QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday January 21, 2020 (Day 1)

1. (A) Show $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain for p a prime congruent to $1 \bmod 4$.

Solution: Consider

$$
p-1=2 \cdot \frac{p-1}{2}=(\sqrt{p}+1)(\sqrt{p}-1)
$$

Then we claim 2 is irreducible, as it has norm 4 and there are no elements $a+b \sqrt{p}$ of norm 2 , as that would imply $a^{2}-p b^{2}=2$, which is impossible \bmod 4. But 2 clearly does not divide either factor on the right in the given ring.

Alternatively, UFDs must be normal but $(1+\sqrt{p}) / 2$ is in the normalization of the above ring.
2. (AT) Determine whether $X=S^{2} \vee S^{3} \vee S^{5}$ is homotopy equivalent to (a) a manifold, (b) a compact manifold, (c) a compact, orientable manifold.

Solution: Although its Betti numbers are symmetric, its cohomology ring does not satisfy Poincaré duality, which shows it cannot be homotopy equivalent to a compact, oriented manifold.
For part (b), note that if it were homotopy equivalent to a compact, nonoriented manifold, it would have a nontrivial orientable double cover, and yet its fundamental group is trivial and so no nontrivial double covers exist.
Finally, for part (a) we can embed X in a Euclidean space, such as $\mathbb{R}^{13}=$ $\mathbb{R}^{3} \times \mathbb{R}^{4} \times \mathbb{R}^{6}$, and take a small open neighborhood which deformation retracts back to X.
3. (AG) We say that a curve $C \subset \mathbb{P}^{3}$ is a twisted cubic if it is congruent (mod the automorphism group $P G L_{4}$ of \mathbb{P}^{3}) to the image of the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ given by

$$
\phi_{0}:[X, Y] \mapsto\left[X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right] .
$$

Now let $C \subset \mathbb{P}^{3}$ be any irreducible, nondegenerate curve of degree 3 over an algebraically closed field. (Here, "nondegenerate" means that C is not contained in any plane.)
(a) Show that C cannot contain three collinear points.
(b) Show that C is rational, that is, birational to \mathbb{P}^{1}.
(c) Show that C is a twisted cubic.

Solution: For the first part, observe that if $p, q, r \in C$ are collinear, then for any fourth point $s \in C$ not on the line $\overline{p, q, r}$, the plane spanned by p, q, r and s will meet C in four points and hence contain C, contradicting nondegeneracy.
To see that C is rational, choose any two distinct points $p, q \in C$; let $L \subset \mathbb{P}^{3}$ be the line they span and let $\left\{H_{\lambda}\right\}_{\lambda \in \mathbb{P}^{1}}$ be the family of planes in \mathbb{P}^{3} containing L. A general plane H_{λ} will intersect C at p, q and one other point R_{λ}; conversely, a general point $r_{\lambda} \in C$ will lie on a unique plane H_{λ}. This association gives a birational isomorphism of C with \mathbb{P}^{1}.
Finally, given the second part we have a rational map ϕ from \mathbb{P}^{1} to $C \subset \mathbb{P}^{3}$, and since \mathbb{P}^{1} is smooth this map is in fact regular. We can therefore write it as

$$
[X, Y] \mapsto\left[F_{0}(X, Y), F_{1}(X, Y), F_{2}(X, Y), F_{3}(X, Y)\right]
$$

