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1. Introduction
We set out from someplace quite classical: the representation theory of �nite

groups, in particular the theory of characters therein. Let’s brie�y recall how this
story goes. Let G be a �nite group. �e goal of character theory is to understand a
representation ρ : G Aut(V ) of G on a complex vector space V via its associated
character : the function

(1.0.1) χρ B tr ◦ ρ : G C,

where tr denotes the trace map. �e beauty of character theory is that it accomplishes
its goal quite thoroughly, which can be articulated succinctly as follows.

1.0.2. De�nitions. (a) Consider the collection of isomorphism classes of complex
representations of G , which forms a commutative semiring under the operations
of direct sum and tensor product; the Grothendieck ring of this semiring, i.e. the
commutative ring obtained by formally adjoining additive inverses, is denoted
Rep(G) and referred to as the representation ring of G.

(b) A function onG is called a class function if it is conjugation-invariant. Let Cl(G;C)
denote the C-algebra of class functions G C.

1.0.3. �eorem (Classical �aracter theory). �e assignment ρ χρ de�ned in
(1.0.1) determines a ring homomorphism Rep(G) Cl(G;C), which furthermore
induces an isomorphism

C ⊗Z Rep(G) ∼ Cl(G;C)
of C-algebras.

�is theorem is just a restatement of the main facts one usually hears when
learning character theory:

• characters behave well with respect to direct sums and tensor products of
representations (because traces do);

• a representation is determined up to isomorphism by its character;
• the characters of representations span the vector space of class functions.
�e aim of this thesis is to explain a generalization of this classical character

theory to the se�ing of stable homotopy theory, due to Hopkins-Kuhn-Ravenel [5] and
Stapleton [13]. �is generalization might be seen as a bridge between representation
theory and stable homotopy theory, but is intimately related to certain ideas in
algebraic geometry as well. �e con�uence of these many areas of mathematics is
precisely why I �nd this subject so fascinating, and perhaps my real aim here is just
to give a sense of the many intertwining ideas at play, with (generalized) character
theory as a central, motivating objective.

For now though, in this introduction, we simply seek to explain how one adapts
this classical story in representation theory to a story in stable homotopy theory.

1.1. Translating
We will translate (1.0.3) into the language of homotopy theory via (topological,

complex) K-theory. Recall that K-theory is a cohomology theory arising from the
theory of complex vector bundles. However, for the purposes of this introduction,
why don’t we just focus on the degree 0 term of this cohomology theory. For a space
X this is denoted K(X ) = K0(X ), and is the Grothendieck ring associated to the
semiring of isomorphism classes of (complex) vector bundles on X (the operations
in this semiring again coming from direct sum and tensor product). For example,
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over the trivial space X = pt, a vector bundle is simply a vector space, determined up
to isomorphism by its dimension; K(pt) is therefore the Grothendieck ring of Z≥0,
which of course is just Z.

�ere are two natural equivariant analogues of K-theory. �at is, there are two
candidates which might replace K-theory when we would like to study not just spaces
but spaces equipped with a G-action for some �nite group G. �e �rst is a naı̈ve,
formal construction which one can make whenever one wants aG-equivariant version
of a cohomology theory, known as the associated Borel equivariant cohomology theory.
Given a G-space X , we may always replace it with a homotopy equivalent space
Y on which G acts freely: there is a contractible space EG with a free G action, so
we may take Y B EG × X . When G acts freely on Y , it is natural to expect that the
G-equivariant version of a cohomology theory applied to Y recovers the original
cohomology theory’s value on the quotient space Y/G. �is motivates the Borel
construction (here applied to K-theory), given by de�ning

KBor
G (X ) B K((EG × X )/G).

In particular, when X is the trivial G-space pt we have KBor
G (pt) ' K(BG), where

BG ' EG/G is the classifying space of G.
But for K-theory there is another, more geometric candidate for its equivariant

analogue. Namely, there is a notion of a G-equivariant (complex) vector bundle over a
G-space X . So, analagously to K-theory, we may de�ne a G-equivariant cohomology
theory which in degree 0 is given by the Grothendieck ring KG (X ) of G-equivariant
vector bundles on X . Now, just as a vector bundle over the trivial space is just a
vector space, a G-equivariant vector bundle over the trivial G-space pt is simply a
representation of G. �us we by de�nition have KG (pt) ' Rep(G). It is with this
tautological renaming of Rep(G) that we look to begin viewing character theory
through the lens of homotopy theory.

�e �rst non-tautological step we take is to compare these equivariant theories
KBor
G and KG . �e theory KG still has the expected property that KG (Y ) ' K(Y/G)

when G acts freely on Y . �us for any G-space X we have a natural comparison map

KG (X ) KG (EG × X ) ' K((EG × X )/G) ' KBor
G (X ),

where the �rst map is induced by the projection EG × X X . Of course this map is
not an isomorphism, but a theorem of Atiyah-Segal tells us it’s not terribly far from
being an isomorphism. �is is easiest to state for X = pt, in which case the above
gives a map1

(1.1.1) Rep(G) ' KG (pt) KBor
G (pt) ' K(BG).

1.1.2. De�nition. To a representation V of G we can associate its dimension dim(V ).
�is extends to a ring morphism dim: Rep(G) Z. We call the kernel of this
morphism the augmentation ideal of Rep(G), and denote it Aug(G).
1.1.3. �eorem (Atiyah-Segal completion). �e map (1.1.1) exhibits the ring K(BG)
as the completion of the ring Rep(G) at the augmentation ideal Aug(G).

We now have a precise relationship between K(BG) and KG (pt), and an identi-
�cation of KG (pt) with Rep(G). �us we might hope to rephrase the isomorphism
of character theory (1.0.3) in terms of K(BG). We take one further step in order to
accomplish this.

1�is map can alternatively be described as follows: a representation of G is a map π1(BG) ' G
Aut(V ), which determines a local system with �ber V on BG , which determines a vector bundle with �ber
V on BG .
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1.1.4. Notation. For the remainder of this subsection and the next, �x a prime p.

1.1.5. Lemma. Suppose G is a p-group. �en for some n ∈ Z>0, the ideal Aug(G)n is
contained in the ideal p · Rep(G).

�e proof is relegated to a footnote.2

1.1.6. Lemma. If G is a p-group, the Atiyah-Segal map (1.1.1) is an isomorphism a�er
p-completion. So Zp ⊗Z Rep(G) ' Zp ⊗Z K(BG).
Proof. �is follows immediately from (1.1.3, 1.1.5), the la�er implying that completing
Rep(G) at Aug(G) is subsumed by completing at p. �at is, completing at Aug(G) and
then completing at p is equivalent to just completing at p. �

�is is nice. If we pick an embedding Zp C, we can now rewrite one side
of character theory (1.0.3) completely in terms of ordinary K-theory when G is a
p-group:

C ⊗Z Rep(G) ' C ⊗Zp (Zp ⊗Z Rep(G)) ' C ⊗Zp K̂p (BG),
where K̂p (BG) B Zp ⊗Z K(BG) is the p-completion of the K-theory of BG.

�e other side of character theory can be rewri�en in terms of the classifying
space BG as well. If ΩBG B Map∗(S1,BG) denotes the pointed loop space, then its
connected components are given by

π0(ΩBG) ' π1(BG) ' G .
So the singular cohomology with complex coe�cients H0(ΩBG;C) in degree 0 is
just the vector space of functions G C. Intuitively, changing the basepoint in BG
corresponds to conjugation in G, and indeed it’s not hard to show that if we instead
take the unpointed, or free, loop space LBG B Map(S1,BG), then its connected
components are given by G modulo conjugation. And thus

H0(LBG;C) ' Cl(G;C).
So �nally we have completely translated character theory into the language of

homotopy theory: for G a p-group we have an isomorphism

(1.1.7) C ⊗Zp K̂p (BG) ' H0(LBG;C).
2 I quite like this proof, but couldn’t justify interrupting our story with a li�le fact from representation

theory. In any case, it’s still here for the curious:

Proof of (1.1.5). �e ideal Aug(G) is additively generated by elements of the form [V ] − d , where V
is an irreducible representation of G and d B dim(V ) is the class of the dim(V )-dimensional trivial
representation of G . Since G has only �nitely many irreducible representations V , it su�ces to show that,
�xing such a V , the element ([V ] − d )n is in the ideal p · Rep(G) for some n ∈ Z>0.

Now, Brauer’s induction theorem tells us that [V ] − d is a linear combination of elements of the form
IndGH ([c] − 1) where H ⊆ G is a subgroup, c is a one-dimensional representation (i.e. linear character)
on H , and IndGH denotes induction from H to G . So it now su�ces to show for any such H, c that
IndGH ([c] − 1)n ∈ p · Rep(G) for some n ∈ Z>0. We now have two cases:
• Suppose H is a proper subgroup of G . �e push-pull formula tells us that

IndGH ([c] − 1)n = IndGH
(([c] − 1) · (IndGH ([c] − 1)|H )n−1)

where |H denotes restriction from G to H . By induction (the other kind now) on the order of our
group, (IndGH ([c]−1)|H )n−1 ∈ p ·Rep(H ) for some n ∈ Z>0, implying IndGH ([c]−1)n ∈ p ·Rep(G),
as desired.
• Else H = G , in which case G being a p-group implies [c]pm = 1 for some m ∈ Z>0. But then the

binomial theorem implies [c − 1]pm ∈ p · Rep(G), as desired. �
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1.2. Generalizing
We now seek to describe the generalizations of (1.1.7) that were found by Hopkins-

Kuhn-Ravenel and Stapleton, and which will be proved in this thesis. �ere are many
new notions which need to be introduced to state these generalizations, of which we
can only give a vague summary here. Indeed, a signi�cant portion of this thesis is
devoted to introducing and developing these notions, and the truly interested reader is
kindly invited to continue reading a�er the nebulous haze of intuition which follows.
Nevertheless, we must complete the story we set out to tell in this introduction;
hopefully the following step-by-step path of generalization from (1.1.7) to the main
theorem (1.2.6) serves as a coherent and useful way to do so.
• By replacing the free loop space functor with a sort of p-adic loop space functor
L, we may obtain the isomorphism (1.1.7) not only for p-groups, but for all �nite
groups G.

• Instead of just p-adically completing the group K(BG), one can p-adically complete
K-theory as a cohomology theory, and thus obtain a full cohomology theory K̂p .
One can then upgrade (1.1.7) into an isomorphism in all degrees by replacing the
right-hand side with a periodic version of singular cohomology:

(1.2.1) C ⊗Zp K̂∗p (BG) '
∏
k ∈Z

H2k+∗(LBG;C).

• Given a cohomology theory E, there is a process of obtaining a “rationalized
cohomology theory”, denoted Q ⊗ E; as the notation suggests, this is analogous
to the operation of tensoring abelian groups with Q. In the case of K-theory,
rationalizing simply leaves us with periodic rational singular cohomology.3 Stated
more precisely for p-adically completed K-theory, there is a natural isomorphism
of cohomology theories

(Q ⊗ K̂p )∗(−) '
∏
k ∈Z

H2k+∗(−;Qp ).

�erefore, we may restate (1.2.1) as

(1.2.2) C ⊗Zp K̂∗p (BG) ' C ⊗Qp (Q ⊗ K̂p )∗(LBG).
• It is not in fact necessary to extend coe�cients all the way to C. One may recall

that even in the statement of classical character theory (1.0.3), it su�ces to extend
only to a �eld extension of Q containing all of the roots of unity. Similarly, in (1.2.2)
we may replace C with the maximal rami�ed extension colimk Qp (ζpk ) of Qp .

• �e p-adic completion of K-theory is the �rst member of a naturally occurring
family of cohomology theories {E(n)}n≥0, known as the Morava E-theories. We will
show that character theory generalizes to these cohomology theories as follows.
For a cohomology theory F , let F ∗ denote its coe�cient ring, i.e. its value on a
point, F ∗(pt). �en, for E B E(n), there is a nonzero ring extension C∗0 of Q ⊗ E∗

such that

(1.2.3) C∗0 ⊗E∗ E
∗(BG) ' C∗0 ⊗Q⊗E∗ (Q ⊗ E)∗(LnBG).

where Ln denotes the n-fold composition of the (p-adic) loop space functor.
• Again in analogy to the situation for abelian groups, we should think of rational-

ization as some kind of localization process. In fact, rationalization is the zeroth
member of a naturally occurring family of localization processes on cohomol-
ogy theories {LK (t )}t ≥0. We will prove more generally that for E B E(n) and
3�e phrase “Chern character” is relevant here.
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Lt B LK (t )E with 0 ≤ t < n, there is a nonzero extensionC∗t of L∗t (which, as in the
case of rationalization, is itself an extension of E∗) such that

(1.2.4) C∗t ⊗E∗ E
∗(BG) ' C∗t ⊗L∗t L∗t (Ln−tBG).

• In fact, (1.2.4) is just one instance of a natural isomorphism of G-equivariant coho-
mology theories, arising from the Borel equivariant cohomology theories associated
to E and Lt . On �nite G-CW complexes X , this isomorphism looks like:

(1.2.5) C∗t ⊗E∗t E
∗(EG ×G X ) ' C∗t ⊗L∗t L∗t (EG ×G Ln−tX ).

