnT ),W (k))−) and T∅,W (k) ⊆ End(H1(X1(pT ),W (k))−).

We will construct maximal ideals mQn and m∅ of TQn,W (k) and T∅,W (k) such that TQn

and T∅ are isomorphic to the localizations of TQn,W (k) and T∅,W (k) at these maximal ideals.
Via these isomorphisms, TQn acts on the space

SQn = H1(X1(pqnT ),W (k))−mQn

and T∅ acts on
S∅ = H1(X1(pT ),W (k))−m∅ .

Proposition 5.2. There exists a maximal ideal mQn ⊆ TQn,W (k) such that

TmQn
∼= TQn ,

where Ra denotes the completion of the ring R at a. Moreover, this isomorphism sends the
Hecke operator Tn ∈ TmQn

to the tuple Tn of coefficients (an(fi))fi∈F in TQn. Similarly, there
exists a maximal ideal m∅ ⊆ T∅,W (k) such that

T∅ ∼= Tm∅ ,

and which preserves the Hecke operators in this fashion.

We begin by proving a lemma describing the structure of the Hecke algebras TQn,W (k)

and T∅,W (k). This is similar to a fact proved in the survey article of Darmon, Diamond, and
Taylor [DDT97, Lemma 4.4], but we drop the hypothesis that K contain the coefficients of
the newform f while assuming that the level is squarefree.

Lemma 5.3. Suppose that N is squarefree. Let TN,Z denote the Hecke algebra associated to
H1(X1(N),Z)−, and denote TN,R = TN,Z⊗R for a ring R. We have a product decomposition

TN,F (k) =
∏
[f ]

Kf [{uq} N
Nf

]/(u2
q − apuq + qψf (q))q| N

Nf

, (5.3)

where [f ] ranges over GF (k)-equivalence classes of newforms in PH1(X1(N), F (k))−.
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Proof. Given a newform f , we define Sf to be the F (k)-vector space with basis{
f(mτ) : m

∣∣∣∣ NNf

}
,

so that

dimF (k) Sf = σ0

(
N

Nf

)
. (5.4)

We claim we obtain a surjective map

TN,F (k) → Kf [{uq}q| N
Nf

]/(u2
q − aquq + qψf (q))q| N

Nf

by sending Tn to an(f) for (n, N
Nf

) = 1 and Uq for q| N
Nf

to uq. The surjectivity is automatic

from the definition of Kf , so we need only to check that Uq satisfies the given characteristic
polynomial.

Note that Uq acts on the space generated by f(τ) and f(qτ) by Fact 2.10, and Uq differs
from the operator Tq of the Hecke algebra acting on H1(X1(Nf ),Qp)

− by the term

∞∑
n=0

qan
q
(〈q〉 f)qn = qψf (q)

∞∑
n=0

an(f)qnq = qψf (q)f(qτ),

where we have used q = exp (2πiτ) to distinguish this from the prime q. Also note that Uq
acts on f(qτ) by sending it to

∞∑
n=0

anq(f(qτ))qn =
∞∑
n=0

an(f(τ))qn = f(τ).

Thus the matrix of Uq acting on f is(
aq 1

−qψf (q) 0

)
,

which has characteristic polynomial u2
q − aquq + qψf (q).

Moreover, for any GF (k)-conjugate g, we just compose the map just constructed with the
automorphism taking f to g, which acts both on the coefficient field Kf and the coefficients
of the polynomial u2

q − aquq + qψf (q), so we obtain a map into the same image ring. We also
note that [Kf : F (k)] is the number of GF (k)-conjugates of f .

We define
TF (k),f ⊆ End(Sf )

to be the image of TN,F (k). The argument above shows that

Kf [{uq}q| N
Nf

]/(u2
q − aquq + qψf (q))q| N

Nf

∼= TF (k),f .
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We observe that the map

TQn,F (k) →
∏
[f ]

TF (k),f

is injective, since the action of TF (k) is faithful, and if an element of TF (k) annihilates f , it
annihilates all of the GF (k)-conjugates of f as well.

We finally observe that

dimF (k) TN,F (k) = dimF (k) TN,F (k) = dimF (k) H
1(X1(N), F (k))− =

∑
f

dimF (k) Sf

= [Kf : F (k)]
∑
[f ]

dimF (k) Sf = [Kf : F (k)]
∑
[f ]

σ0

(
N

Nf

)
= dimF (k)

∏
[f ]

TF (k),f

by Fact 2.12 for the second equality, Fact 2.10, the discussion in Section 2.2.2 comparing
the space H1(·, ·)− with the space S2(·, ·) together with Fact 2.10 for the third, the earlier
remark regarding the number of GF (k)-conjugates of f for the fourth, the equation (5.4) for
the fifth, and the observation that

2
#{uq}q| N

Nf = σ0

(
N

Nf

)
for squarefree N for the sixth. Thus we obtain the isomorphism (5.3).

We define the ideals

mQn =
(
π,
{
Tr − Tr ρ(Frob−1

r )
}
r-pqnT

, (5.5)

{〈r〉 − ψ′(r)}r-pqnT , Up − 1,
{
Ut − Tr ρIp(Frob−1

t )
}
t|T , {Uq − αq}q∈Qn

)
and

m∅ =
(
π,
{
Tr − Tr ρ(Frob−1

r )
}
r-pqnT

, (5.6)

{〈r〉 − ψ′(r)}r-pqnT , Up − 1,
{
Ut − Tr ρIp(Frob−1

t )
}
t|T

)
.

Also observe that we write αq to mean an arbitrary lift of αq ∈ k and similarly for Tr ρ(Frob−1
r )

and Tr ρIp(Frob−1
t ). Since π ∈ mQn and π ∈ m∅ the choice of lift does not change mQn or m∅.

Corollary 5.4. We have a product decomposition

(TQn,F (k))mQn
=
∏
[f ]

(
Kf [{uq}q| pqnT

Nf

]/(u2
q − aquq + qψf (q))q| pqnT

Nf

)
mQn

, (5.7)
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where [f ] ranges over GF (k)-equivalence classes of newforms in PH1(X1(pqnT ), F (k))−mQn .
Similarly, we have

(T∅,F (k))m∅ =
∏
[f ]

Kf , (5.8)

where [f ] ranges over GF (k)-equivalence classes of newforms in PH1(X1(pT ), F (k))−m∅.

Proof. Notice that any functions f such that ρf lifts ρ have T dividing the level since ρ is
ramified at primes dividing T . Similarly, f has p dividing the level since the condition Up−1
forces the representation f to be ordinary. Lemma 5.3 then shows that (5.8) holds. Equation
(5.7) follows immediately from Lemma 5.3, though we remark that the same argument shows
that the q can be taken to be elements of Qn.

Proof of Proposition 5.2. By Corollary 5.4, we have

TmQn
= (TQn,W (k))mQn

↪→
∏
[f ]

(
Kf [{uq}q| pqnT

Nf

]/(u2
q − aquq + qψf (q))q| pqnT

Nf

)
mQn

and
Tm∅ = (T∅,W (k))m∅ ↪→

∏
[f ]

Kf .

We can allow redundant choices of f to obtain injections

TmQn
↪→
∏
f

(
Kf [{uq}q| pqnT

Nf

]/(u2
q − aquq + qψf (q))q| pqnT

Nf

)
mQn

and
Tm∅ ↪→

∏
f

Kf .

We aim to simplify the expressions

(
Kf [{uq}q| pqnT

Nf

]/(u2
q − aquq + qψf (q))q| pqnT

Nf

)
mQn

. We

break into cases.

• The newform f has q - Nf : By Fact 2.14, item (1), ρf is unramified at q and the
characteristic polynomial of ρf (Frob−1

q ) is X2− aqX + qψf (q). In particular, the roots
of this polynomial are residually αq, βq where αq 6= βq. Note that this characteristic
polynomial is also the characteristic polynomial u2

q − aquq + qψf (q) of Uq. By Hensel’s

lemma, this quadratic factors as (X − α̃q)(X − β̃q) where α̃q reduces to αq and β̃q
reduces to βq modulo p. In particular, we obtain the isomorphism

Kf [{uq}q| pqnT
Nf

]/(u2
q − aquq + qψf (q))q| pqnT

Nf

∼= Kf ⊕Kf

where in the first factor Kf , Uq = α̃q, and in the second, Uq = β̃q. Since Uq−αq ∈ mQn ,
the second factor disappears upon localization.
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• The newform f has q|Nf but q - Nψf : Fact 2.14, item (6) shows that

ρ|GQq
∼
(
χ ∗
0 χε−1

)
for some character χ, but ε−1(Frob−1

q ) = q ≡ 1 mod p, so ρf |GQq
(Frob−1

q ) does not have
distinct eigenvalues. Thus ρf cannot lift ρ, so we exclude this case.

• The newform f has q|Nf and q|Nψf : Fact 2.14, item (6) shows that

ρ|GQq
∼
(
χ 0
0 χ−1ε−1ψ−1

f

)
= χ1 ⊕ χ2,

where χ is an unramified character satisfying χ(Frob−1
q ) = aq. Note that ε(q) ≡

1 mod p, so
χ2|IGQq

= χ−1ε−1ψ−1
f |IGQq

= ψ−1
f |GQq

is ramified, since q|Nψf . Thus, since Uq(f) is the eigenvalue of Frob−1
q on the unramified

subspace, Uq−αq ∈ mQn , and the roots of the reduction of the characteristic polynomial
u2
q − aquq + qψf (q) modulo π are in k by assumption, the ring Kf [{uq}q| pqnT

Nf

]/(u2
q −

aquq + qψf (q))q| pqnT
Nf

collapses to Kf after localization.

Thus we have
TmQn

↪→
∏
f

Kf and Tm∅ ↪→
∏
f

Kf .

Since TmQn
and TQn are finite W (k)-algebras,

TmQn
↪→ Of

and
Tm∅ ↪→

∏
f

Of .

It follows from the definitions that the image of Tn ∈ TmQn
or Tm∅ matches the element

Tn ∈ TQn or T∅ for n not dividing pT or pqnT , respectively. Similarly, the image of Up is
the same in both cases. To see that these rings are isomorphic, it suffices to show that these
elements generate the image of TmQn

and Tm∅ in
∏

f Of .

Recall from Proposition 5.1 that the representations ρ̃mod
Qn

and ρ̃mod
∅ can be conjugated

so they are valued in TQn and T∅, respectively. We show that each of the Hecke operators
generating TmQn

or Tm∅ is contained in TQn or T∅, respectively.

• The diamond operators 〈d〉: Since 〈r〉 = r−1 det ρmod
Qn

(Frob−1
r ) is contained in TQn and

similarly for T∅ for all prime r not dividing the level, the Dirichlet theorem on primes
in an arithmetic progression implies that all 〈d〉 are in TQn and T∅.
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• The operators Tr for r not dividing the level: We find Tr = Tr ρmod
Qn

(Frob−1
r ) ∈ TQn

and similarly for T∅.

• The operators Ut for t|T : We break further into two subcases.

– The representation ρ is ramified as in (4.1): We have

ρ|GQt
∼
(
χ ∗
0 χε−1

)
where χ(Frob−1

t ) = at. Recall the hypothesis that t - p − 1. This implies that
χ(Frob−1

t ) 6= ε−1(Frob−1
t )χ(Frob−1

t ). In particular, the characteristic polynomial
of ρmod

Qn
(Frob−1

t ) splits over k with distinct roots, so by Hensel’s lemma, the roots

of the characteristic polynomial of ρmod
Qn

(Frob−1
t ) or ρmod

∅ (Frob−1
t ) lie in TQn or T∅,

respectively. But the root corresponding to the unramified character χ(Frob−1
t )

is the image of Ut from TmQn
or Tm∅ , by definition.

– The representation ρ is ramified as in (4.2): We have

ρ|GQt
∼
(
χ1 0
0 χ2

)
with χ1 unramified and χ2 ramified. Thus we can choose a geometric Frobenius lift
Frob−1

t such that χ1(Frob−1
t ) 6= χ2(Frob−1

t ). In particular, since by assumption the
eigenvalues of the matrix ρ(Frob−1

t ) are in k, the characteristic polynomial splits
over k and has distinct roots. We apply the same argument as in the preceding
case to see that Ut lies in TQn or T∅.

• The operators Uq for q ∈ Qn: We apply the argument in the previous two cases,
recalling that the characteristic polynomial of ρ(Frob−1

q ) has distinct roots αq, βq in k.

Thus in fact TQn
∼= TmQn

and T∅ ∼= Tm∅ .

We conclude that certain diamond operators are trivial as elements of TQn .

Corollary 5.5. The morphism

(Z/qnZ)× → T×Qn ⊆ End(H1(Γ1(pqnT ),W (k))−mQn )

defined by restricting the map (Z/pqnTZ)×
d7→〈d〉→ T×Qn to the subgroup (Z/qnZ)× factors

through the quotient homomorphism

(Z/qnZ)× � ∆Qn .
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Proof. Let H = ker
(
(Z/qnZ)× � ∆Qn

)
. We need to show that for d ∈ H, we have 〈d〉 = 1.

We first note that 〈d〉 − 1 ∈ mQn for all d ∈ (Z/qnZ)×, since the residual representation is
unramified at primes in Qn. Thus ∑

d∈H

〈d〉 /∈ mQn ,

since #H is prime to p. For d′ ∈ H, we have

(〈d′〉 − 1)
∑
d∈H

〈d〉 = 0,

which implies 〈d〉′ − 1 = 0 by the invertibility of
∑

d∈H 〈d〉.

We will use ηQn : ∆Qn → T×Qn to denote the homomorphism obtained from Corollary 5.5.
Suppose that O′K ⊆ OK is the subring of a DVR with residue field that is finite over

k obtained by taking elements that reduce to k under reduction by the maximal ideal mK .
We will say that a map ρ′ : GQ → GL2(O′K) is modular if the composition ρ′ : GQ →
GL2(O′K) ↪→ GL2(OK) is modular.

Proposition 5.6. Suppose that O′K ⊆ OK as before. Then

HomW (k) (T∅,O
′
K) ∼=


strict equivalence classes of

representations
ρ : GQp → GL2(O′K)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ satisfies

1. ρ lifts ρ

2. ρ is minimally ramified for ` 6= p

3. det ρ ≡ ψ

4. ρ is modular


.

(5.9)

Proof. We begin by studying morphisms out of T∅.

Claim 5.7. Suppose that O′K ⊆ OK as before. Then a map in HomW (k)(T∅,OK) sends
Tn 7→ an(f) for some unique newform f ∈ H1(X1(pT ),W (k))− and all n.

Proof. Recall that T∅ ∼= Tm∅ . Given a W (k)-homomorphism Tm∅ → O′K in our category, the
coefficient ring W (k) must be preserved, so the intersection of the kernel with the coefficient
ring is (0).

We compose with the injection O′K ↪→ K and localize Tm∅ by adjoining an inverse to the
uniformizer of W (k) to obtain a homomorphism

Tm∅,K = Tm∅ ⊗K → K.