• Finally, observe that (1.2.5) is a statement aboutG-equivariant cohomology theories
which doesn’t seem biased in any way toward what group G we’re working with.
In fact, we can think of the two sides of this isomorphism as cohomology theories
which are in some sense “equivariant with respect to all �nite groups G”. We call
such things global equivariant cohomology theories. Our proof of these statements
will critically use this “global” perspective, and se�ing up the framework to study
these global equivariant cohomology theories is one our primary goals.

So �nally, the result we will be working towards can be stated as follows.

1.2.6. �eorem (Informal). �ere is an isomorphism (1.2.5), where each side may be
viewed as a global equivariant cohomology theory over all �nite groups G.

1.2.7. Remark. We should explicitly note here that this thesis is almost entirely expos-
itory. However, our strong commitment to the global perspective in this exposition is
in some sense original, and seems quite interesting and useful. In any case, thanks
to Hopkins-Kuhn-Ravenel and Stapleton for producing some incredibly interesting
mathematics.

1.3. Overview
�e remainder of our work is organized as follows. In §2 we review some of the

main ideas from the �eld of chromatic homotopy theory, which is where the Morava
E-theories arise. In §3 we discuss how the theory of p-divisible groups in algebraic
geometry appears in chromatic homotopy theory, which appearance is central to
understanding character theory. In §4 we set up our framework for studying global
equivariant cohomology theories and the like. In §5 we study a particular property of
global equivariant cohomology theories which is key to our proof of character theory.
Finally in §6 we actually give a formal statement and proof of our generalization of
character theory. �e following graph depicts the dependency of these sections on
one another, in case the reader is interested in just a portion of this thesis.

§2, Chromatic
homotopy

theory

§4, Global
equivariant
homotopy

theory

§3, p-divisible
groups

§5, Abelian
descent

§6, Character
theory
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1.4. Mathematical and notational conventions
I have tried throughout the text to give introductions to the many background

ideas relevant in this thesis, so that even readers unfamiliar with some of these
ideas might get something out of reading (parts of) it. However, it was of course
necessary to assume some foundational language, so we say a word about some of
our higher-level prerequisites here:

• I will freely use the basic language of stable homotopy theory, most notably
the notions of spectra, ring spectra, and E∞-ring spectra. �e reader unfamiliar
with these terms should just replace the �rst two terms with cohomology
theories and multiplicative cohomology theories, respectively. �e last should
be thought of as really nice multiplicative cohomology theories, which have
an associated theory analagous to commutative rings in algebra. E.g. there is a
good notion of modules of E∞-rings and tensor products of these modules, and
when one encounters such notions in the text, one should just imagine them
as the correct counterpart in stable homotopy theory of the usual notions in
algebra.

• I will freely use higher category theory, in particular the theory of∞-categories.
However, the reader is strongly urged not to worry about this, as long as they are
familiar with ordinary category theory. �e theory will be treated completely
as a black-box, and used formally, analagously to ordinary category theory. I
will explicitly state when we are viewing something as a higher category, but
when working with it I will not distinguish the associated higher-categorical
notions notationally or terminologically from ordinary categorical notions. For
example, if we are dealing with an∞-category, then all limits and colimits refer
to the correct ∞-categorical notions, i.e. homotopy limits and colimits, but
will still just be denoted lim and colim. �e same goes for all other categorical
notions: subcategories, functors, adjunctions, Kan extensions, and so on.

And �nally we state a couple of conventions that will be employed throughout:
• All rings and algebras will be commutative or graded-commutative, whichever

the context makes more natural.
• �e∞-category of spaces (i.e. topological spaces or Kan complexes up to weak

equivalence) is denoted Space. �e∞-category of spectra is denoted Spect.

2. Chromatic homotopy theory
In this section we lay out some of the fundamental ideas in chromatic homotopy

theory, enough that we can somewhat safely speak about the generalizations of
character theory alluded to in §1. As this section is intended primarily as background,
it’s essentially void of proofs. �e lecture notes [4, 7] are nice places to read about
these ideas in more depth and detail (and my debt to these sources in this exposition
will be clear).

2.1. Formal group laws & Chern classes
Our starting point is the theory of Chern classes associated to complex vector

bundles. Actually, let’s just focus on (complex) line bundles L X , in which case all
that’s of interest is the �rst Chern class c1(L) ∈ H2(X ) B H2(X ;Z). Recall two facts
about this situation:

• Chern classes are natural: the Chern class c1(f ∗L) of the pullback of a line
bundle L X in a map f : Y X is the pullback f ∗(c1(L)) ∈ H2(Y ) of the
Chern class of L.
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• �ere is a universal line bundle: le�ing O(1) denote the tautological line bundle
over the space CP∞ ' BU(1), there is a natural bijection between homotopy
classes of maps f : X CP∞ and isomorphism classes of line bundles on X ,
given by associating to such a map f the pullback f ∗(O(1)) of the tautological
bundle. �at is, the functor associating to a space X the set of isomorphism
classes of line bundles on it is representable (in the homotopy category of
spaces) by CP∞, and the tautological bundle O(1) is truly tautological: it corre-
sponds to the identity map id : CP∞ CP∞.

Of course Chern classes are also isomorphism-invariant, so it follows from these facts
that the Chern classes of any line bundles L is determined by a choice of Chern class
c1(O(1)) ∈ H2(CP∞). Now, recall that the cohomology ring of CP∞ is given by4

H∗(CP∞) ' Znto,
where the generator lives in degree 2, i.e. t ∈ H2(CP∞). So of course then the
interesting choice to make is c1(O(1)) B t . But note that t is really only well-de�ned
up to a unit in Z, i.e. up to sign! So to be precise we need to �x such a generator and
then declare this to be c1(O(1)).

Now, the set of isomorphism classes of line bundles on a space X is o�en referred
to as its Picard group; the name isn’t so important right now, but it is important that
it’s a group. Recall that the operation is given by tensor product of line bundles. So
it’s natural to ask: given two line bundles L and L′ on X , can we express c1(L ⊗ L′) in
terms of c1(L) and c1(L′)? In fact one can do so quite easily:

(2.1.1) c1(L ⊗ L′) = c1(L) + c1(L′) ∈ H2(X ).
Since there is universal line bundle O(1), proving this boils down to proving it

for the universal example. �e universal pair of line bundles is given by the bundles
π ∗1O(1),π ∗2O(1) on CP∞ × CP∞, where π1,π2 : CP∞ × CP∞ CP∞ denote the
projections. So the formula (2.1.1) holds if and only if it holds for this universal
example, that is if

c1(π ∗1O(1) ⊗ π ∗2O(1)) = c1(π ∗1O(1)) + c1(π ∗2O(1)) ∈ H2(CP∞ × CP∞).
To see that this is true, we observe that the canonical map ι : CP∞ ∨CP∞ CP∞ ×

CP∞ induces an isomorphism in H2,

(2.1.2) ι∗ : H2(CP∞ × CP∞) ∼ H2(CP∞ ∨ CP∞),
and that the pullback bundle ι∗(π ∗1O(1) ⊗ π ∗2O(1)) is just a copy of O(1) over each
summand of CP∞ ∨ CP∞.

We can alternatively view this universal example as follows: by the Yoneda
lemma, the tensor product operation on line bundles corresponds to some kind of
multiplication map µ : CP∞ × CP∞ CP∞. In cohomology this gives a map

Znto ' H∗(CP∞) µ∗ H∗(CP∞ × CP∞) ' Znx ,yo,
4It may be more common to write H∗(CP∞) ' Z[t ], i.e. to use the polynomial ring rather than the

power series ring. �is is just a convention: does one want to assemble the graded pieces of H∗(X ) by
taking their direct product or their direct sum? In other words, does one want to consider in�nite or just
�nite sums of homogenous elements in the ring H∗(X )? In just a bit we’ll be considering cohomology
theories E other than singular cohomology, in particular ones in which the coe�cient ring E∗ B E∗(pt) is
not concentrated in degree 0, but may in fact be nonzero in in�nitely many degrees. But even in this more
general situation, we’d like to think of E∗ as some sort of base ring of coe�cients, in which case we may
have in�nite sums in the ring E∗(X ) still living in some �nite graded piece. It will thus be more natural to
consider the power series ring E∗nto, and so we begin with this convention here.
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using the Kunneth isomorphism on the right-hand side, so x = π ∗1 (t) and y = π ∗2 (t).
By de�nition we’ll have µ∗O(1) ' π ∗1O(1) ⊗ π ∗2O(1). So we end up with

µ∗(t) = µ∗(c1(O(1))) = c1(µ∗O(1)) = c1(π ∗1O(1) ⊗ π ∗2O(1))
and

x + y = π ∗1 (t) + π ∗2 (t) = π ∗1 (c1(O(1))) + π ∗2 (c1(O(1)))
= c1(π ∗1O(1)) + c1(π ∗2O(1)).

�erefore we conclude that the formula (2.1.1) is equivalent to the formula µ∗(t) = x+y.
Somebody interested in stable homotopy theory might now ask: what precisely

did we use about singular cohomology in the above? We observe that the essential
facts were the computations of H∗(CP∞) and H∗(CP∞ ×CP∞) as power series rings.
�is motivates the following de�nition.5

2.1.3. De�nition. A multiplicative cohomology theory, i.e. a (homotopy) ring spec-
trum, E is said to be complex-orientable if the Atiyah-Hirzebruch spectral sequence

Hp (CP∞;Eq(pt))⇒ Ep+q(CP∞)
degenerates at its second page. By the standard computations in singular cohomology,
this condition implies that there is an isomorphism E∗(CP∞) ' E∗nto, where E∗ B
E∗(pt). A choice of such an isomorphism, i.e. a choice of generator t (which again is
well-de�ned only up to the units of E0) is referred to as a complex-orientation of E.
We say E is complex-oriented if it is equipped with a complex-orientation.

In fact the degeneration of the spectral sequence for CP∞ forces the analagous de-
generation for CP∞ ×CP∞, whence a complex-orientation on E similarly determines
an isomorphism E∗(CP∞ × CP∞) ' E∗nx ,yo.

2.1.4. Examples. We give the two most basic examples of complex-orientable coho-
mology theories, which are essentially the two motivating examples of cohomology
theories in the �rst place:

(a) Obviously singular cohomology H is complex-orientable.
(b) One can show that complex K-theory K is complex-orientable as well.

So we can create a theory of Chern classes with values in any complex-oriented
cohomology theory E. But now there is no reason for formula (2.1.1) to hold in general.
Its validity in singular cohomology relies on the fact (2.1.2), which relies on the
coe�cient ring H∗ ' Z being concentrated in degree 0; this of course is not true in
general, e.g. for complex K-theory, Bo� periodicity tells us K∗ ' Z[β , β−1] with β in
degree −2. However, we can still say something about the Chern class of a tensor
product with values in E∗: it is still determined by the universal example, which is
still determined by the map in cohomology

(2.1.5) E∗nto ' E∗(CP∞) µ∗
E∗(CP∞ × CP∞) ' E∗nx ,yo,

and again the formula for the Chern class of a tensor product will be given by the
power series f (x ,y) B µ∗(t) ∈ E∗nx ,yo. �e fact that the tensor product of line
bundles is unital, commutative, and associative (all up to isomorphism) implies that
f is a special kind of power series in two variables, which we can think of as an
in�nitesimal version of a group operation.

5One can also give alternative, somewhat more elementary (but equivalent) de�nitions of complex-
orientability than the one given here, but this is the one which most easily and succinctly �ts into the
motivation being given here.
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2.1.6. De�nition. A formal group law over a commutative ring R is a power series
f ∈ Rnx ,yo satisfying:

(a) f (x , 0) = x and f (0,y) = y;
(b) f (x ,y) = f (y,x);
(c) f (f (x ,y), z) = f (x , f (y, z)).

2.1.7. Remark. Note that we’ll always speak about formal group laws over com-
mutative rings, but the coe�cient ring E∗ of a multiplicative cohomology theory is
graded-commutative. �is is no problem here: since µ∗ respects grading and the classes
t ,x ,y in (2.1.5) are in degree 2, the power series f B µ∗(t) must have coe�cients in
the even degrees E2∗, which of course do form a commutative ring.

2.1.8. Examples. We give the two most basic examples (over any commutative ring
R):

(a) First we have the additive formal group law, f (x ,y) = x +y. We saw above that
this arises in stable homotopy theory via singular cohomology.

(b) Second we have the multiplicative formal group law, f (x ,y) = x + y + xy =
(1 + x)(1 + y) − 1. One should think of this really as multiplication xy, except
with the identity shi�ed to 0 rather than 1. One can show without much trouble
that this arises as the formal group law associated to complex K-theory.

It turns out that this assignment

{complex-oriented cohomology theories} {formal group laws}
de�ned by (2.1.5) is an absurdly interesting one to consider. Maybe one is already
astounded by the fact that the examples in (2.1.4) and (2.1.8) are entirely parallel,
i.e. the two simplest formal group laws correspond to the two simplest (in some
sense, maybe historical or pedagogical) cohomology theories; I certainly still am!
�is construction is some sort of approximation of topological objects—cohomology
theories, i.e. spectra—by algebraic objects—formal group laws. �is is precisely the
sort of machine that algebraic topology is all about, but this is a case of the algebraic
approximation retaining a miraculous amount of information about the topology.
Chromatic homotopy theory essentially refers to the business of understanding just
how good this approximation is, and we’ll review some of the key aspects of this
theory in the following two subsections. Just as this one is, the next two subsections
have titles of the form “A & B”; in all three cases A is some concept in the theory of
formal groups and B is the avatar of A in stable homotopy theory.