Let the maximal ideal p ⊆ Tm∅,K be the kernel of this homomorphism. The ring Tm∅,K acts
faithfully onH1(X1(pT ),W (k))−m∅⊗K = H1(X1(pT ), K)−m∅ , so the localizationH1(X1(pT ), K)−p
is nonzero.
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Take any eigenform f ∈ H1(X1(pT ), K)−p , and let (Tm∅,K)pf be the space it generates.
Observe that the determinant condition forces p to divide the level of f and the the inclusion
of the Ut − at terms in m∅ implies that the primes t|T divide the level of f as well. Thus
Nf = pT .

We denote again by p the maximal ideal of (Tm∅,K)p. We must have pf 6= (Tm∅,K)fg,
else f = 0 by Nakayama’s lemma. Note that the image of each Tr ∈ Tm∅,K for r - pT under
the homomorphism Tm∅,K → K is some element ar ∈ K. Then Tr − ar maps to 0, so it is
an element of p. On the other hand, f is an eigenform for r, so (Tr − ar)f ∈ Kf . Since
p∩K = (0), we must have Trf = arf . In particular, ar = ar(g) for all primes r not dividing
pT . By multiplicativity, if we define an to be the image of Tn where (n, pT ) = 1, we have
an = an(f), as needed. By the discussion in Section 2.2.2, since Nf = pT , this implies that
f is an eigenfunction for the full Hecke algebra.

Given a morphism r : T∅ → O′K , we obtain a representation ρ′ : GQ → GL2(O′K)
by composition of ρmod

∅ with the projection GL2(T∅) → GL2(O′K). Form the composition
ρ : GQ → GL2(O′K) ↪→ GL2(OK). Since the traces of ρmod

∅ (Frob−1
r ) are Tr for all r - pT , and

by the C̆ebotarev density theorem, the elements Frob−1
r with r - pT are dense in GQ, we find

from Claim 5.7 that Tr ρ agrees with Tr ρf on GQ for the newform f associated to r. Since ρf
is absolutely irreducible by Fact 2.14, the representations are equivalent. We next claim that
ρ has the properties described in (5.9). Property (1) follows from the isomorphism T∅ ∼= Tm∅

and properties (4) and (5) follow from the definition of T∅ and ρmod
∅ . Fact 2.14 immediately

implies property (2). Moreover, Fact 2.14, item (6) also implies property (3), since the two
possible forms for ρf |IQt for t|T are exactly the two types of minimal ramification cases
defined in Section 4.1.

Conversely, given a modular representation ρ′ : GQ → GL2(O′K), again form the compo-
sition ρ : GQ → GL2(O′K) → GL2(OK). From the definition of a modular representation,
we are given an newform f of level dividing pT with representation ρf : GQ → GL2(Of ) and
character ψf = ψ lifting ρ, where Of is the ring of integers of the field Kf/K generated over
K by the coefficients of f . We use the morphism λf : T∅ → OK defined by projection of

T∅ ⊆ T̃∅ to the factor corresponding to f and embedding into the new ring Of , which may
be larger than the ring Of generated over W (k) by the coefficients of f . Note that a factor
corresponding to f exists, as one sees by comparing (5.9) with (5.2). The representation
coming from composing λf with ρmod

∅ has the same traces at Tr as ρf for r - pT . By the

C̆ebotarev density theorem, the representations have the same traces everywhere. Since ρf
is absolutely irreducible by Fact 2.14, it is then equivalent to ρ⊗OK

Of .

5.3 Relating the Families {RQn,ord} and {TQn}
We have the following result.
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Proposition 5.8. There exists a natural surjective morphism

RQn,ord � TQn

induced by the universal property of the ring RQn,ord.

Proof. We begin by defining a character D : GQ → T×Qn via the composition

GQ � ∆Qn
d 7→d−

1
2−→ ∆Qn

ηQn→ T×Qn ,

where the second map is defined because #∆Qn is odd.
Define

ρ′Qn = ρmod
Qn ⊗D : GQ → GL2(TQn).

Note that each form f ∈ Fn has p||N(ρ), since p divides the conductor of ψ. Since Up − 1 ∈
mQn , we must have ap(f) ≡ 1 mod π, where π is a uniformizer for W (k). In particular, ap is
a unit in W (k). By Fact 2.14, item (7), we find that ρf is ordinary. Thus ρ′Qn is ordinary as
well.

Next observe that by Fact 2.14, the determinant of ρf is ψf (r)r at Frob−1
r for r - Nfp.

Thus ρmod
Qn

has determinant ε−1 〈r〉 at Frob−1
r . By the C̆ebotarev density theorem, ρmod

Qn
has

determinant character ε−1 〈·〉. Thus ρ′Qn has determinant ψ. In particular, the ambiguity of
determinant character in (5.1) is eliminated. Since ρ′Qn = ρ, we obtain a unique morphism

RQn → TQn (5.10)

from the universal property.
Note that TQn is generated by the elements Tr for r - pqnT by definition. But these

elements are the images of Tr ρ′Qn(Frob−1
r ). Thus the map (5.10) is surjective.

We next check that the morphism RQn → TQn factors through the local ring Rloc
p,ord. For

each f ∈ Fn, we have a projection πf : T̃Qn → Of , giving us maps

Rloc
p → RQn � TQn ↪→ T̃Qn → Of . (5.11)

The representation ρmod
Qn

pushes forward along the homomorphisms TQn ↪→ T̃Qn → Of to
ρf , which by the preceding discussion is ordinary. However, we cannot yet conclude that the
composition in (5.11) must vanish on b ⊆ Rloc

p . The ring Of might not even be an object of
DVR(k), since the residue field kf may potentially be an extension of k. Thus we need the
following claim.

Claim 5.9. The representation ρf can be conjugated such that the image lies in the subgroup
GL2(O′f ) ⊆ GL2(Of ), where O′f consists of elements of Of whose residue in kf lies in the
subfield k.

Proof. By hypothesis, we have ρ⊗k kf ∼= ρf , so we may write ρf in a basis {e1, e2} over kf
such that ρf = ρ. If we extend {e1, e2} to a basis {ẽ1, ẽ2} of O2

K , then ρf in this basis lifts
entries of k, and thus has image valued in GL2(O′f ).
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By Claim 5.9, we can replace ρf with an equivalent representation that lies in our category,
so the composition in (5.11) indeed vanishes on b ⊆ Rloc

p . Since this is true of each f ∈ Fn,
the composition

Rloc
p → RQn � TQn ↪→ T̃Qn

also vanishes on b, so in fact the map factors through RQn,ord, giving us homomorphisms

RQn � RQn,ord � TQn ↪→ T̃Qn .

5.4 Compatibility of W (k)[∆Qn]-algebra Structures on

RQn,ord and TQn

We recall that RQn,ord is a W (k)[∆Qn ]-algebra via the map πQn,ord, and similarly for R�
Qn,ord.

Proposition 5.8 then makes TQn into a W (k)[∆Qn ]-algebra.
We have a second natural W (k)[∆Qn ]-algebra structure on TQn , which is defined using

the morphism

ηQn : ∆Q
d7→〈d〉→ T×Qn

obtained from Corollary 5.5.
We will show, in fact, that both of these W (k)[∆Qn ]-algebra structures on TQn coincide.

The main idea behind the argument is to use Fact 2.14 to constrain the structure of each
component of the representation ρmod′

Qn
until it meets the conditions described in Claim 5.11.

Then ρmod′
Qn

has exactly the same structure as ρQn , so it is easy to check that the actions line
up correctly.

Proposition 5.10. The maps

∆Qn

πQn,ord→ R×Qn,ord � T×Qn

and
∆Qn

ηQn→ T×Qn

are the same.

Proof. Recall from Section 5.1 that ρmod : GQ → GL2(TQn) is constructed from representa-
tions ρf associated to newforms f ∈ H1(X1(pqnT ),W (k))− such that ρf = ρ and such that
the character of f is ψ′. Let Fn denote the set of such forms f . We begin by showing that
the representations ρf are well-behaved upon restriction to GQq for q ∈ Qn.