2.2. The Lazard ring & complex bordism
2.2.1. �e �rst important observation to make about formal group laws is that there’s
a universal one. A formal group law is a power series

f (x ,y) =
∑
i, j

ai, jx
iy j

with coe�cients in a ring R, satis�ying three conditions. �e power series is of course
formally determined by the coe�cients ai, j , and the conditions can be expressed
purely in terms of the coe�cients as well:

(a) that f (x , 0) = x is equivalent to ai,0 being 1 for i = 1 and 0 otherwise, and
similarly for f (0,y) = y;

(b) that f (x ,y) = f (y,x) is equivalent to ai, j = aj,i ;

11



(c) that f (x , f (y, z)) = f (f (x ,y), z) is again equivalent to certain integer polyno-
mial relations among the coe�cients ai, j , but these are more complicated and
omi�ed here.

We conclude that there is some ideal I ⊆ Z[ai, j ] such that specifying a formal group
law over a ring R is equivalent to specifying a morphism of rings Z[ai, j ]/I R. �at
is, the formal group law ∑

i, j ai, jx
iy j over the ring L B Z[ai, j ]/I is the universal

example of a formal group law. For example, we can rephrase the discussion of
the previous section by saying that a complex-orientation on a ring spectrum E
determines a morphism of rings L E∗. In fact, there is a natural (even) grading
on L so that this is a morphism of graded rings. �e (graded) ring L is known as the
Lazard ring.

2.2.2. It turns out that there is also a universal example of a complex-oriented co-
homology theory, known as complex bordism and denoted MU. (As the name sug-
gests, MU is connected to (co)bordisms of manifolds, but we have no time to discuss
its origins or construction.) More precisely, there is a bijection between complex-
orientations of a ring spectrum E and homotopy classes of maps of ring spectra
MU E. In particular, there is a canonical complex-orientation of MU, correspond-
ing to the identity map id : MU MU.

We have now given two universal examples: a complex-orientation of a ring
spectrum E canonically determines morphisms MU E and L E∗. It is hopefully
natural to guess the following result then.

2.2.3. �eorem (�illen). �e map L MU∗ determined by the canonical complex-
orientation of MU is an isomorphism. In other words, the formal group law associated
to MU is the universal one, and the map L ' MU∗ E∗ induced by a complex-
orientation MU E of a ring spectrum E is precisely the map classifying the formal
group law on E∗.

2.2.4. Remark. Note that we said it was natural to guess the previous result, but then
labeled it a theorem and a�ributed it to �illen. Indeed, the result isn’t formal or
easy, but an incredibly deep computation, and sort of miraculous! Again, we have no
time here to delve into the details.

One reason to get really excited about (2.2.3) is that it inspires a method for invert-
ing the process of extracting formal group laws from complex-oriented cohomology
theories. �at is, if we are given a formal group law over some ring R, classi�ed by a
map MU∗ ' L R, we could try to de�ne a complex-oriented cohomology theory E
with exactly this associated formal group law by de�ning

E∗(X ) B MU∗(X ) ⊗L R

(for �nite CW complexes X ). But of course this won’t always de�ne a cohomology
theory. A priori, to retain the necessary exact sequences we would need to assume
the map L R is �at. However, this is quite a stringent condition. Another important
theorem tells us that the Lazard ring L is isomorphic to an in�nite polynomial ring
Z[b1,b2, . . .], and �atness over such a large ring is indeed a rather limiting hypothesis
(maybe this is easier to understand geometrically: imagine trying to be �at over an
in�nite-dimensional a�ne space!).

Luckily, it turns out that we can get away with a signi�cantly weaker �atness
hypothesis to obtain a cohomology theory. To state this correctly we should introduce
formal groups, the more invariant, coordinate-free object underlying formal group
laws.
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2.2.5. Notation. If R is a ring, let AlgR denote the category of R-algebras.

Suppose we are given a formal group law f ∈ Rnx ,yo. We are supposed to think
of this as some kind of group operation, but it’s a power series so it doesn’t quite
make sense to actually apply the operation to elements of R. However, we can apply
it to nilpotent elements of R. More precisely, if Nil : AlgR Set denotes the functor
sending an R-algebra to its set of nilpotent elements, then f de�nes a li� of Nil to
a functor to abelian groups, Gf : AlgR Ab. Note that Nil is the colimit of the
functors corepresented by the R-algebras R[t]/(tn). So, algebro-geometrically Nil just
corresponds to the formal scheme Spf(Rnto) ' colimn Spec(R[t]/(tn)), and the formal
group law f determines a group sctructure on this formal scheme. More generally,
we make the following de�nition.

2.2.6. De�nition. A formal group over a ring R is a functor G : AlgR Ab which is:
(a) a sheaf with respect to the Zariski topology on AlgR ;
(b) Zariski-locally isomorphic to functors of the form Gf , for f a formal group

law.

Perhaps this de�nition is a bit opaque, so let’s elaborate for a li�le while. We
said that formal groups are a more invariant notion than formal group laws, but
how exactly? In other words, given two formal group laws f , f ′ over a ring R, when
are the associated formal groups Gf ,Gf ′ isomorphic? One can show that the formal
groups are isomorphic precisely when there is a “change-of-variable” relating f and
f ′, i.e. an invertible power series д ∈ Rnto such that f (д(x),д(y)) = д(f ′(x ,y)). So
we can think alternatively think of a formal group over R as the following data:

• an open covering of R, i.e. elements r1, . . . , rn ∈ R such that (r1, . . . , rn) = (1) =
R;

• formal group laws fi over each localization R[r−1
i ];

• changes-of-variable дi, j ∈ R[(rir j )−1]nto relating fi and fj , i.e. such that

дi, j fi (д−1
i, j (x),д−1

i, j (y)) = fj (x ,y) ∈ R[(rir j )−1]nx ,yo
• which are coherent in that there are identi�cations дi,k = дj,k ◦ дi, j over
R[(rir jrk )−1]nto.

�is is just the natural way to glue together formal group laws along changes-of-
variable. �is can also be thought of naturally in the language of stacks. We have seen
that there is a “moduli stack of formal group laws” MFGL, i.e. an algebro-geometric
object such that maps Spec(R) MFGL are in bijection with formal group laws over
R: it is just the a�ne scheme Spec(L) associated to the Lazard ring. �en change-of-
variable can be encoded as the action of a group scheme G (paramterizing invertible
power series д(t) = b1t + b2t

2 + · · · ) on the scheme Spec(L) (paramterizing formal
group laws), the action sending a formal group law f (x ,y) to the formal group law
д(f (д−1(x),д−1(y)). Hence the “moduli stack of formal groups” should be de�ned to
be the quotient stack MFG B Spec(L)/G. And indeed when one unwraps all of the
de�nitions, one now has a groupoid of maps Spec(R) MFG, which is precisely the
groupoid of formal groups over R, as de�ned above. In this language, the quotient
map Spec(L) MFG corresponds to taking the formal group underlying a formal
group law.

Let us now return to the problem of de�ning a cohomology theory E∗(X ) B
MU∗(X ) ⊗L R given a formal group law over R. As we said above, one might expect
that we need �atness of L R, i.e. of Spec(R) Spec(L), to do so. But in fact one
can show that it su�ces that the composite Spec(R) Spec(L) MFG be �at. �is
motivates the following de�nition.
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2.2.7. De�nition. We say a formal group over a ring R is Landweber-exact if the clas-
sifying map Spec(R) MFG is �at. We say a formal group law over R is Landweber-
exact if its underlying formal group is.

2.2.8. Remark. �e terminology of Landweber-exactness originates from a (very
useful) theorem of Landweber, the Landweber exact functor theorem, which gives a
simple algebraic (necessary and su�cient) criterion for a formal group law to be
Landweber-exact.

With more work, one can re�ne our two constructions extracting formal group
laws from complex-oriented cohomology theories and building complex-oriented
cohomology theories from Landweber exact formal group laws as follows.

2.2.9. De�nition. We say a ring spectrum E is weakly even periodic if
(a) Ei ' 0 for i odd;
(b) the multiplication map E2 ⊗E0 E−2 E0 is an isomorphism.

�e second condition implies that E2 is an invertible E0-module and that E2k ' (E2)⊗k
for k ∈ Z. We say E is even periodic if it satis�es the following stronger condition:

(b′) there is an invertible element β ∈ E−2, so that multiplication by β determines
an isomorphism Ek ' Ek−2 for all k ∈ Z.

2.2.10. Remark. Any weakly even periodic ring spectrum E is complex-orientable.
If E is even periodic, then it’s easy to see that the associated formal group law over
E∗ can be viewed simply as a formal group law over E0. In fact, even if E is just
weakly even periodic, there is a formal group over E0, i.e. a map Spec(E0) MFG,
which when pulled back to E∗ is just the formal group Spec(E∗) Spec(E0) MFG
underlying the formal group law over E∗.

2.2.11. Proposition. Consider the category of Landweber-exact formal groups, i.e.
the category of �at maps G : Spec(R) MFG. �ere is a functor G EG from this
category to the homotopy category of weakly even periodic ring spectra. Moreover,
this functor is an equivalence of categories, with the inverse functor sending E to the
formal group over E0 discussed in (2.2.10).

2.3. Stratifying by height & Morava K- and E-theories
In this subsection, we strengthen even further the intimate relationship between

stable homotopy theory and formal groups by discussing some geometric structure of
the moduli stack of formal groups MFG, and how this geometric structure is re�ected
in stable homotopy theory.

2.3.1. De�nitions. Let f be a formal group law over a ring R.
(a) We inductively de�ne its n-series [n] ∈ Rnto of f by [0]f (t) = 0 and [n](t) =

f ([n − 1](t), t) for n ∈ Z>0.
(b) One can show that for a prime p, if p = 0 in R then the p-series of f is either zero

or has the form [p](t) = rtp
n
+ O(tpn+1) for some nonzero r ∈ R. With a �xed

prime p understood, we denote the coe�cient of tpn in [p](t) by vn for n ≥ 0. We
say f has height ≥ n if vk = 0 for k < n, and has height (exactly) n if furthermore
vn is invertible in R.

(c) One can show that height of a formal group law is invariant under change-of-
variable, i.e. is actually a property of the underlying formal group. In fact, at each
prime p we may de�ne a strati�cation of MFG × Spec(Z(p)) by de�ning the closed
substacks M≥n

FG parameterizing formal groups of height ≥ n, whose locally closed
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strata Mn
FG BM≥n

FG −M≥n−1
FG are precisely the substacks parameterizing formal

groups of height exactly n.

2.3.2. Examples. (a) It’s easy to see that for any formal group law f over a ring R,
the coe�cient of t in [n](t) is just n. In particular, f has height 0 if and only if p
is invertible in R, and f has height ≥ 1 if and only if p = 0 in R. In other words,
M0

FG 'MFG × Spec(Q) and M≥1
FG 'MFG × Spec(Fp ).

(b) Consider the additive formal group law f (x ,y) = x + y over a ring R with p = 0.
Its p-series is evidently 0, so we say f has in�nite height.

(c) Consider the multiplicative formal group law f (x ,y) = x+y+xy = (1+x)(1+y)−1
over a ring R with p = 0. Its p-series is (1 + t)p − 1 = tp , so f has height 1.

Now how does the notion of height appear in stable homotopy theory? We can’t
give a complete answer to this question, which is central to chromatic homotopy
theory, but we can say a bit.

It is o�en fruitful to think of abelian groups as “living over” (the spectrum of) the
integers, and to study them by localizing or completing at one prime p at a time. We
can do the same thing for spectra, but now there is more structure to consider than
just the integer primes. We have seen that the coe�cient ring of the spectrum MU is
given by the Lazard ring L. �us, for any the spectrum X , the MU-homology of X is a
module MU∗(X ) over L, i.e. a quasicoherent sheaf on Spec(L). However, more is true:
the action of the group scheme G on Spec(L) described above in §2.2 li�s naturally to
an action on the sheaf MU∗(X ). �us we may view MU∗(X ) as a quasicoherent sheaf
on the quotient stack MFG ' Spec(L)/G. I.e. we may think of MU-homology as a
functor from the stable homotopy category to the category of quasicoherent sheaves
on MFG, and therefore think of the stable homotopy category as “living over” MFG.

So we should ask: a�er localizing at a prime p, is there a way of further localizing
or completing the stable homotopy category with respect to the strata of MFG? Indeed
there is, and describing this allows us to introduce some central objects in stable
homotopy theory: the Morava K-theories and E-theories.

2.3.3. De�nition. Let G0 be a formal group over a �eld κ. A deformation of G0 is a
local artin ring A with residue �eld κ, together with a formal group G over A which
restricts to G0 in the quotient map A κ. (Note that since κ,A are both local, the
formal groups G0,G are just the formal groups underlying certain formal group laws
f0, f .)

2.3.4. Proposition. Let G0 be a formal group of height n over a perfect �eld κ of
characteristicp. Let W(κ) denote the ring of Wi� vectors ofκ. �en there is a universal
deformation G of G0 over the local artin ring A BW(κ)nv1, . . . ,vn−1o with residue
�eld κ. �at is, for another local artin ring A′ with residue �eld κ, there is a natural
bijection between the set of isomorphism classes of deformations of G0 over A′ and
the set Hom/κ (A,A′) of ring maps A A′ over κ.

2.3.5. As noted in (2.3.3), in (2.3.4) one can think of the formal group G0 simply as a
formal group law f0 of height n over κ, and the universal deformation as a formal
group law f overA BW(κ)nv1, . . . ,vn−1o. Essentially by construction, one can show
that the universal deformation f will be Landweber-exact. �us by (2.2.11) we have
an even periodic6 spectrum E whose associated formal group law is f , which we call
the Morava E-theory associated to G0. We can say much more though: a theorem of
Goerss-Hopkins-Miller7 tells us that there is an essentially unique E∞-ring spectrum

6It is automatically even periodic, not just weakly even periodic, since the base ring A is local.
7Disclaimer: I have not studied this theorem at all, yet.
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structure on E. For the remainder, we will always think of Morava E-theory as an
E∞-ring spectrum.

On the other hand, the orginal formal group law f0 will not be Landweber exact.
Nevertheless, we may associate a spectrum to it via Morava E-theory. Namely, we let
v0 B p ∈ A, and for 0 ≤ i < n de�ne M(i) to be the co�ber of the map of E-module
spectra E E given by multiplication by vi ∈ A ' E0. We can then consider the
tensor product K B

⊗n−1
i=0 M(i) of E-module spectra, which is independent of the

precise choice of generators v1, . . . ,vn ∈ A, and has coe�cient ring K∗ ' κ[β, β−1],
with β ∈ K−2. (So, just as κ is the quotient of the maximal ideal (p,v1, . . . ,vn−1) ⊆ A,
we should think of K as the quotient of E by this maximal ideal, in some sense.) We
call this spectrum K the Morava K-theory associated to G0.

We now give a de�nition of localizing the stable homotopy category with respect
to a spectrum; localizing with respect to Morava K-theory and E-theory will realize
the localization/completion to the strata of MFG we were asking for above.

2.3.6. De�nition. Let E be a spectrum. We say:
• a spectrum X is E-acyclic if the E-homology of X vanishes, i.e. if E∗(X ) ' 0 or

equivalently if the smash product E ⊗ X is 0;
• a spectrum Y is E-local if any map X Y is nullhomotopic when X is an
E-acyclic spectrum.

One can de�ne an E-localization functor LE : Spect Spect on the ∞-category of
spectra with the following properties:

• For any the spectrum X , the spectrum LEX is E-local.
• �ere is a natural transformation from the identity functor on Spect to LE , i.e.

for any spectrum X there is a natural localization map X LEX . Moreover,
this map is an isomorphism in E-homology.

2.3.7. Examples. Let G0 be a formal group of height n over a perfect �eld κ of char-
acteristic p. Let E and K denote the associated Morava E-theory and K-theory. �en
the E-localization functor LE should be thought of as restriction to the open sub-
stack M≤n

FG complementary to M≥n+1
FG . And the K-localization functor LK should be

thought of as completiong along the locally closed substack Mn
FG. In fact, one can

show that the localization functor LK really only depends on our chosen prime p and
the height n, and for the remainder we will simply denote this functor by LK (n). It
is also common to abusively just call these spectra Morava E-theory and K-theory of
height n, and denote them E(n) and K(n), without specifying the �eld κ or formal
group G0 (this is what we did in the introduction).

Here ends our discussion of the prerequisite ideas from chromatic homotopy
theory that will be needed in what follows. We have certainly omi�ed a great deal,
but hopefully the reader at this point has enough of a picture in mind that they can
appreciate how our main objects of study arise.

3. p-divisible groups
�e takeway of §2 is that there is a remarkable connection between stable ho-

motopy theory and the theory of formal groups. In particular we saw that, at a
�xed prime p, the strati�cation of formal groups by height is re�ected in homotopy
theory through certain spectra known at Morava K- and E-theory. It turns out that,
to understand how these di�erent heights interact in stable homotopy theory, it is
extremely useful not just to consider the formal groups at hand, but to consider the
p-power torsion of these formal groups as what are known as p-divisible groups.
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�is section reviews the bare minimum of what we’ll need to know about p-divisible
groups, and then analyzes the p-divisible groups in chromatic homotopy theory that
we care about.

3.0.1. Notation. �roughout this section we �x a prime p.

3.1. Generalities
3.1.1. Notation. We recall some basic terminology and notation regarding (commuta-
tive) group schemes:

(a) A sequence 0 G′ i G
j
G′′ 0 of �nite group schemes is called short

exact if j is faithfully �at and i is a closed immersion which identi�es G′ with
the (category-theoretic) kernel of j. If we have such a sequence such that G′
and G′′ are �nite of ranks a and b, then G is �nite of rank ab.

(b) If we have a group scheme G over a ring A and a ring extension A B, we
denote the base change G ×Spec(A) Spec(B) by GB .

(c) Similarly, if we have an ordinary group G, we denote the associated constant
group over a ring A by GA.

(d) Note that �nite morphisms are by de�nition a�ne, so if G is a �nite group
scheme over a ringA, it is in fact an a�ne group scheme. In this case we denote
the corresponding ring (that is, the global sections of G) by OG.

3.1.2. De�nition. Let A be a commutative ring. A p-divisible group G of height n over
A is a system (Gk , ik )k ∈Z≥0 , where for each k ∈ Z≥0:

• Gk is a �nite free8 commutative group scheme over A of rank pnk ;
• ik : Gk Gk+1 is a morphism of group schemes over A such that the sequence

0 Gk
ik Gk+1

(pk )
Gk+1

is exact, where (pk ) denotes multiplication by pk ; i.e. ik identi�es Gk as the
pk -torsion in Gk+1.

It’s easy to see that these morphisms in fact identify Gk as the pk -torsion in Gk+l
for all l > 0. �us we will basically always think of G not as the inductive system
(Gk , ik ), but as the colimit of this system, and denote Gk by G[pk ].

Morphisms, short exact sequences, base changes, direct sums, etc. of p-divisible
groups are all de�ned in the obvious way in terms of their de�nitions for �nite group
schemes. Note that because rank of �nite group schemes is multiplicative in short
exact sequences, height of p-divisible groups is additive in short exact sequences.

3.1.3. Example. Suppose we had not a group scheme but an ordinary group G satis-
fying the axioms of a p-divisible group. �en G[p] would a be a �nite p-torsion group
of order pn , hence would necessarily be isomorphic to (Z/p)n . Next, G[p2] would be
a �nite p2-torsion group of order p2n , whose p-torsion was given by (Z/p)n , hence
would necessarily be isomorphic to (Z/p2)n . And inductively we see that the only
possibility is that G ' colimk (Z/pk )n ' (Qp/Zp )n .

We deduce then that any constant p-divisible group of height n over a ring A is
isomorphic to (Qp/Zp )nA.

3.1.4. Example. Suppose we have a formal group law f over a commutative ring A.
Let Gf B Spf(Anto) denote the associated formal group. We would like to say that

8Usually one says “locally free” or “�at” rather than restricting to “free” here. However, we will only
deal with p-divisible groups for which these �nite parts are in fact free, and we will indeed need to use
this freeness hypothesis in §3.2.
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the p-power torsion Gf [p∞] B colimk Gf [pk ] of Gf is a p-divisible group, where
Gf [pk ] ' Spec(Anto/([pk ](t))) with [pk ](t) ∈ Anto the pk -series of f . A form of
the Weierstrass preparation theorem [5, 5.1–5.2] tells us that if A is complete with
respect to an ideal I , and the p-series of f satis�es [p](t) ≡ utpn mod (I , tpn+1) for
a unit u ∈ A× and n ≥ 1, then the A-algebra Anto/([pk ](t)) is a free A-module with
basis {1, t , . . . , tpnk−1} for all k ≥ 0. So under these hypotheses, the p-power torsion
Gf [p∞] will indeed be a p-divisible group, of height n.

O�en it is possible to decompose an arbitrary p-divisible group G into ones which
look like the two examples above. Namely, one o�en has a short exact sequence

(3.1.5) 0 Ginf G Gét 0,

where Ginf is an “in�nitesimal” p-divisible group arising from some formal group
law, and Gét is étale (hence fairly close to being constant). In §3.2 we will analyze
the behavior of such short exact sequences, speci�cally how we can extend our base
ring such that Gét actually becomes constant and such that the sequence splits. �e
following elementary observation will be useful in this analysis.

3.1.6. Proposition. Let G be a p-divisible group over a ring A. Suppose we have a
short exact sequence (3.1.5). Let r be the height of Gét. �e following are equivalent:

(a) the exact sequence splits and the étale part of G is constant, i.e. G ' Ginf ⊕ Gét
and Gét ' (Qp/Zp )rA;

(b) there is a map (Qp/Zp )rA G such that the composite (Qp/Zp )rA Gét is an
isomorphism.

Proof. Clearly (a) implies (b). Conversely, assuming (b), we get a map of short exact
sequences

0 Ginf Ginf ⊕ (Qp/Zp )rA (Qp/Zp )rA 0

0 Ginf G Gét 0.

�e le� vertical map is just the identity, and the right vertical map is by hypothesis
an isomorphism. We conclude by applying the 5-lemma. �

3.2. Splitting the connected-étale seqence
In this subsection we construct the universal extension of a ring over which a

given p-divisible group splits as the direct sum of its in�nitesimal part and a constant
étale part. We essentially follow Stapleton [13, §2.8], who essentially follows Hopkins-
Kuhn-Ravenel [5, §§6.1–6.2]. However, rather than restrict to the speci�c example
which will be relevant to character theory, here we isolate this part of the argument
which applies more generally; I think this generality actually clari�es the exposition
slightly.

3.2.1. Notation. �roughout this subsection we let G be a p-divisible group of height
n over a ring A. Assume that we have a short exact sequence of p-divisible groups

0 Ginf G Gét 0

where Ginf has height t and Gét is étale of height n − t .
Let Λ B (Qp/Zp )n−t .9 For all k ≥ 0 we may choose generators λk1 , . . . , λkn−t of

Λ[pk ] ' (Z/pk )n−t which are coherent in the sense that λki = pλk+1
i for 1 ≤ i ≤ n − t .

9Warning: our Λ is denoted Λ∨ in [5, 13], and thus our Λ∨ (appearing in §3.3) is their Λ.
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3.2.2. Lemma. For k ≥ 0, the functor AlgA Set assigning to an A-algebra B the set
HomB (Λ[pk ]B ,G[pk ]B ) of morphisms of group schemes Λ[pk ]B G[pk ]B over B is
corepresented by the A-algebra

Ck B (OG[pk ])⊗(n−t ) B OG[pk ] ⊗A · · · ⊗A OG[pk ];

i.e. any morphism Λ[pk ]B G[pk ]B is the base change of a universal morphism
ϕuniv : Λ[pk ]Ck G[pk ]Ck in a unique map Ck B.

�e natural transformation

HomB (Λ[pk+1]B ,G[pk+1]B ) HomB (Λ[pk ]B ,G[pk ]B )
given by restriction corresponds via the Yoneda lemma to the morphism Ck Ck+1
induced by the multiplication-by-p map G[pk+1] G[pk ].
Proof. Let B ∈ AlgA. Our chosen generators λk1 , . . . , λkn−t of Λ[pk ] determine an
isomorphism Λ[pk ] ' (Z/pk )n−t . �erefore restricting to the factors in the constant
group scheme

Λ[pk ]B '
∐

λ∈Λ[pk ]
Spec(B)

indexed by these generators determines a bijection between morphisms of group
schemes Λ[pk ]B G[pk ]B over B and (n − t)-tuples of morphisms of schemes
Spec(B) G[pk ]B over B. �e la�er are equivalent to morphisms Spec(B) G[pk ]
over A. Since G[pk ] is a�ne, this equivalent to specifying a morphism of A-algebras
(OG[pk ])⊗(n−t ) B. We have now described a bijection HomB (Λ[pk ]B ,G[pk ]B ) '
HomAlgA (Ck ,B) which clearly is natural in B, proving the claim. Note that the univer-
sal morphism ϕuniv : Λ[pk ]Ck G[pk ]Ck corresponds to the identity id : Ck Ck
under this bijection.

�e �nal statement about the induced map Ck Ck+1 is immediate from the
coherence of the generators λk1 , . . . , λkn−t �xed in (3.2.1). �

3.2.3. Lemma. For k ≥ 0, the functor AlgA Set assigning to an A-algebra B the
subset IsoB (Λ[pk ]B ,Gét[pk ]B ) ⊆ HomB (Λ[pk ]B ,G[pk ]B ) consisting of morphisms
Λ[pk ]B G[pk ]B for which the composite morphism

Λ[pk ]B G[pk ]B Gét[pk ]B
is an isomorphism is corepresented by the localization Ck [∆−1

k ], for some element
∆k ∈ Ck . More precisely, we have a commutative diagram of natural transformations

(3.2.4)
IsoB (Λ[pk ]B ,Gét[pk ]B ) HomB (Λ[pk ]B ,G[pk ]B )

HomA(Ck [∆−1
t,k ],B) HomA(Ck ,B),

∼ ∼

where the bo�om map is the canonical inclusion and the right map is the isomorphism
found in (3.2.2). Finally, Ck [∆−1

t,k ] is faithfully �at over A.