Claim 5.11. For every f ∈ Fn and q ∈ Qn, we have

ρf |GQq
∼
(
χ1 0
0 χ2

)
,

satisfying the following.
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1. The character χ1 is unramified and satisfies χ1(Frob−1
q ) ≡ αq mod p.

2. The character χ2 satisfies χ2|IQq = ψ′f .

Proof. We break into three cases. Let Nf denote the level of f and Nψf denote the conductor
of ψf .

• The newform f has q - Nf : By Fact 2.14, item (1), ρf is unramified at q and the
characteristic polynomial of ρf (Frob−1

q ) is X2 − aqX + qψf (q). Using Lemmas 4.22

and 4.23, we can write ρf |GQq
∼
(
χ1 0
0 χ2

)
, where χ1(Frob−1

q ) ≡ αq mod p. Note that the

conductor of Nψf cannot have q as a divisor, so ψ′f is trivial on ∆q. Thus χ2|IQq = ψ′−1
f ,

as both are trivial.

• We can exclude this case by the argument in Proposition 5.2.

• The newform f has q|Nf and q|Nψf : Fact 2.14, item (6) shows that

ρ|GQq
∼
(
χ 0
0 χ−1ε−1ψ′−1

f

)
,

where χ is an unramified character satisfying χ(Frob−1
q ) = aq. Note that ε−1(Frob−1

q ) ≡
1 mod p, so

χ2|IGQq
= χ−1ε−1ψ′−1

f |IGQq
= ψ′−1

f |IQq

is ramified, since q|Nψf . Finally, note that χ(Frob−1
q ) ≡ αq mod p is forced by the fact

that Uq − αq ∈ mQn (so that αq is the reduction of the unramified character).

From the definition of the diamond operators in TQn as tuples (ψf (d))f∈H1(X1(pqnT ),W (k)−mQn
),

we obtain the following corollary. The proof is more subtle than one might expect, because
the change of basis provided by applying Claim 5.11 to each form f ∈ Fn may take values
in the ring T̃Qn of Section 5.1.

Corollary 5.12. We have

ρmod
Qn |GQq

∼
(
χ1 0
0 χ2

)
satisfying the following.

1. The character χ1 is unramified and satisfies χ1(Frob−1
q ) ≡ αq mod p.

2. The character χ2 satisfies χ2|IQq = 〈·〉.

Note that ∼ indicates GL2(TQn)-conjugation.
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Proof. It is immediate from Claim 5.11 that ρmod
Qn
|GQq

takes the form
(
χ1 0
0 χ2

)
when written

in some basis {e1, e2} valued in T̃Qn . In particular, it does not follow that the characters χ1

and χ2 are TQn-valued. However, we can prove that it suffices to conjugate by an element
of GL2(TQn).

First note that the determinant and trace of ρmod
Qn

(Frob−1
q ) are TQn-valued. By Lemma

4.22, we can choose an element of GL2(TQn) to conjugate ρmod
Qn

(Frob−1
q ) into the form

(
α̃q 0

0 β̃q

)
,

where α̃q lifts αq and β̃q lifts βq. Lemma 4.23 shows that ρmod
Qn

=
(
χ′1 0

0 χ′2

)
when written in

this basis. Since we know already that ρmod
Qn

= χ1 ⊕ χ2, and χ1 6= χ2 (since they differ on

Frob−1
q ), we must have χ′1 = χ1 and χ′2 = χ2 or χ′2 = χ1 and χ′1 = χ2. In the latter case, we

can conjugate by ( 0 1
1 0 ), which is TQn-valued. The characters χ1 and χ2 are thus TQn-valued

and satisfy the conditions of the claim.

By Corollary 5.12, we find that

ρmod
Qn ⊗D ∼

(
χα 0
0 χβ

)
where χα = αq, χβ = βq,

χα|IQq = 〈·〉−
1
2 , and χβ|IQq = 〈·〉

1
2 .

Recall from Proposition 4.21 that

ρQn ∼
(
ξ 0
0 ψξ−1

)
where ξ(Frob−1

q ) = αq and ψ(Frob−1
q )ξ(Frob−1

q )−1 = βq. Recall also that the morphism

πQn : ∆Qn → RQn,ord is defined via the map ξ−2
Qn

= ξ−2. Let f : RQn,ord → TQn be the
morphism defined in Proposition 5.8. Then f(ξ) = χα and f(ψξ−1) = χβ. Thus, for d ∈ ∆q,
we have

f(πQn(d)) = χα(d)−2 = (〈·〉−
1
2 )−2 = 〈·〉 ,

which is exactly the map ηQn .

5.5 Relationship of SQn with S∅

By Proposition 5.8, the spaces SQn and S∅ have the structure of RQn,ord-module and R∅,ord-
module, respectively. Using the clean description of the action of ∆Qn defined in Section 5.4
via the map ηQn , we will be able to see transparently the augmentation ideal aQn as it acts
on SQn . With this in hand, we will be able to prove the following analogue of the statement

RQn,ord/aQnRQn,ord = R∅,ord

of Proposition 4.24.
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Proposition 5.13. For each n, we have

SQn/aQnSQn = S∅.

Using the interpretation of modular forms in M2(Γ) as elements of the cohomology group
H1(YΓ,Z), we will be able to use topological arguments to prove the needed result for the
larger spaces of modular forms under consideration. We will then pass to the completion,
which will eliminate any extra modular forms not contained in SQn and S∅.

We define the group ΓQn to be the preimage of the product of the maximal subgroup of
(Z/qnZ)× of order prime to p and the trivial subgroup of (Z/pTZ)× under the morphism

Γ0(pqnT )→ (Z/pqnTZ)× ∼= (Z/qnZ)× × (Z/pTZ)×

induced by ( a bc d ) 7→ d mod qn. We define ΓQn− = Γ0(qn)∩Γ1(pT ). Note that ΓQn is a normal
subgroup of ΓQn−.

Lemma 5.14 ([TW95, Proposition 1]). Let YQn = Y (ΓQn) and YQn− = Y (ΓQn−). Then
H1(YQn ,W (k))− is a free W (k)[∆Qn ]-module of W (k)[∆Qn ]-rank equal to the W (k)-rank of
H1(YQn−,W (k))−. Moreover,

H1(YQn ,W (k))−∆Qn
= H1(YQn−,W (k))−. (5.12)

Proof. We will begin by proving a property of the groups ΓQn and ΓQn− that will allow us
to identify the topological cohomology of YQn and YQn− with the group cohomology of ΓQn
and ΓQn−.

Claim 5.15. The groups ΓQn and ΓQn− are free and act freely on the upper half plane H.

Proof. For the second assertion, it suffices to show that ΓQn and ΓQn− have no nontrivial
elements of finite order. By the explicit enumeration of matrices of SL2(Z) of finite order in
Diamond and Shurman’s text [DS05, Proposition 2.3.3], we find that it suffices to have no
matrices of trace −2,−1, 0, or 1. Since p > 3, the congruence conditions on ΓQn and ΓQn−
rule out all matrices with these traces.

Let Γ = ΓQn or ΓQn−. The action of Γ on H is properly discontinuous since this is true for
the action of SL2(Z) as well. Since YΓ is the quotient of H by a free and properly discontinuous
action by the group Γ, the group Γ is isomorphic to π1(YΓ). Since the fundamental group
of a genus g Riemann surface with at least one point removed is free, we obtain the first
assertion.

Claim 5.16. We have
H1(YQn ,W (k)) ∼= H1(ΓQn ,W (k)).