Proof. Suppose we have a morphism ϕ : Λ[pk ]B G[pk ]B . By (3.2.2) this determines
a unique map α : Ck B in which ϕ is the base change of ϕuniv. Consider the
composite

(3.2.5) Λ[pk ]Ck ϕuniv
G[pk ]Ck Gét[pk ]Ck ,

which corresponds to a morphism of Ck -algebras

(3.2.6) OGét[pk ]Ck OΛ[pk ]Ck .

19



By hypothesis and de�nition, both algebras are �nite free of the same rank, so we
may consider its determinant ∆k ∈ Ck . Now, everything in sight is a�ne, so the base
change Λ[pk ]B Gét[pk ]B of (3.2.5) in α , which by de�nition of α is the composite

Λ[pk ]B ϕ
G[pk ]B Gét[pk ]B ,

is an isomorphism if and only if the base change OGét[pk ]B OΛ[pk ]B of (3.2.6) in α is
an isomorphism. But of course this is true if and only if α(∆k ) is a unit in B, i.e. if α
factors through the localizationCk [∆−1

k ]. �is proves the existence and commutativity
of the diagram (3.2.4).

Finally we prove faithful �atness. Since OG[pk ] is �nite free over A, so is Ck . And
localization is �at so this implies Ck [∆−1

k ] is �at over A. So to prove faithful �atness
we just need to show that Spec(Ck [∆−1

k ]) Spec(A) is surjective. Let p ∈ Spec(A);
let K be the algebraic closure of the fraction �eld of the domain A/p, so we have
a map β : A K with kernel p. Since Gét is étale, it must be constant when base-
changed to K . So by (3.1.3) there must be an isomorphism Λ[pk ]K ∼ Gét[pk ]K . Since
K is algebraically closed, there is necessarily a map Λ[pk ]K G[pk ]K li�ing this
isomorphism.10 So by the above, β must factor through a map γ : Ck [∆−1

k ] K . If we
set q B ker(γ ) ∈ Spec(Ck [∆−1

k ]) then q restricts to p in Spec(A). Since p was arbitrary,
we have the desired surjectivity. �

3.2.7. Remark. By the commutativity of (3.2.4), the mapsCk Ck+1 de�ned in (3.2.2)
also induce maps Ck [∆−1

k ] Ck+1[∆−1
k+1] on the localizations de�ned in (3.2.3).

3.2.8. Proposition. �e functor AlgA Set assigning to an A-algebra B the subset
IsoB (ΛB , (Gét)B ) ⊆ HomB (ΛB ,GB ) consisting of morphisms ΛB GB for which the
composite morphism

ΛB GB (Gét)B
is an isomorphism is corepresented by C B colimk Ck [∆−1

k ], where Ck and ∆k are as
in (3.2.2, 3.2.3).

Proof. By de�nition of a morphism of p-divisible groups,

IsoB (ΛB , (Gét)B ) ' lim
k

IsoB (Λ[pk ]B ,Gét[pk ]B )
' lim

k
HomA(Ck [∆−1

k ],B)
' HomA(colim

k
Ck [∆−1

k ],B),
as desired. �

3.3. Chromatic examples
We now discuss the p-divisible groups associated to Morava E-theory and its

K(t)-localization. Some proofs and computations in this section are omi�ed/cited.11

3.3.1. Let E be the Morava E-theory associated to a formal group G0 of height n over
a perfect �eld κ of characteristic p. As discussed in (2.3.5), E is even periodic with
coe�cient ring given by

E0 'W(κ)nv1, . . . ,vn−1o.
10�is is a fact which I read in [1, p. 32], and which is proved in [2, III, 3.7.6].
11�ese omissions are unfortunate, but this thesis has a due date, which is just as unfortunate.
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As shown in [10], the formal group law (over E0) associated to E can be taken such
that its p-series satis�es the following: for 0 ≤ t < n,

(3.3.2) [p](x) ≡ vtxpt mod (It ,xpt+1),
where It denotes the ideal (p,v1, . . . ,vt−1). For t = n, the assumption that E is of
height n implies that

(3.3.3) [p](x) ≡ vnxpn mod (In , tpn+1),
where vn ∈ E0 is a unit, and now In is the maximal ideal (p,v1, . . . ,vn−1) in the local
ring E0. Since E0 is complete with respect to In , (3.1.4) implies that the p-power torsion
of the formal group of E (the universal deformation of G0) is a p-divisible group of
height n. We will denote this p-divisible group by GE .

3.3.4. Now, �x 0 ≤ t < n. We consider the spectrum Lt B LK (t )E(n), which has
the structure of an E∞-ring because E does. One can show that Lt is also an even
periodic spectrum whose coe�cient ring is obtained from E0 by inverting vt and
then completing with respect to the ideal It ; that is,

L0
t 'W(κ)nv1, . . . ,vn−1o[v−1

t ]It ,
and the localization map E Lt induces the canonical map of coe�cient rings
E0 L0

t . We let It denote the ideal (p,v1, . . . ,vt−1) in L0
t as well (which should not

be too confusing). �e formal group law associated to the spectrum Lt is obtained
simply by applying the canonical map E0 L0

t to the coe�cients of the formal group
law associated to E. In particular, the congruence (3.3.2) still holds for the formal
group law of Lt . Since vt is invertible in L0

t and L0
t is complete with respect to It ,

(3.1.4) implies that the p-power torsion of the formal group of Lt is a p-divisible group
of height t . We will denote this p-divisible group by GLt .

3.3.5. Remark. Maybe it seems abusive to denote the p-divisible groups above by GE
and GLt , since it looks like they denote the entire formal group. One reason this isn’t
so bad is that all the torsion in these formal groups is necessarily p-power torsion. As
mentioned earlier, for s > 0 the s-series of a formal group law is always of the form
[s](t) = st +O(t2). If s is coprime to p, then it is invertible in the rings E0 and L0

t , so
[s] is an invertible power series, and hence the formal group can have no s-torsion.

�e next result states that torsion of the formal groups associated to E and Lt , i.e.
the p-divisible groups GE and GLt , can be expressed purely in terms of cohomology.

3.3.6. Proposition ([5, §5.4]). Let F denote either the spectrum E or Lt .
(a) Letm > 0. �en

F ∗(BZ/m) ' F ∗nto/([m](t)),
where [m] denotes the m-series of the formal group law associated to F . In
particular, for m = pk we have F 0(BZ/pk ) ' OGF [pk ], i.e. Spec(F 0(BZ/pk )) '
GF [pk ].

(b) Moreover, ifm = spk with s coprime to p, then the map

F ∗nto/([m](t)) ' F ∗(BZ/m) F ∗(BZ/pk ) ' F ∗nto/([pk ](t))
is an isomorphism.

(c) Most generally, if A is a �nite abelian group whose subgroup of p-torsion is
given by A[p∞] '⊕

i Z/p
ki , then

F ∗(BA) ' F ∗(BA[p∞]) '
⊗
i

F ∗(BZ/pki ),
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implying F 0(BA) '⊗
i OGF [pki ].

Idea of proof. What (a) says intuitively is that the fact that Z/m is them-torsion in
S1 is still visible a�er applying F -cohomology, most clearly when the cohomology
rings are viewed algebro-geometrically. More precisely, the exact sequence Z/m
S1 S1 gives us a �ber sequence BZ/m BS1 BS1, and the above result tells us
that this sequence identi�es Spec(F ∗(BZ/m)) with the m-torsion in the formal group
Spf(F ∗(BS1)) ' Spf(F ∗(CP∞)) ' Spf(F ∗nto) associated to F .

�en (b) just follows from the fact that the formal groups we are considering
only have p-power torsion, as discussed in (3.3.5). Finally, (c) follows from a Kunneth
isomorphism, which exists because we know the rings OGF [pk ] are �nite free over
F 0. �

3.3.7. �e map of ring spectraE Lt gives natural maps in cohomologyE0(BZ/pk )
Lt (BZ/pk ) for each k , which induce maps

Lt ⊗E0 E0(BZ/pk ) Lt (BZ/pk ).
�us, if we let G B (GE )L0

t
be the base change of GE along E0 L0

t , (3.3.6) implies
that these maps determine a map of p-divisible groups i : GLt G over L0

t .

3.3.8. Proposition ([13, §2.1]). �e map i : GLt G is injective with étale quotient.
�at is, we have an exact sequence

0 GLt
i G Gét 0

of p-divisible groups over L0
t , with Gét étale of height n − t .

3.3.9. We can now apply the general analysis carried out in §3.2 to the exact sequence
given by (3.3.8). LetC0

t,k B (OG[pk ])⊗(n−t ), and ∆t,k ∈ C
0
t,k the determinant inverted in

(3.2.3). �en (3.2.8) tells us that G splits into a direct sum of GLt and the constant group
Λ B (Qp/Zp )n−t over C0

t B colimk C
0
t,k [∆−1

t,k ]. More precisely, there is a canonical
isomorphism of p-divisible groups

(3.3.10) (GLt )C0
t
⊕ ΛC0

t

∼ GC0
t
.

Algebraically this is an isomorphism of Hopf algebras

C0
t ⊗L0

t
OG[pk ] ∼

(
C0
t ⊗L0

t
OGLt [pk ]) ⊗C0

t
OΛ[pk ]C0

t

)
for all k . Let’s unwrap a few de�nitions:

• OG[pk ] ' L0
t ⊗E0 OGE [pk ] ' L0

t ⊗E0 E0(BZ/pk ), the second isomorphism coming
from (3.3.6);

• OGLt [pk ] ' L0
t (BZ/pk ), agian by (3.3.6);

• OΛ[pk ]C0
t
'

⊕
λ∈Λ[pk ]C

0
t .

So we may rewrite the above isomorphism of Hopf algebras as

C0
t ⊗E0 E0(BZ/pk ) ∼ (

C0
t ⊗L0

t
L0
t (BZ/pk )

)
⊗C0

t

⊕
λ∈Λ[pk ]

C0
t(3.3.11)

' C0
t ⊗L0

t

⊕
λ∈Λ[pk ]

L0
t (BZ/pk ).(3.3.12)

Note �nally that by (3.3.6), there is an isomorphism C0
t,k ' L0

t (BΛ∨k ), where Λ∨k B

(Z/pk )n−t . �e maps C0
t,k C0

t,k+1 in the colimit de�ning Ct are then just induced
by the canonical maps Λ∨k+1 Λ∨k .
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Let’s now understand the above isomorphisms in terms of cohomology. We have
two factors:

• �e �rst is given by the map (GLt )C0
t

GC0
t

in (3.3.10), which algebraically is
given by the mapC0

t ⊗E0 E0(BZ/pk ) C0
t ⊗L0

t
L0
t (BZ/pk ) in (3.3.11). �is is just

the base change of our inclusion GLt G, which by de�nition is algebraically
just induced by the canonical map E0(BZ/pk ) L0

t (BZ/pk ).
• �e second is given by the map ΛC0

t
GC0

t
in (3.3.10), which algebraically

is given by the map C0
t ⊗E0 E0(BZ/pk ) ⊕

λ∈Λ[pk ]C
0
t in (3.3.11). �is is

determined by maps ϕλ : E0(BZ/pk ) C0
t for each λ ∈ Λ[pk ]. �e de�nition

of ϕλ comes from the de�nition of C0
t . We had a sequence of �xed generators

λk1 , . . . , λ
k
n−t ∈ Λ[pk ]. So �rst suppose λ = λki . �en ϕλ is the composition

E0(BZ/pk ) L0
t (BZ/pk ) ψλ L0

t (BZ/pk )⊗(n−t ) ' Ct,k Ct,k [∆−1
t,k ] C0

t

whereψλ is the inclusion of the i-th factor of the tensor product. More generally,
if λ = ∑

i aiλ
k
i thenψλ will be the corresponding linear combination of inclu-

sions ∑
i aiψλki

, where now summation refers to the formal group operation on
L0
t (BZ/pk ) ' OGLt [pk ]. We can rephrase this using our identi�cation

C0
t,k ' L0

t (BZ/pk )⊗(n−t ) ' L0
t (BΛ∨k ).

�en ψλ is simply induced by the homomorphism Λ∨k Z/pk which sends
(x1, . . . ,xn−t ) ∑

aixi .

Ok, that was was a fairly long block of algebra and isomorphism-chasing, but we
can cleanly record (a slight generalization of) our conclusion as follows.

3.3.13. Proposition. Let A be a �nite abelian group, and let A[p∞] ⊆ A denote the
subgroup of p-torsion. Since A is �nite, we can in fact pick a �nite k for which
A[p∞] = A[pk ]. �en to each tuple a = (a1, . . . ,an−t ) ∈ A[p∞]n−t we can associate
the homomorphism Λ∨k ' (Z/pk )n−t A which sends (x1, . . . ,xn−1) ∑

i aixi .
�is determines a map

E0(BA) E0(BΛ∨k ) L0
t (BΛ∨k ) ' C0

t,k C0
t ,

which is independent of our choice of k . �ese maps, along with the canonical map
E0(BA) L0

t (BA), determine an isomorphism

C0
t ⊗E0 E0(BA) ∼ (

C0
t ⊗L0

t
L0
t (BA)

)
⊗C0

t

⊕
a∈A[p∞]n−t

C0
t(3.3.14)

' C0
t ⊗L0

t

⊕
a∈A[p∞]n−t

L0
t (BA),

natural in A.