The complex conjugation action on H1(YQn ,W (k)) corresponds to c = ( 1 0
0 −1 )-conjugation

on elements of H1(ΓQn ,W (k)).
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Proof. Since the action of ΓQn on W (k) is trivial,

H1(ΓQn ,W (k)) = Hom(ΓQn ,W (k)) = Hom(Γab
Qn ,W (k)),

and an element of Hom(Γab
Qn
,W (k)) is simply a choice of element of W (k) for each of the

free generators of ΓQn . Via the identification of ΓQn with π1(YΓQn
), we obtain

Hom(Γab
Qn ,W (k)) ∼= Hom(π1(YΓQn

)ab,W (k)) ∼= H1(YΓQn
,W (k)),

since an element of H1(YΓQn
,W (k)) may be defined by choosing an element of W (k) for each

of the free generators of π1(YΓQn
)ab.

For second assertion, recall the definition of the isomorphism ΓQn
∼= π1(YΓQn

). In par-
ticular, ΓQn acts as the group of deck transformations on the universal cover H. Fixing a
basepoint y0 of YΓQn

and a lift x0 of y0 to H, we associate to σ ∈ ΓQn the image of the path
from y0 to σ(y0). Note that this path is unique up to homotopy equivalence since H is simply
connected.

The definition of the complex conjugation action on H is by the action w 7→ −w. We
choose the basepoint x0 = 2i ∈ H to define the isomorphism, since then the image y0 ∈ YΓQn

is
fixed under the conjugation action, and we obtain an involution on the basepointed homotopy
group π1(YΓQn

, y0). Conjugation by c sends(
a b
c d

)
7→
(

a −b
−c d

)
.

Under the action w 7→ −w on images of the basepoint x0, we have

az + b

cz + d
=
a(2i) + b

c(2i) + d
7→ −a(−2i) + d

c(−2i) + d
=

az − d
−cz + d

.

In particular, the conjugation action of c on the group ΓQn matches the action of complex
conjugation as a map π1(YΓQn

, y0)→ π1(YΓQn
, y0), as needed.

Claim 5.17. We have

H1(ΓQn ,W (k)) ∼= H1(ΓQn−,W (k)[∆Q])

where the action of ΓQn− on ∆Q is by right multiplication after factoring through the quotient
homomorphism ΓQn−/ΓQn

∼= ∆Qn.
The complex conjugation action on H1(ΓQn−,W (k)[∆Q]) corresponds to c-conjugation

with trivial action on ∆Qn.

Proof. By Shapiro’s lemma, it suffices to check that W (k)[∆Qn ] ∼= Ind
ΓQn−
ΓQn

W (k). Recall

that as a set, Ind
ΓQn−
ΓQn

W (k) is simply the set of morphisms of sets ϕ : G→ W (k) such that

ϕ(hg) = hϕ(g) for all h. Thus a choice of ϕ corresponds exactly to a choice of ϕ(gi) ∈ W (k)
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for each of a set of representatives {gi} for the cosets of H in G. By identifying a coset with

the corresponding element of ∆Qn , we obtain an isomorphism W (k)[∆Qn ] ∼= Ind
ΓQn−
ΓQn

W (k)

of sets. The G-action is defined by (gϕ)(g′) = ϕ(g′g), as needed.
The second assertion is immediate from the proof of Claim 5.16 together with the obser-

vation that c-conjugation preserves the ΓQn-cosets in ΓQn−.

By the cocycle relation, a cocycle in Z1(ΓQn−,W (k)[∆Qn ]) is determined by the images
of a set of generators of ΓQn−. Since ΓQn− is free, say on m generators, a cocycle is exactly
determined by the images of the m generators. Thus,

Z1(ΓQn ,W (k)[∆Qn ]) ∼= W (k)[∆Qn ]m.

Next recall from Claim 5.17 that c acts trivially on ∆Qn . Thus

cσcm−m = c(σm)−m = σm−m,

so the action of conjugation on a coboundary is trivial. In particular, B1(ΓQn−,W (k)[∆Qn ]) ⊆
Z1(ΓQn−,W (k)[∆Qn ])+. So

H1(ΓQn−,W (k)[∆Qn ])− = Z1(ΓQn−,W (k)[∆Qn ])−

is a direct summand of the free module Z1(ΓQn−,W (k)[∆Qn ]) and thus projective. Since
W (k)[∆Qn ] is local, H1(ΓQn−,W (k)[∆Qn ])− is then a free W (k)[∆Qn ]-module.

If we tensor with the field of fractions F (k) of W (k), we obtain

H1(YQn , F (k))∆Qn
∼= H1(YQn−, F (k))

since ∆Qn is the group of deck transformations of the covering YQn → YQn−. Since complex
conjugation commutes with the ∆Qn-action, we have

H1(YQn , F (k))−∆Qn

∼= H1(YQn−, F (k))−

as well. Since

H1(YQn ,W (k))−∆Qn
⊗W (k) F (k) = H1(YQn , F (k))−∆Qn

∼= H1(YQn−, F (k))−

= H1(YQn−,W (k))− ⊗W (k) F (k),

the W (k) rank of H1(YQn ,W (k))−∆Qn
must be the W (k)-rank of H1(YQn−,W (k))−, as both

of these modules are free. In particular, the W (k)[∆Qn ]-rank of H1(YQn ,W (k))− is the
W (k)-rank of H1(YQn−,W (k))−. The equation (5.12) follows.

Proof of Proposition 5.13. By Lemma 5.14, we have

H1(YQn ,W (k))−∆Qn
= H1(YQn−,W (k))−.
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The Hecke algebra TQn acts on H1(YQn−,W (k))− by restriction. Localizing both sides at
mQn and noting that ρ is irreducible, so that the Galois representations corresponding to
Eisenstein series are eliminated by localization, we find that

(H1(XQn ,W (k))−mQn )∆Qn
= (H1(YQn ,W (k))−mQn )∆Qn

= H1(YQn−,W (k))−mQn = H1(XQn−,W (k))−mQn .

We finally need to show that

(H1(XQn ,W (k))−mQn )∆Qn
= H1(XQn−,W (k))−mQn = H1(X∅,W (k))−mQn ,

where X∅ is the compact Riemann surface assocated to Γ1(pT ). We divide the proof into
two stages.

Claim 5.18. We have an isomorphism(⊗
q∈Qn

H1(X∅,W (k))⊕2,−

)
mQn

∼= H1(XQn−,W (k))−mQn . (5.13)

Proof. We define the injection

i :
⊗
q∈Qn

H1(X∅,W (k))⊕2,− ↪→ H1(XQn−,W (k))−

to send
(xV )V ∈2Qn 7→

∑
V⊆Qn

ιV (xV ),

where ιV is the map on H1(X∅,W (k)) corresponding to the map

f(τ) 7→ f

(
τ
∏
q∈W

q

)

on modular forms and the choice of whether q ∈ V ∈ 2Qn or not indicates a choice of the
first or second factor of H1(X∅,W (k))⊕2 corresponding to the prime q.

An application of a lemma of Ihara [Iha75] due to Ribet [Rib84] implies that the map
i⊗ k is injective, and thus the image of this map is a direct summand of H1(XQn−,W (k)).
In particular, we have the decomposition

H1(XQn−,W (k))− = i

(⊗
q∈Qn

H1(X∅,W (k))⊕2,−

)
⊕M.

We note that the eigenforms in M must have q dividing the level since

i

(⊗
q∈Qn

H1(X∅,W (k))⊕2

)
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is the subspace of the old subspace of H1(XQn−,W (k)) coming from level pT . The observa-
tion in the proof of Claim 5.11 that there are no newforms f with q in the level and trivial
character at q such that ρf lifts ρ implies that M goes to 0 under localization at mQn . As a
consequence, we obtain the isomorphism in (5.13).

Claim 5.19. We have the isomorphism

H1(X∅,W (k))−m∅
∼= H1(XQn−,W (k))−mQn . (5.14)

Proof. We will apply successive localizations to certain modules at m∅ and then mQn . Note
that mQn is generated by adding the operators Uq − αq to m∅.