Proof. �e naturality of the de�ned map is clear. To prove it is an isomorphism we
can pick an isomorphism A[p∞] ' ⊕

Z/pki , and using (3.3.6) reduce to the case
A = Z/pk . �en the claim is precisely what was shown above in (3.3.9). �

We now show that we can li� this result from cohomology to an equivalence at
the level of E∞-ring spectra.

3.3.15. Construction. For each k we may de�ne an E∞-ring

Ct,k B Lt (BΛ∨k ),
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the function spectrum whose homotopy groups give the cohomology ring L∗t (BΛ∨k ).
In particular, its π0 agrees with what we have already been calling C0

t,k . It is then
possible to construct an E∞-ring Ct,k [∆−1

t,k ] whose π0 is precisely C0
t,k [∆−1

t,k ]. Taking
the colimit over the canonical maps BΛ∨k+1 BΛ∨k , we may de�ne

Ct B colim
k

Ct,k [∆−1
t,k ]

to obtain an E∞-ring whose π0 is precisely C0
t from above.

3.3.16. Lemma. �e E∞-ringCt is even periodic, and the E∞-ring maps E Lt Ct
are �at.

Proof. To see thatCt is even periodic it su�ces to show that eachCt,k is even periodic,
which is immediate from the computation (3.3.6) of L∗t (BΛ∨k ). Since E and Lt are also
even periodic, it su�ces to check �atness in π0. But this we know already: L0

t is
obtained by from E0 by localization and then completion (of a noetherian ring), hence
�at; and C0

t is �at over L0
t since each C0

t,k is (faithfully) �at over L0
t , as proved in

(3.2.3). �

3.3.17. Proposition. �e isomorphism (3.3.14) can be li�ed from π0 to an equivalence
of E∞-rings

Ct ⊗E E(BA) ' Ct ⊗Lt

⊕
a∈A[p∞]

Lt (BA),

natural in A.

Proof. First note that π0 of the le�- and right-hand sides actually recover the le�- and
right-hand sides of (3.3.11) because everything in sight is �at. Now, the isomorphism
(3.3.14) was determined by maps in cohomology, induced by maps between classifying
spaces. Since the localization map E Lt is a map of E∞-rings, it is evident that these
maps can be li�ed to E∞-maps on the associated function spaces. So we automatically
get the desired map of E∞-rings, which by construction is an isomorphism on π0. But
by (3.3.6, 3.3.16) both sides are even periodic, so it must then be an equivalence. �

4. Global eqivariant homotopy theory
Back in §1 we translated the character theory of a �nite group G into a statement

in G-equivariant homotopy theory. If we want to take this perspective seriously as a
strategy for giving a proof of character theory—well, more interestingly, for giving
proofs of generalizations of character theory—it will turn out to be crucial that we
can make this statement for all �nite groups G, and that there is moreover some
relationship among the statements for all these groups. �is idea should be familiar
from the classical se�ing of representation theory: one o�en tries to get a handle on
the representations of a group G by considering the representations induced from
subgroups H ⊆ G (see for example the proof of (1.1.5)!).

To systematically handle such phenomena, we want some kind of homotopy
theory in which we can study equivariance for all �nite12 groups simultaneously. �is
idea goes by the name of global equivariant homotopy theory. �is section is devoted
to se�ing up the basic framework of global equivariant homotopy theory.13

12We restrict ourselves to �nite groups because these are the groups which will be relevant to our
discussion later on. In other situations one might be interested in, say, all compact Lie groups. �e
framework we set up in this section should carry over without trouble in such situations.

13�e �rst time my eyes saw the global perspective was when reading Lurie’s survey [6], but the ideas
are le� ever so slightly implicit there and thus my brain didn’t process what was really happening for
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4.1. The global indexing category
To guide our de�nition of global equivariant homotopy theory, we recall the setup

of (unstable)G-equivariant homotopy theory for a �xed groupG . �is is summarized
by the following theorem, o�en referred to as Elmendorf’s theorem. We currently
don’t have any time to discuss its proof, but one can see [12] for more, including a
detailed list of references.

4.1.1. Notation. ForG a �nite group, let Orb(G) denote the category ofG-orbits, whose
objects are transitive G-sets and morphisms are G-equivariant maps of such sets.
Any object T ∈ Orb(G) is of course isomorphic to a G-set of the form G/H for some
subgroupH ⊆ G , but choosing such an isomorphism amounts to choosing a basepoint
in T . We will o�en be slightly evil/informal and refer to a orbit directly as G/H , i.e.
think of the objects of Orb(G) as pointed, since this is o�en more intuitive.

4.1.2. �eorem (Elmendorf). Let G be a �nite group. �e following homotopy theo-
ries14 are all equivalent:

(a) G-Top: the relative category of topological spaces equipped with a G-action,
with weak equivalences de�ned to be the (G-equivariant) maps X Y which
induce weak equivalences (of topological spaces) on the �xed-point spaces
XH YH for all subgroups H ⊆ G . (In fact there is a standard model structure
on this relative category.)

(b) G-CW: the relative category of G-CW-complexes, with weak equivalences
de�ned to be the (G-equivariant) homotopy equivalences. (In fact this is just
the subcategory of �brant-co�brant objects in the model structure on G-Top
mentioned above.)

(c) SpaceOrb(G): the homotopy theory of presheaves of spaces on the category of
G-orbits Orb(G), i.e. the∞-category of functors Orb(G)op Space.

�e equivalence of (a) and (c) is exhibited by the functorG-Top SpaceOrb(G) sending
X ∈ G-Top to the presheaf T MapG-Top(T ,X ), or in other words G/H XH .

4.1.3. Notation. We’ll denote the equivalent homotopy theories described in (4.1.2) by
G-Space when we want to make a statement without evoking any particular model.

As far as I understand, it is formulation (4.1.2)(b) of G-Space which makes it
interesting and useful: it turns out thatG-CW-complexes up to homotopy equivalence
e�ectively model the spaces of interest to us, e.g. smooth G-manifolds (see [14] for
some discussion about this, and (5.2.8) for an example of us critically using this fact).
However, the presheaf formulation (4.1.2)(c) is quite convenient from a categorical
perspective: SpaceOrb(G) comes to us immediately as an∞-category, in terms of the
∞-category of spaces, allowing us to speak very easily about limits and colimits for
example. Such a framework will also be convenient in the global se�ing (evidence
abounds in this section and the next), inspiring us to formulate global equivariant
homotopy theory also as the homotopy theory of presheaves of spaces on some
indexing category Glo. Before giving the de�nition of Glo, we give some intuition
guiding what the de�nition should be.

4.1.4. Intuition. (a) Unstably, we want to somehow assemble the homotopy theories
G-Space for allG . So a natural starting point is to ask: how are all these homotopy

quite some time. What shed light on this picture for me was a note of Rezk [11], from which I have learned
much of what is included in this section (and the presentation here pre�y clearly re�ects that).

14We use the term “homotopy theory” synonymously with∞-category, except more informally. For
example, relative categories and model categories present∞-categories, but aren’t yet∞-categories. Yet
we refer to all of these things as “homotopy theories”.
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theories related? Of course, whenever we have a group homomorphism ϕ : H
G, we can pull back an action of G on a space to an action of H , giving us a
restriction functor ϕ∗ : G-Space H -Space. If this were all there were to the
answer, then we could just de�ne Glo to be the category of �nite groups. However
there is something else to remember: wheneverψ : H G is aG-conjugateдϕд−1

of ϕ : H G, there is a natural equivalence ϕ∗ ∼ ψ ∗, given on a G-space X by
the action д : ϕ∗(X ) ψ ∗(X ).

We can summarize the above discussion as follows. If we view our groups G
as groupoids in the usual manner, then SpaceG is functorial not only in category
of groups, but in the 2-category of such groupoids (where the 1-morphisms are
functors, corresponding to group homomorphisms, and the 2-morphisms are
natural transformations, corresponding to conjugation of group homomorphisms).
We will spell this out in detail in (4.1.5, 4.1.6) to give our de�nition of Glo.

(b) Stably, intuition comes from the most basic example of global equivariant coho-
mology theory that we want to account for: the Borel equivariant cohomology
EBor associated to any non-equivariant cohomology theory E. Recall that Borel
G-equivariant cohomology is de�ned so that for a G-space X ,

EBor
G (X ) ' E(XhG ) ' E(EG ×G X ).

In particular, for X = pt the trivial G-space, EBor
G (pt) ' E(BG). �us we might

imagine EBor as something functorial with respect to the classifying space BG.
We will see in §4.3 that the de�nition motivated by (a) will realize this intuition
as well.

4.1.5. Notation. At various points in our discussion of global equivariant homotopy
theory, it will be convenient to work with topological groupoids, i.e. groupoids internal
to the (ordinary) category of topological spaces. �ese of course include ordinary
discrete groupoids. So let’s just quickly establish some notation and terminology for
these things:

(a) If G is a topological groupoid, the usual nerve construction gives us a simplicial
space NG, and we de�ne the classifying space BG to be the geometric realization
|NG| of the nerve.

(b) �e most relevant class of examples for us are the action groupoids: if X is
a topological space with a G-action, there is a topological groupoid X � G
whose object space is X and morphism space is X ×G , with the structure maps
X ×G X being the projection and the action. In this case the classifying
space B(X � G) is equivalent to the homotopy quotient XhG ' EG ×G X . A
particularly relevant example in this class comes from the trivial G-space pt,
with B(pt � G) being the classifying space BG ' EG/G of the group G. We
denote the groupoid pt �G by BG.

(c) IfG,H are topological groupoids then there is a topological groupoid Fun(G,H)
of functors G H. Set-theoretically, Fun(G,H) has functors as objects and
natural transformations as morphisms; the topologies on these are induced by
the relevant mapping space topologies.

(d) We say a (discrete) groupoid G is connected if for any objects x ,y ∈ G there
is a morphism x y in G. We say G is �nite if for any object x ∈ G the
automorphism group AutG(x) is �nite.

4.1.6. De�nition. �e global indexing category Glo is the 2-category of �nite con-
nected (discrete) groupoids; the 1-morphisms are given by functors of groupoids and
the 2-morphisms by natural transformations.

Recall that whenever we choose an object of a connected groupoid G we get an
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isomorphism G with the group AutG(x). So, a�er choosing basepoints, one can think
of objects in Glo simply as the groupoids BG corresponding to �nite groups G.

Just as we warned in (4.1.1), we will for the most part be evil/informal and think
of Glo as consisting solely of the objects of the form BG. �en Glo is precisely the
2-category of �nite groups described in (4.1.4)(a).

We conclude this subsection by showing how to relate the orbit category Orb(G)
of a �xed group G with the global indexing category Glo. �is will allow us in §§4.2
and 4.3 to relate each �xed G-equivariant homotopy theory with global equivariant
homotopy theory.

4.1.7. Construction. Let G be a �nite group. We construct a fully faithful embedding
ΘG of Orb(G) into the overcategory Glo/BG . Here it is convenient not to choose
basepoints for our objects in Orb(G) and Glo.

First de�ne a functor θG : Orb(G) Glo by sendingT ∈ Orb(G) to θG (T ) B T�G ,
which is connected by de�nition of an orbit and �nite since G is; this is evidently
functorial. (If one chooses basepoints, then θG can alternatively be thought of as
sending G/H BH .) Now note that for pt ∈ Orb(G) the trivial orbit, we have
θG (pt) ' BG . Since pt is a �nal object in Orb(G), the functor θG determines a functor

Orb(G) ' Orb(G)/pt
θG Glo/θG (pt) ' Glo/BG ,

which we denote ΘG . �at is, ΘG assigns to T ∈ Orb(G) the map θG (T pt), which
is a map θG (T ) θG (pt) ' BG . It is straightforward to check that ΘG is fully faithful.

4.2. The unstable side: global spaces
Now that we’ve de�ned the global indexing category, the de�nition of “space” in

global equivariant homotopy theory is immediate.

4.2.1. De�nition. A global space is a presheaf of spaces on Glo, i.e. a functor Gloop

Space. We denote the∞-category of global spaces by SpaceGlo.

4.2.2. Notation. For G a �nite group, we denote the image of BG under the Yoneda
embedding Glo SpaceGlo again by BG. So for each �nite group G we have a
global space BG, where BG(BH ) denotes the mapping space MapGlo(BH ,BG) '
B Fun(BH ,BG).

We claimed in (4.1.4)(a) that this de�nition of global equivariant homotopy theory
would be a useful way to assemble the homotopy theories of G-spaces for all G. We
justify this claim now, by embedding, for each �nite group G, the homotopy theory
of G-spaces into the homotopy theory of global spaces over BG.

4.2.3. Proposition. Let G ∈ Glo. �ere is an adjunction

∆G : G-Space (SpaceGlo)/BG :ΓG ,

where (SpaceGlo)/BG denotes the overcategory of maps of global spaces X BG.
Moreover the le� adjoint ∆G is fully faithful.