We consider the map

ν : H1(X∅,W (k))− →
⊗
q∈Qn

H1(X∅,W (k))⊕2,−

defined by

ν : x 7→
⊗
q∈Qn

(Uq − β̃q)(x, 0) ∈
⊗
q∈Qn

H1(X∅,W (k))⊕2,−,

where β̃q ∈ TQn is the root of the quadratic

u2
q − Tquq + q 〈q〉

lifting βq. Define α̃q similarly. In particular, Uq − α̃q annihilates the image of ν in each
component. We localize at m∅ to obtain

ν : H1(X∅,W (k))−m∅ →
⊗
q∈Qn

H1(X∅,W (k))⊕2,−
m∅

.

The space
⊗

q∈Qn H
1(X∅,W (k))⊕2,−

m∅
decomposes into a product of eigenspaces under the

Uq as ⊗
q∈Qn

H1(X∅,W (k))⊕2,−
m∅

=
⊕
V⊆Qn

(
H1(X∅,W (k))−m∅

)
(Uq−χV (q))q∈Qn

, (5.15)

where

χV (q) =

{
αq if q ∈ V
βq otherwise.

Since the image of ν is annihilated by the operators Uq − αq, ν extends to a morphism

H1(X∅,W (k))−m∅ →

(⊗
q∈Qn

H1(X∅,W (k))⊕2,−
m∅

)
mQn

,
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but (5.15) shows that after localization at mQn , only one of the 2#Qn factors on the right
hand side remains. In particular, our map becomes

H1(X∅,W (k))−m∅ → H1(X∅,W (k))−mQn , (5.16)

which is an isomorphism since the restriction of ν to any component was an isomorphism.
Since the right hand side of (5.16) was just seen to be the left hand side of (5.13), we

obtain

H1(X∅,W (k))−m∅
∼= H1(X∅,W (k))−mQn
∼= H1(XQn−,W (k))−mQn ,

as needed.

Finally, combining the isomorphism in (5.14) with

(H1(XQn ,W (k))−mQn )∆Qn
= H1(XQn−,W (k))−mQn ,

we obtain
H1(X∅,W (k))m∅

∼= (H1(XQn ,W (k))−mQn )∆Qn
.
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Chapter 6

Taylor-Wiles and Modularity

In this section we aim to prove that representations of the absolute Galois group of Q meeting
certain conditions are modular. We follow the argument of Wiles [Wil95] and Taylor-Wiles
[TW95], using modifications of Diamond [Dia97] and Kisin [Kis] to bypass reducibility issues
with the local deformation problem on the decomposition subgroup GQp .

Recall that the main idea of our argument is to find an isomorphism between a deforma-
tion functor that associates to a DVR OK the set of representations into GL2(OK) meeting
the aforementioned conditions and a functor returning a related set of modular representa-
tions by passing to their representing objects.

We state our main theorem precisely in Section 6.1 and provide an overview of the
scenario created by preceding chapters in Section 6.2. We prove Theorem 6.1 assuming
three intermediate results in Section 6.3. The remaining sections are devoted to the proofs
of these intermediate results.

6.1 Statement of the Main Theorem

Our goal is to prove that p-adic representations of GQ that are residually trivial when
restricted to GQp are modular. As mentioned in Section 2, we define a p-adic representation
to be unramified outside of a finite set of primes. Recall from Section 2.1.2 the definitions of
the cyclotomic character εp and the character ωp that we constructed from the Teichmüller
lift. Then we aim to prove the following theorem.

Theorem 6.1. Let p > 3 be prime. Let K/Qp be a finite extension with ring of integers OK

and residue field k. Suppose that the continuous group homomorphism ρ : GQ → GL2(OK)
satisfies the following conditions.

1. The residual representation ρ : GQ → GL2(k) is absolutely irreducible, odd, and mod-
ular.

2. The restriction ρ|GQp
is trivial.

3. The restriction ρ|GQp
is ordinary.
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4. For all ` 6= p, ρ is minimally ramified over ρ. Moreover, the prime-to-p part of the
conductor N(ρ) is a squarefree number T such that for all t|T , p - t− 1.

5. The product ε det ρ is tamely ramified at p.

Then ρ is modular.

Remark 6. The conditions of Theorem 6.1 imply that

det ρ = ε−1
p ωpχ,

where χ is an odd character, unramified outside a finite set of primes, at most tamely ramified
everywhere, such that χ|GQp

is trivial.

In particular, since det ρ is residually trivial and ε det ρ is a character ψ : (Z/pTZ)× →
O×K , the character ψω−1

p is residually trivial on GQp . Since (Z/pTZ)× has order prime to p
by the hypotheses of Theorem 6.1 and 1 + OK ⊆ O×K is pro-p, ψω−1

p is trivial on GQp . In

particular, ψω−1
p is a character χ : (Z/TZ)× → O×K with the aforementioned properties.

6.2 Morphisms

In this section we recall the relationships between all of the objects that will appear in
the Taylor-Wiles argument. These objects come from the two worlds of Galois theory and
modular forms. Section 4 defined the objects coming from the former world and Section 5
defined those coming from the latter.

The ring R∅,ord is defined by setting Q = ∅ in the definitions from Section 4.3. We defined
the ring T∅ and the T∅-module S∅ in Section 5.2. We obtain from Proposition 5.8 a natural
surjective morphism

R∅,ord � T∅,

making S∅ into an R∅,ord-module.
For each n, we have an identical arrangement for the rings RQn,ord and TQn , which act

on the module SQn . In this case, we have the additional structure of an action W (k)[∆Q]→
RQn,ord. Proposition 4.24 showed that RQn,ord/aQRQn,ord = R∅,ord. Recall that while we
defined a second action W (K)[∆Q] → TQn with the property that SQn/aQSQn = S∅, we
proved in Proposition 5.10 that the action induced from the composition W (k)[∆Q] →
RQn,ord → TQn is the same action.

Following Kisin [Kis], we will need to apply framing to this entire situation. In particular,
we set

T�
Qn = TQn ⊗RQn,ord

R�
Qn,ord and S�

Qn = SQn ⊗RQn,ord
R�
Qn,ord.

Then R�
Qn,ord � T�

Qn
, since tensoring preserves surjectivity. Moreover, by Proposition 4.19

R�
Qn,ord

∼= RQn,ord[[c1, c2, c3]], so we have

R�
Qn,ord/(aQ, c1, c2, c3)R�

Qn,ord = R∅,ord and S�
Qn/(aQ, c1, c2, c3)S�

Qn = S∅. (6.1)
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We finally recall from Section 4.8 the isomorphism

W (k)[[{sq}q∈Qn ]]/((1 + sq)
#∆q − 1)q∈Qn

∼= W (k)[∆Qn ],

where aQ = (g− 1)g∈∆Q
⊆ W (k)[∆Q] corresponds to {sq}q∈Q. Thus, rather than thinking of

RQn,ord and R�
Qn,ord as W (k)[∆Q]-algebras, we may instead regard these as W (k)[[{sq}q∈Qn ]]-

algebras. Moreover, (6.1) becomes

R�
Qn,ord/({sq}q∈Qn , c1, c2, c3)R�

Qn,ord = R∅,ord

and
S�
Qn,ord/({sq}q∈Qn , c1, c2, c3)S�

Qn,ord = S∅,ord.

6.3 Overview of the Taylor-Wiles Argument

In the situation described in Section 6.2, we will be able to prove a relationship between the
ring R∅,ord and the ring T∅. In order to do so, we will prove a general fact in commutative
algebra, which is a slight modification of a result of Diamond [Dia97].

Proposition 6.2. Let k be a finite field. Let A = W (k)[[s1, . . . , st]] and let a = (s1, . . . , st).
Let B be a complete local Noetherian integral domain and W (k)-algebra of Krull dimension
≤ t+ 1. Let R be a local W (k)-algebra, and let S be a nonzero R-module, finite over W (k).
Suppose that for each n there are maps ϕn : A→ B and ψn : B → R, as well as B-modules
Sn with B-module homomorphisms πn : Sn → S, such that the following three conditions
hold.

1. The maps ψn are surjective and the composition ψn(ϕn(a)) = 0.

2. The maps πn induce B-module isomorphisms πn : Sn/ϕ(a)Sn
∼→ S.

3. The module Sn is free over A/anA.

Then SuppR S = SpecR and dimB = t+ 1.

The main idea behind the proof is to notice that although the objects with parameter n
do not form a directed system of which one might take a limit, one can use the compactness
of the objects to find some subsequence where the limit is in fact defined. The objects in
the limit are rather well-behaved, and the results of Section 2.3.1 will allow us to deduce
consequences for the objects involved.

Remark 7. The main difference between Proposition 6.2 and Diamond’s result [Dia97, The-
orem 2.1] is that Diamond uses the stronger hypothesis that B is smooth and, accordingly,
obtains much stronger conclusions using the theory of regular local rings. In particular,
while Proposition 6.3 will suffice to prove Theorem 6.1 via the weakened isomorphism in
Proposition 6.5, Diamond’s result implies an isomorphism of the form R ∼= T.
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Initially, the proofs of both results are almost identical. However, where Diamond applies
the Auslander-Buchsbaum-Serre theorem using the fact B is regular, thereby allowing one
to conclude from the Auslander-Buchsbaum formula that the projective dimension of S∞ is
zero, we instead use the Krull dimension of B to prove a weaker statement about the support
of S∞ and then S.

By applying Proposition 6.2 to the setting described in Section 6.2, we will prove the
following result.

Proposition 6.3. Under the hypotheses of Theorem 6.1, we have

SuppR∅,ord
(S∅) = Spec(R∅,ord).

We will also obtain the following result.

Corollary 6.4. The inequality dimRloc
p,ord ≤ 5 in Proposition 3.8 is an equality.

Using Proposition 6.3, we will deduce the following result.

Proposition 6.5. Assume the hypotheses of Theorem 6.1. Let N be the nilradical of the
ring R∅,ord. We have the isomorphism

R∅,ord/N ∼= T∅.

From Proposition 6.5, Theorem 6.1 follows almost immediately.

Proof of Theorem 6.1. Suppose we are given a representation ρ meeting the conditions of
Theorem 6.1. Note that for a DVR OK with residue field kK that is finite over k, a morphism
R∅,ord → OK factors through R∅,ord/N since the image is an integral domain. Proposition
6.5 implies that R∅,ord/N ∼= T∅.

There is a minor obstruction to concluding Theorem 6.1. In particular, if the residue
field kK is a nontrivial extension of k, the universal property of R∅,ord does not guarantee
that we obtain exactly the set of strict equivalence classes of representations meeting the
conditions of the theorem, since OK is not in the category CLNRings(k). There are two
ways we can solve this issue. The first is to assume that OK has residue field k, which is not
a loss of generality since we can always tensor ρ with an extension k′ of k. However, this
may seem to be a disappointing solution, since the representations ρ are in fact equivalent
to representations into complete local noetherian rings with residue field k, as seen in Claim
5.9. We will provide an alternative approach.

Observe that the statements of Propositions 3.5, 3.6, and 3.7 allowed for discrete valuation
rings with residue field a finite extension of k. By examining the proof of Proposition 3.7,
one finds that since Proposition 3.6 applies to any object of CLNRings(k), Proposition 3.7
applies to subrings of DVRs O′K ⊆ OK with the property that the inverse of any element
of O′K ∩ O×K is also in O′K , which is certainly true of the rings arising in Claim 5.9. In
particular, the proof can be applied using the valuation vK from the DVR. We did not use
the fact that the maximal ideal of a DVR is principal – we needed only that the ring is an
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integral domain. We also note that the statement of Proposition 5.6 applies to those rings
arising in Claim 5.9 as well.

Thus, given a representation ρ : GQ → GL2(OK) lifting ρ⊗kK meeting the conditions of
Theorem 6.1, we consider the representation ρ′ : GQ → GL2(O′K) as in Claim 5.9. Then the
above discussion shows that the map in Hom(R∅,O

′
K) corresponding to ρ′ factors through

R∅,ord and through the quotient by N. Then the isomorphism in Proposition 6.5 provides a
corresponding morphism T∅ → O′K , proving that ρ′ and thus ρ is modular by Proposition
5.6.

6.4 Proof of Proposition 6.2

Letting d = dimS, fix a lift b1, . . . , bd to S of a k-basis for S/(π), where π is a uniformizer
for W (k). For each n, define b1,n, . . . , bd,n to be a lift of b1, . . . , bd to Sn. By Nakayama’s
lemma, b1,n, . . . , bd,n generate Sn over A/anA. Since Sn is free over A/anA, b1,n, . . . , bd,n form
a basis for Sn as an A/anA-module. Using b1,n, . . . , bd,n as a basis, we identify End(Sn) with
Md(A/a

nA). We use b1, . . . , bd to identify End(S) with Md(W (k)). We denote the morphism
B →Md(A/a

nA) by µn.
For each n, we can fit the various objects in the proposition into the commutative diagram

A

((

ϕn

��>
>>

>>
>>

>

��

B
µn //

ψn
����

Md(A/a
nA)

πn
��

R //Md(W (k))

where the map A → Md(A/a
nA) sends a 7→ a1d and the W (k)-algebra homomorphism

A→ R sends si 7→ 0 for all i. Note that the commutativity of the triangle

A
ϕn //

��@
@@

@@
@@

B

ψn
��
R

is condition (3) of the proposition and the commutativity of the triangle

A

((RRRRRRRRRRRRRRR

ϕn

��
B

µn //Md(A/a
nA)
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is the statement that the A-module structure of Sn is inherited through B (and so the
composite map is A-multiplication). Finally, the commutativity of the square

B
µn //

ψn

��

Md(A/a
nA)

πn
��

R //Md(W (k))

,

follows from condition (2) of the proposition and the πn-compatibility of the definitions of
the bases for End(Sn) and End(S).

We will take a limit of this structure in the following way. Let e be the tangent space
dimension of B, so that there is a set of e elements x1, . . . , xe ∈ B that topologically generate
B over W (k). For each i ∈ {1, . . . , e} and n ≥ 1, we define νn(xi) ∈Md(A) to be an arbitrary
lift of µn(xi). The product Bt × Re ×Md(A)e is compact and first-countable since it is a
finite product of spaces with these properties. In particular, it is a sequentially compact
space, so the sequence

{(ϕn(s1), . . . , ϕn(st), ψn(x1), . . . , ψn(xe), νn(x1), . . . , νn(xe))}n≥1

has a subsequence converging to a limit

(ϕ∞(s1), . . . , ϕ∞(st), ψ∞(x1), . . . , ψ∞(xe), ν∞(x1), . . . , ν∞(xe)). (6.2)

Claim 6.6. The values in the tuple (6.2) define homomorphisms

ϕ∞ : A→ B,ψ∞ : B � R and ν∞ : B →Md(A)

fitting into the commutative diagram

A

&&

ϕ∞

��>
>>

>>
>>

>

��

B
ν∞ //

ψ∞
����

Md(A)

π∞
��

R //Md(W (k))

. (6.3)

Define S∞ ∼= Ad with B-module structure defined using ν∞, and define π∞ to be the quotient
by a. Then the properties stated in the proposition hold in the limit, as follows.