Proof. In (4.1.7) we constructed a fully faithful embedding ΘG : Orb(G) Glo/BG .
From this we obtain an adjunction of presheaf categories

(ΘG )! : SpaceOrb(G) SpaceGlo/BG : (ΘG )∗,
where (ΘG )∗ is restriction along ΘG , and its le� adjoint (ΘG )! is le� Kan extension
along ΘG (this adjunction is essentially the de�nition of le� Kan extension). Now, by
a general fact about the interaction of presheaf categories and overcategories, there
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is an equivalence SpaceGlo/BG ' (SpaceGlo)/BG . Applying this and the fact/de�nition
(4.1.2) thatG-Space ' SpaceOrb(G), we obtain the claimed adjunction ∆G a ΓG . Finally,
ΘG being fully faithful implies immediately that le� Kan extension (ΘG )! is fully
faithful, and hence ∆G is fully faithful. �

4.2.4. Remark. It’s a straightforward exercise in de�nition-chasing to unwrap the
categorical formalities used in the proof of (4.2.3) and obtain the following more
explicit formulae:

(a) Viewing ΓG as a functor (SpaceGlo)/BG SpaceOrb(G), it assigns to a map of
global spaces X BG the presheaf T X (T � G) ×BG(T�G) {ϕ}, where
ϕ : T �G G is the canonical map of groupoids. A�er choosing basepoints,
the presheaf could also be described as G/H X (BH ) ×BG(BH ) {iH }, where
iH : H G is the inclusion of a subgroup, viewed as a map BH BG.

(b) �ere is a functor δG : G-Top SpaceGlo which to X ∈ G-Top assigns the
presheafH B Fun(H,X�G). In the caseH = BH , note that Fun(BH ,X�G)
is simply the action groupoid

*.
,

∐
ϕ∈Hom(H,G)

X im(ϕ)+/
-

�G .

E.g. δG (pt) ' BG. �en, viewing ∆G as a functor G-Top (SpaceGlo)/BG , it
assigns to X ∈ G-Top the map δG (X pt), which is a map δG (X ) δG (pt) '
BG.

�at’s all we have to say about the general theory of global spaces, since that’s
all that will be relevant to our study of character theory. See [11] for some more
interesting phenomena in this se�ing.

4.3. The stable side: global spectra
In equivariant homotopy theory, the stable side is a bit more subtle than the

unstable side. For a �xed group G, there is a distinction made between what are
known as genuineG-spectra and what are sometimes called naı̈veG-spectra. A similar
subtlety exists in the world of global equivariant homotopy theory, but in this thesis
we will be happy to ignore it. �at is, we will work exclusively with naı̈ve G-spectra
and global spectra, although we will omit the modi�er from our terminology for the
sake of our self-esteem.

We �rst recall the de�nition for a �xed �nite group G.

4.3.1. De�nition. A G-spectrum is a presheaf of spectra on Orb(G), i.e. a functor
Orb(G)op Spect. We denote the∞-category of G-spectra both by SpectOrb(G) and
by G-Spect.

4.3.2. Remark. Since G-Space ' SpaceOrb(G) is the free cocompletion of Orb(G), one
can equivalently view a G-spectrum as a functor E : G-Spaceop Spect which takes
colimits ofG-spaces to limits of spectra. We will generally viewG-spectra in this way
without warning, but it’s quite natural: the spectrum E(X ) encodes the E-cohomology
of X ∈ G-Space, in that its homotopy groups give the cohomology groups E∗(X )
when we think of E as a G-equivariant cohomology theory.

We now make the analagous de�nition for the global case.

4.3.3. De�nition. A global spectrum is a presheaf of spectra on Glo, i.e. a functor
Gloop Spect. We denote the∞-category of global spaces by SpectGlo.
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4.3.4. Remark. Analagously to (4.3.2), one can equivalently view a global spectrum
as a functor E : Spaceop

Glo Spect which takes colimits of global spaces to limits of
spectra. Again, we will view global spectra in this way without warning, and the
spectrum E(X ) encodes the E-cohomology of X ∈ SpaceGlo, in that it’s homotopy
groups give the cohomology groups E∗(X ) when we think of E as a global equivariant
cohomology theory.

4.3.5. Example. As remarked in (b), given a spectrum E ∈ Spect, we expect the Borel-
equivariant cohomology theories associated to E to assemble into a global spectrum.
�is is indeed the case: we de�ne EBor to be the global spectrum given by the presheaf
BG E(BG), where E(BG) denotes the function spectrum as it has earlier. When
it’s clear from context what we mean, we will o�en just write E in place of EBor.

Seeing that this is indeed a functor Gloop Spect is fairly straightforward, but
it’s interesting to note that we can obtain EBor by a purely formal procedure in this
framework. Namely, Consider the trivial subcategory {B1} of Glo, where 1 denotes
the trivial group. �en E can tautologically be viewed as a functor {B1}op Spect,
and EBor is just the right Kan extension of E along the inclusion {B1} Glo. �is
just amounts to saying that for a �nite group G, the mapping space MapGlo(B1,BG)
is equivalent to BG, and this is evident from the de�nition.

4.3.6. �e essential point of de�ning global equivariant cohomology theories was that
they should package together nicely related G-equivariant cohomology theories for
all �nite groups G . So we should say how a global spectrum E ∈ SpectGlo determines
a G-spectrum EG ∈ G-Spect for each G. It’s easy to guess how this goes: recall
that we have an embedding ΘG : Orb(G) Glo/BG , underlying which is a functor
θG : Orb(G) Glo. Restriction in θG determines our functor

SpectGlo SpectOrb(G) ' G-Spect,

which we denote E EG .
As an example, let E be a spectrum and consider the global spectrum EBor de-

�ned in (4.3.5). By de�nition of θG , the G-spectrum EBor
G is given by the presheaf

G/H E(BH ). �is is indeed the presheaf corresponding to the Borel G-equivariant
cohomology theory assoicated to E, which on a general G-space X is given by
EG (X ) ' E(XhG ), where XhG B EG ×G X is the homotopy quotient.

4.3.7. Notation. LetA be an E∞-ring. Suppose we have a global spectrum E ∈ SpectGlo
which takes values in A-modules, i.e. which factors through the forgetful functor
from the∞-category ofA-modules to Spect. �en given anA-module B, we may form
a new global spectrum B ⊗A E, de�ned by

(B ⊗A E)(BG) B B ⊗A E(BG)
for all �nite groups G (which is evidently functorial). When A is understood we will
o�en just denote this global spectrum by B ⊗ E.

5. Abelian descent
In many cases of interest, a global spectrum is determined by its values on abelian

groups. �is section is devoted to understanding this phenomenon, which can be
encoded rigorously as follows.

5.0.1. Notation. Let Alo denote the full subcategory of Glo spanned by the (�nite)
abelian groups.
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5.0.2. De�nition. We say a global spectrum E ∈ SpectGlo satis�es abelian descent if
it is the right Kan extension of its restriction to Alo, i.e. if the canonical map

E(BG) lim
BA∈Alo/BG

E(BA)

is an equivalence for all �nite groups G.

5.1. Alternate characterizations
In this short subsection we unpack the de�nition (5.0.2) of abelian descent by

giving a tautological reformulation, and then giving (again fairly tautological) refor-
mulations of this reformulation. But all this tautology is worth something! It will
allow us to give (in the next subsection) a more concrete way to check that a global
spectrum satis�es abelian descent, so just stay tuned for a moment.

5.1.1. De�nition. For X ∈ SpaceGlo we de�ne the abelianization X ab of X by

X ab B colim
BA∈Alo/X

BA ∈ SpaceGlo.

Note that there is a canonical map X ab X . To save some parentheses, we’ll write
BabG in place of (BG)ab for G ∈ Glo.

5.1.2. Lemma. A global spectrum E ∈ SpectGlo satis�es abelian descent if and only if
the canonical map E(BG) E(BabG) is an equivalence for all G ∈ Glo.

Proof. �is is immediate from the de�nitions (5.0.2, 5.1.1), as E takes colimits in
SpaceGlo to limits in Spect. �

5.1.3. Lemma. Let ab : Glo Alo be the functor sending a group BH to its group-
theoretic abelianization15 BH ab. For X ∈ SpaceGlo we have X ab ' X ◦ ab, i.e. there
are functorial equivalences X ab(BH ) ' X (BH ab) for H ∈ Glo.

Proof. Let X ∈ SpaceGlo and BH ∈ Glo. Observe that for any BA ∈ Alo the canonical
map BA(BH ab) BA(BH ) is an equivalence. It follows that we have an equivalence

X ab(BH ) ' colim
BA∈Alo/X

BA(BH ) ' colim
BA∈Alo/X

BA(BH ab),

functorial in BH . But now the canonical map

colim
BA∈Alo/X

BA(BH ab) X (BH ab)

is clearly an equivalence since BH ab ∈ Alo. �

5.1.4. Lemma. Let G be a �nite group. Let ∆G a ΓG be the adjunction constructed in
(4.2.3).

(a) For a subgroup H ⊆ G, the �xed-point space ΓG (BabG)H is contractible if H is
abelian and empty if H is nonabelian.

(b) Conversely, if X is a G-space such that XH is contractible if H is abelian
and empty if H is nonabelian, then ∆G (X ) is equivalent to BabG BG in
(SpaceGlo)/BG .

Proof. Take a subgroup H ⊆ G. By (4.2.4)(a), ΓG (BabG)H is given by

BabG(BH ) ×BG(BH ) {iH } ' BG(BH ab) ×BG(BH ) {iH },
where iH ∈ BG(H ) corresponds to the inclusion H G; this clearly is contractible
when H is abelian and empty when H is nonabelian, proving (a).

15Recall the abelianization of a group H is the quotient by its commutator subgroup H /[H, H ].
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Now let X be a G-space with this same property: XH is contractible for H abelian
and empty forH nonabelian. Recall∆G (X ) is the canonical map δG (X ) δG (∗) ' BG ,
where for a G-space Y , δG (Y )(BH ) is the homotopy quotient

*.
,

∐
ϕ∈Hom(H,G)

Y im(ϕ)+/
-hG

' B *.
,

*.
,

∐
ϕ∈Hom(H,G)

Y im(ϕ)+/
-

�G+/
-

for BH ∈ Glo. Since X im(ϕ) is only nonempty when im(ϕ) is abelian, i.e. when ϕ
factors through H ab, we have

δG (X )(H ) ' *.
,

∐
ϕ∈Hom(H ab,G)

X im(ϕ)+/
-hG

.

It follows from (5.1.3) that δG (X ) BG factors through the map BabG BG; for
BH ∈ Glo the resulting map δG (X ) BabG looks like

*.
,

∐
ϕ∈Hom(H ab,G)

X im(ϕ)+/
-hG

' δG (X )(H ) BabG(H ) ' *.
,

∐
ϕ∈Hom(H ab,G)

pt+/
-hG

,

induced by the unique maps X im(ϕ) pt. But these maps are all equivalences by
our contracibility hypothesis, whence δG (X ) BabG is an equivalence (over BG), as
desired. �

5.2. Complex-oriented descent
�e takeaway of §5.1 is that whether or not a global spectrum satis�es abelian

descent comes down to comparing, for each �nite groupG , what it assigns to the trivial
G-space and what it assigns to a G-space whose H -�xed point space is contractible
for H ⊆ G abelian and empty for H ⊆ G nonabelian. In this subsection we construct
a more explicit model for the la�er, and use this to describe a practical method
for proving that various global spectra associated to complex-oriented cohomology
theories satisfy abelian descent. �is idea is originally due to �illen [9], and is key
to our approach to character theory.

5.2.1. Notation. For the remainder of this subsection:
(a) Fix a �nite group G.
(b) Fix a faithful complex representation16 ρ : G Aut(V ).
(c) Choosing a G-equivariant hermitian inner product17 on and a basis of V , this

determines an embedding into the unitary group i : G U(k) for k B dim(V ).
(d) Let T ⊆ U(k) be a maximal torus. Let F B U(k)/T , which is a G-space via

i . Recall that F is the space of complete �ags in V (if you imagine T as the
subspace of unitary diagonal matrices, then F is evidently the space of k-tuples
of orthogonal lines in V , which is the same as the space of complete �ags).

5.2.2. Lemma. For a subgroup H ⊆ G, the �xed-point space FH is nonempty if and
only if H is abelian.

Proof. �is is immediate from the theory of maximal tori. It’s clear that FH is
nonempty if and only if some conjugage uHu−1 is contained in our maximal torus T ,
which is true if and only if H is abelian. �

16Recall that such a thing always exists, e.g. the regular representation C[G] always works.
17Recall that such a thing always exists, e.g. by averaging any ordinary hermitian inner product over G .

31



5.2.3. Notation. If X is a space, let EX denote the geometric realization of the simpli-
cial space

X X × X X × X × X · · · .

5.2.4. Lemma. Let X be a space. If X is empty then EX is empty; if X is nonempty
then EX is contractible.

Proof. �e claim is obvious for X empty. For X nonempty there is a standard way to
construct contracting homotopies (see e.g. [3, 3.14]). �

5.2.5. Lemma. For a subgroup H ⊆ G , the �xed-point space (EF )H is contractible for
H abelian and empty for H nonabelian. In other words, by (5.1.4), EF is a model for
BabG.

Proof. Since geometric realization of simplicial spaces commutes with �nite limits,
in particular taking H -�xed-points, this is immediate from (5.2.2, 5.2.4). �

5.2.6. Lemma. Let EG be a ring G-spectrum. Suppose E∗G E∗G (F ) is a faithfully �at
map of rings, and that the canonical map E∗G (F )⊗n E∗G (F×n) is an isomorphism for
all n ≥ 1. �en the canonical map E∗G E∗G (EF ) is an isomorphism.

Proof. Consider the function G-spectrum EG (EF ). Since EF is de�ned by a geo-
metric realization, this function spectrum is the the totalization of the cosimplicial
G-spectrum

EG (F ) EG (F × F ) EG (F × F × F ) · · · .

Now, the cohomology ring E∗G (EF ) is given by the homotopy groups of the G-�xed
points EG (EF )G of this function spectrum. ViewingG-spectra as presheaves of spectra
on Orb(G), taking G-�xed points amounts to evaluating on the orbit G, and so we
see that EG (EF )G is the totalization of the cosimplicial spectrum

EG (F )G EG (F × F )G EG (F × F × F )G · · · .

We apply the Bous�eld-Kan spectral sequence arising from this cosimplicial spectrum,
which will converge to the homotopy groups of the totalization, i.e. E∗G (EF ), and
which has second page given by the complex

E∗G (F ) E∗G (F × F )) E∗G (F × F × F ) · · · .

By hypothesis we have E∗G (Fn) ' E∗G (F )⊗n , so this is just the Amitsur complex of the
map E∗G E∗G (F ). But since this map is faithfully �at, the homology of this complex
is just E∗G concentrated in degree 0. It follows that the spectral sequence degenerates
and gives the desired isomorphism E∗G

∼ E∗G (EF ). �

5.2.7. Lemma ([5, §2.2–2.3]). Let E be a complex-orientable ring spectrum.
(a) Let V X be a vector bundle, and F X the associated bundle of complete

�ags in V. �en E∗(F) is a �nite free module over E∗(X ).
(b) Moreover, suppose we have a map Y X . Let VY be the pullback of V to Y

and FY the bundle of complete �ags in VY . �en the canonical map

E∗(Y ) ⊗E∗(X ) E∗(F) E∗(FY )
is an isomorphism.

(c) Let EG be the ring G-spectrum representing the Borel G-equivariant coho-
mology associated to E. �en E∗G (F ) is a �nite free module over E∗G , and the
canonical map E∗G (F )⊗n E∗G (F×n) is an isomorphism for all n ≥ 1.
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Sket� of proof. Recall that EG is de�ned such that E∗G (F ) ' E∗(EG ×G F ) and E∗G '
E∗(BG). Noting that EG×GF BG is the bundle of complete �ags in the vector bundle
EG ×G V BG, we see that the �rst assertion of (c) follows from (a). �e second
then follows from (b), where we inductively pull back via the map EG ×G F×n

EG ×G F×(n−1).
We prove (a) by induction on the rank of the vector bundle V X . Of course

the claim is trivial when the rank is 0, giving us our base case, so assume the rank
is n ≥ 1. Consider the associated projective bundle PV X . �e pullback bundle
V′ B PV ×X V over PV contains a canonical line sub-bundle L. Contemplating
the quotient bundle W B V′/L, we see that the space of complete �ags in W can
be identi�ed with the space F of complete �ags in V. �us the map E∗(X ) E∗(F)
factors as the composition E∗(X ) E∗(PV) E∗(F). Since W PV has rank
n − 1, we know by induction that E∗(F) is a �nite free E∗(PV)-module. So we just
need that E∗(PV) is a �nite free E∗(X )-module. �is is a standard application of the
Leray-Hirsch theorem, the point being that PV X is a bundle with �ber CPn and
a complex orientation of E induces an isomorphism E∗(CPn) ' E∗[x]/(xn), which
of course is �nite free. Statement (b) will then follow from the naturality of this
argument. �

Our work in this section culminates in the following result.

5.2.8. Proposition. Let E be a complex-orientable E∞-ring spectrum. Let E C be a
�at map of E∞-rings. �en the global spectrumC ⊗E ∈ SpectGlo given by the presheaf
BG C ⊗E E(BG) satis�es abelian descent.

Proof. By (5.1.2) it su�ces to show (C⊗E)(BG) (C⊗E)(BabG) is an equivalence for
any �xed �nite groupG . By (5.1.4, 5.2.5) it su�ce to show that the map (C⊗E)∗G (C⊗
E)∗G (EF ) is an isomorphism. By (5.2.6) it su�ces to show that (C ⊗E)∗G (C ⊗E)∗G (F )
is faithfully �at and that (C ⊗ E)∗G (F )⊗n (C ⊗ E)∗G (F×n) is an isomorphism for
all n ≥ 1. Since F is a compact G-manifold, hence equivalent to a �nite G-space,
and C is �at over E, these maps are just given by C∗ ⊗E∗ E

∗
G C∗ ⊗E∗ E

∗
G (F ) and

C∗ ⊗E∗ E
∗
G (F )⊗n C∗ ⊗E∗ E

∗
G (F×n), respectively. We are then done by (5.2.7)(c). �

6. Character theory
We �nally arrive at the main course of this thesis. In §6.1 we de�ne our p-adic loop

space functor, and in §6.2, everything comes together at once to prove our generalized
character theory.

6.0.1. Notation. �roughout this section we work at a �xed prime p.

6.1. Loops
6.1.1. Notation. �ere is an internal hom in the∞-category SpaceGlo, which we de-
note [−,−]. It satis�es the adjunction

MapSpaceGlo
(X × Y ,Z ) ' MapSpaceGlo

(X , [Y ,Z ]),
which means it can be computed via the formula

[Y ,Z ](BG) ' MapSpaceGlo
(BG, [Y ,Z ]) ' MapSpaceGlo

(BG × Y ,Z ).
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In particular, for Y = BH we have

[BH ,Z ](BG) ' MapSpaceGlo
(BG × BH ,Z )(6.1.2)

' MapSpaceGlo
(B(G × H ),Z )

' Z (B(G × H ))
6.1.3. De�nition. We de�ne the (p-adic) loop space functor:

L : SpaceGlo SpaceGlo, X colim
k

[BZ/pk ,X ].
One may want to think of this as an internal hom [BZp ,−] from the pro-object
BZp B limk BZ/p

k in SpaceGlo.

6.1.4. Lemma. �e loop space functor L preserves colimits.

Proof. Since colimits commute with other colimits, it su�ces to show for each k that
[BZ/pk ,−] preserves colimits, which is easy to see: by (6.1.2),

[BZ/pk , colim
i

Xi ](BG) '
(
colim

i
Xi

)
(B(G × Z/pk ))

' colim
i

Xi (B(G × Z/pk ))
' colim

i
[BZ/pk ,Xi ](BG). �

6.1.5. Lemma. LetG be a �nite group and let X be aG-space, which we will abusively
identify with its associated global space via the functor δG : G-Space SpaceGlo
de�ned in (4.2.4). �en its loop space LX is the global space associated to theG-space

Y B
∐

α ∈Hom(Zp,G)
X im(α ).

Proof. It su�ces to prove the claim a�er replacing LX with [BZ/pk ,X ] and Y with
Yk B

∐
α ∈Hom(Z/pk ,G)X im(α ), sinceG being �nite impliesY ' Yk for su�ciently large

k . When we view Yk as a global space, Yk (BH ) is the classifying space of the action
groupoid

*.
,

∐
β ∈Hom(H,G)

Y
im(β )
k

+/
-

�G .

Now, for α ∈ Hom(Z/pk ,G) and β ∈ Hom(H ,G), x ∈ X im(α ) ⊆ Yk is �xed by im(β)
if and only if im(α) and im(β) commute within G and x is a �xed point of the group
im(α) im(β) they generate. So this action groupoid can be rewri�en as

*.
,

∐
γ ∈Hom(H×Z/pk )

X im(γ )+/
-

�G .

�e classifying space of this is by de�nition equivalent to X (B(H × Z/pk )), which
by (6.1.2) is equivalent to [BZ/pk ,X ](BH ). So we conclude Yk ' [BZ/pk ,X ], as
desired. �

6.1.6. Lemma. Let G be a �nite group. We have

LBG '
∐
[α ]

BC(α),

where [α] runs over the conjugacy classes of homomorphisms Z/pk G for some
su�ciently large k (the largest p-power torsion in G) and C(α) ⊆ G denotes the
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centralizer of α . In particular, for G = A abelian there is a natural equivalence

LBA '
∐

a∈A[p∞]
BA,

where A[p∞] ⊆ A is the subgroup of p-power torsion.

Proof. �is follows immediately from (6.1.5). �

6.1.7. Lemma. Let E be a global spectrum. �en:
(a) �e composite E ′ B E ◦L : Spaceop

Glo Spect is also a global spectrum, i.e.
takes colimits of global spaces to limits of spectra.

(b) If E satis�es abelian descent, then so does E ′.

Proof. Statement (a) is immediate from L being colimit-preserving (6.1.4). For the
second statement, we would like to prove that E ′(BG) E ′(BabG) is an equivalence
for all G , assuming this holds for E. We �rst observe that for X a global space, there’s
a natural equivalence of global spaces (LX )ab ' LX ab:

(LX )ab(BH ) ' LX (BH ab)
' colim

k
X (B(H ab × Z/pk ))

' colim
k

X (B(H × Z/pk )ab)
' LX ab(BH ),

where we have applied (5.1.2, 6.1.2). Combining this with (6.1.6), we see that

L(BabG) ' (LBG)ab ' *.
,

∐
[α ]

BC(α)+/
-

ab

,

and by (5.1.2) the last of these is equivalent to ∐
[α ] BabC(α). Finally, a�er chasing

these equivalences we see that the map E ′(BG) E ′(BabG) is the map

E(LBG) ' E *.
,

∐
[α ]

BC(α)+/
-

E *.
,

∐
[α ]

BabC(α)+/
-
' E(LBabG),

induced by the coproduct of the canonical maps BabC(α) BC(α). Since E takes
coproducts to products, it follows that if E satis�es abelian descent then so does
E ′. �

6.2. The main theorem
We are now ready to state and prove our version of character theory.

6.2.1. Notation. Let E be a Morava E-theory of height n, and let Lt B LK (t )E. Let
Ct be the �at Lt -algebra constructed in (3.3.15). We will denote the associated Borel
global spectra also by E and Lt .

6.2.2. By (6.1.7) we have a global spectrum Lt ◦L
n−t , which by (6.1.6) is given by the

formula

(6.2.3) BG Lt
*.
,

∐
[α ]

BC(α)+/
-
'

⊕
[α ]

Lt (BC(α)),

where now [α] runs over conjugacy classes of homomorphisms (Z/pk )n−t G (for
su�ciently large k). So Lt ◦L

n−t again takes values in Lt -modules, and thus we may
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de�ne Ct ⊗ (Lt ◦Ln−t ). And since tensor product commutes with direct sum, this is
equivalent to the global spectrum (Ct ⊗ Lt ) ◦Ln−t .

6.2.4. �eorem. �ere is an equivalence of global spectra

Ct ⊗ E ' Ct ⊗ (Lt ◦Ln−t ).
Proof. By (5.2.8) the global spectraCt ⊗E andCt ⊗Lt satisfy abelian descent. By (6.1.7)
this implies Ct ⊗ (Lt ◦Ln−t ) ' (Ct ⊗ Lt ) ◦Ln−t also satis�es abelian descent. �us
is su�ces to give the desired equivalence a�er restricting from Glo to Alo. For �nite
abelian groups A, the formula (6.2.3), coming from (6.1.6), gives a natural equivalence

(Ct ⊗ (Lt ◦Ln−t ))(BA) ' Ct ⊗Lt

⊕
(A[p∞])n−t

Lt (BA),

which is naturally equivalent to (Ct ⊗ E)(BA) ' Ct ⊗A E(BA) by our analysis of
p-divisible groups (3.3.17). �

6.2.5. Remark. Since Ct is �at over Lt and E by (3.3.16), our theorem gives for each
�nite group G an equivalence of G-equivariant cohomology theories

C∗t ⊗E∗ EG (X ) ' C∗t ⊗L∗t L∗t (Ln−tX ),
for �nite G-spaces X . So we indeed recover isomorphisms of the form proven in
[5, 13]. Note however that we did not explicitly construct this isomorphism when G
is nonabelian.

And with that have completed our mission! To conclude, let me just summarize
the ideas that got us here. Complex-oriented descent allowed us to show that the
the global spectra Ct ⊗ E and Ct ⊗ (Lt ◦Ln−t ) are determined by their values on
abelian groups, and hence in essence by the p-divisible groups GE and GLt associated
to Morava E-theory and its localization. �en the fact that we could identify the two
sides of character theory simply boiled down to the behavior of these p-divisible
groups: when GE is base changed to Lt , it loses n − t in�nitesimal height, and gains
n − t étale height; then when base changed to Ct , this étale part becomes constant,
which translates into the (n − t)-fold looping on the right-hand side.
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