1. We have ψ∞(ϕ∞(a)) = 0.

2. There is an isomorphism of B-modules π∞ : S∞/ϕ(a)S∞
∼→ S.
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Proof. It is immediate that (6.2) defines a homomorphism ϕ∞ : A → B. We next need
to check that if the variables x1, . . . , xe are subject to the relation R(x1, . . . , xe) in B, then
ψ∞(R(x1, . . . , xe)). Note that ψn(R(x1, . . . , xe)) for each n. Since addition and multiplication
are continuous, this must be true in the limit. Moreover, since each of the ψn are surjective,
the map ψ∞ is as well. In particular, for r ∈ R, the limit of the sequence of preimages
of r under ψni maps to r under ψ∞, where {ni} is the set of indices for the convergent
subsequence.

To prove that ν∞(x1), . . . , ν∞(xe) defines a homomorphism, it suffices to show that for
all m, the ν∞(·) define a homomorphism

ν∞,m : B →Md(A/a
mA),

since this implies both that the commutators ν∞(xi)ν∞(xj) − ν∞(xj)ν∞(xi) must lie in am

for all m and thus vanish and that the relations in B map to elements of am for all m and
thus vanish as well. For sufficiently large i, the projection of νni to Md(A/a

mA) must agree
with both µm and ν∞,m. But µm is a homomorphism, so ν∞,m is a homomorphism as well.

The commutativity of (6.3) follows from the commutativity of the diagrams for each
n. By continuity, the composition ψ∞(ϕ∞(a)) vanishes in the limit. The isomorphism
π∞ : S∞/ϕ(a)S∞

∼→ S is automatic from the definition of S∞.

Since S∞ is free over A, the elements

p, ϕ∞(s1), . . . , ϕ∞(st)

define an S∞-regular sequence with respect to the B-module structure of S∞. In particular,
we obtain the inequality

depthB S∞ ≥ t+ 1.

On the other hand, by Fact 2.15, we have depthB S∞ ≤ dimB ≤ t + 1. In particular, we
find depthB S∞ = dimB = t+ 1.

In this situation, Fact 2.16 implies that every element not contained in a minimal prime
of B is a non-zero-divisor of S∞. Since B is an integral domain by hypothesis, we find that
(0) ∈ SuppB S∞. Moreover, the support is closed in SpecB, so in fact SuppB S∞ = SpecB.
By Fact 2.17,

Rad(AnnB S) = Rad(AnnB S∞/ϕ∞(a)S∞) = Rad(ϕ∞(a)+AnnB S∞) = Rad(ϕ∞(a)). (6.4)

In particular, since prime ideals are radical, any prime of B containing ϕ(a) also contains
Rad(AnnB S) and thus AnnB S. Since the primes in SuppB/ϕ∞(a)B S are exactly those primes
containing AnnB S, we have

SuppB/ϕ∞(a)B S = SpecB/ϕ∞(a)B. (6.5)

We note that the morphism ψ∞ : B � R is surjective and factors through B/ϕ∞(a)B
by Claim 6.6. On the other hand, the kernel of the morphism π∞ ◦ ν∞ is contained in
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Rad(ϕ∞(a)), since this is the morphism that makes S into a B-module and we know that
AnnB S ⊆ Rad(ϕ∞(a)) from (6.4). Thus, by commutativity of (6.3), the kernel b of ψ∞ :
B � R satisfies

ϕ∞(a) ⊆ b ⊆ Rad(ϕ∞(a)).

We thus find SpecB/ϕ∞(a)B = SpecB/b ∼= SpecR.
The primes in SuppR S are the primes containing AnnR S. For a prime p ∈ SpecB/b ∼=

SpecR, which corresponds to a prime pB of B containing b, pB contains AnnB S exactly
when it contains Rad(AnnB S) = Rad(ϕ∞(a)) and thus ϕ∞(a) by (6.4). In particular, the
primes in SuppR S correspond exactly to the primes of SpecB/ϕ∞(a)B. Then (6.5) gives us

SuppR S
∼= SuppB/bB S = SpecB/ϕ∞(a)B ∼= SpecR

and thus SuppR S = SpecR.

6.5 Proof of Proposition 6.3 and Corollary 6.4

Define d = #Qn − 1 and e = dimW (k) S∅. By Corollary 4.17 and Proposition 4.27, there
exists a surjective homomorphism

ψn : Rloc
p,ord[[x1, . . . , xd]] � R�

Qn,ord � R∅,ord (6.6)

for all n, where the second surjection is the composition of the maps R�
Qn,ord � RQn,ord

and RQn,ord � Rord,∅ from Propositions 4.19 and 4.24. Define B = Rloc
p,ord[[x1, . . . , xd]] and

R = R∅,ord.
For each n, we define ϕn to be any homomorphism

ϕn : W (k)[[{sq}q∈Qn , c1, c2, c3]]→ Rloc
p,ord[[x1, . . . , xd]]

such that the diagram

W (k)[[{sq}q∈Qn , c1, c2, c3]]
ϕn //

ι

��

Rloc
p,ord[[x1, . . . , xd]]

ψn
����

W (k)[∆Qn ]
ξn // R�

Qn,ord

commutes, where ι sends the framing variables c1, c2, c3 to 0. This can be done by choosing
a lift of ξn(ι(sq)) along ψn for each q ∈ Qn. We define A = W (k)[[{sq}q∈Qn , c1, c2, c3]].

We define the B-module S ′n = SQn via the composite map

Rloc
p,ord[[x1, . . . , xd]]→ R�

Qn,ord → TQn → End(SQn).

We then set Sn = S ′n/ϕ(a)nS ′n.
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Finally, we set R = R∅,ord and define the R-module S = S∅ via the composite homomor-
phism

R∅,ord → T∅ → End(S∅).

We define the maps πn : Sn → S using Proposition 5.13.
We will show that these assignments satisfy the conditions of Proposition 6.2. The bound

on the Krull dimension of B is implied by Proposition 3.8. That B is an integral domain
follows from the fact that Rloc

p,ord is a subring of the integral domain W (k) 〈x〉 [[z11, z12, w12]].

Since Rloc
p,ord is Noetherian, B is as well. The property (1) is automatic from the definitions

since ϕn(a) vanishes under the homomorphism in (6.6). The property (2) follows from
Proposition 5.13.

For property (3), we note from Lemma 5.14 that S ′n is free over W (k)[[∆Q]]. Observe
that the kernel of the homomorphism A → W (k)[[∆Q]], which is ((1 + sq)

∆q − q)q∈Qn , is
contained in ap

n
and thus ap

n
. It follows that Sn = S ′n/a

nS ′n is free over A/anA. Proposition
6.3 follows.

By Proposition 6.2, we find that

SuppR∅,ord
S∅ = SpecR∅,ord.

and dimB = #Qn + 4. Thus,

dimRloc
p,ord = dimB − d = (#Qn + 4)− (#Qn − 1) = 5,

proving Corollary 6.4.

6.6 Proof of Proposition 6.5

By Proposition 6.3, we have morphisms

R∅,ord � T∅ → End(S∅).

Since
T∅ ↪→ T̃∅ =

∏
f

Of ,

the ring T∅ is reduced. Thus the kernel of the surjection R∅,ord � T∅ contains the nilradical
N of R∅,ord.

Since SuppR∅,ord
S∅ = SpecR∅,ord, any element of R∅,ord that annihilates S∅ must be con-

tained in every prime of R∅,ord. Thus we must have AnnR∅,ord
S∅ ⊆ N. On the other hand,

any element of R∅,ord that does not annihilate S∅ must map to a nonzero element of T∅, so

ker(R∅,ord � T∅) ⊆ AnnR∅,ord
S∅ ⊆ N.

In particular, we obtain an isomorphism

R∅,ord/N
∼→ T∅.
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