for some 4 -tuple [$F_{0}, F_{1}, F_{2}, F_{3}$] of homogeneous cubic polynomials on \mathbb{P}^{1}. Since C is nondegenerate, the F_{i} are linearly independent, and hence form a basis for the 4 -dimensional space of homogeneous cubic polynomials on \mathbb{P}^{1}. If we let $A \in G L_{4}$ be the change of basis matrix from the basis $\left\{X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right\}$ to the basis $\left\{F_{0}, F_{1}, F_{2}, F_{3}\right\}$, then, the action of A on \mathbb{P}^{3} carries the image of ϕ_{0} to C.
4. (CA) Let $\Omega \subset \mathbb{C}$ be a connected open subset of the complex plane and f_{1}, f_{2}, \ldots a sequence of holomorphic functions on Ω converging uniformly on compact sets to a function f. Suppose that $f\left(z_{0}\right)=0$ for some $z_{0} \in \Omega$. Show that either $f \equiv 0$, or there exists a sequence $z_{1}, z_{2}, \cdots \in \Omega$ converging to z_{0}, with $f_{n}\left(z_{n}\right)=0$.
Solution: Suppose not. Then we can find a disc $\Delta \subset \Omega$ around z_{0} such that $f_{n}(z) \neq 0$ for $z \in \bar{\Delta}$, and such that z_{0} is the sole zero of f in $\bar{\Delta}$. Now, since the functions f_{n} and their derivatives converge uniformly on compact sets to f, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi i} \int_{\partial \Delta} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z=\frac{1}{2 \pi i} \int_{\partial \Delta} \frac{f^{\prime}(z)}{f(z)} d z .
$$

But by the residue theorem and the hypothesis that $f_{n}(z) \neq 0$ for $z \in \Delta$, the terms on the left are all zero, while the right hand side is equal to 1 , a contradiction.
(i) Specify the range of $1 \leq p<\infty$ for which

$$
\varphi(f)=\int_{0}^{1} \frac{f(t)}{\sqrt{t}} d t
$$

defines a linear functional $\varphi: L^{p}([0,1]) \rightarrow \mathbb{R}$.
(ii) For those values of p, calculate the norm of the linear functional φ : $L^{p}([0,1]) \rightarrow \mathbb{R}$. The norm of a linear functional is defined as

$$
\|\varphi\|=\sup _{\substack{f \in L^{p}([0,1]) \\ f \neq 0}} \frac{|\varphi(f)|}{\|f\|_{L^{p}}}
$$

Solution.

(i) We use the fact that for $1 \leq p<\infty$, we can identify the dual space $\left(L^{p}\right)^{*}$ with L^{q} where q is the dual index to p, i.e., $p^{-1}+q^{-1}=1$.
By this identification, the claim can be rephrased as asking for which q-values the function $\frac{1}{\sqrt{t}} \in L^{q}([0,1])$. The answer is for all $q \in[1,2)$. By the relation $p^{-1}+q^{-1}=1$ and the restriction to $p<\infty$, the answer to part (i) is the range $p \in(2, \infty)$.
(ii). Let $p \in(2, \infty)$ or equivalently $q \in(1,2)$. We use that the identification of $\left(L^{p}\right)^{*}$ with L^{q} is in fact isometric and calculate

$$
\|\varphi\|=\left(\int_{0}^{1}\left(\frac{1}{\sqrt{t}}\right)^{q} d t\right)^{1 / q}=\left(\frac{1}{1-q / 2}\right)^{1 / q} .
$$

6. (DG)

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=x^{2}+y^{2}-1$.
(i) Prove that $M=f^{-1}(0)$ is a two-dimensional embedded submanifold of \mathbb{R}^{3}.
(ii) For $a, b, c \in \mathbb{R}$, consider the vector field

$$
X=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z}
$$

For which values of a, b, c is X tangent to M at the point $(1,0,1)$?

Solution.

(i) We note that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is smooth with derivative $f_{*}=\nabla f=(2 x, 2 y, 0)$. This derivative has rank 1 everywhere on M. (Indeed, the points where the rank vanishes satisfy $x=y=0$ and are not in $M=f^{-1}(0)$.) Therefore
the inverse function theorem implies that M is an embedded submanifold of dimension $3-1=2$.
(ii) First, we note that $(1,0,1) \in M$. The vector field X is tangent to M at the point $(1,0,1)$ if and only if $X(f)=0$ at $(1,0,1)$. We compute

$$
X(f)_{(1,0,1)}=(2 a x+2 b y)_{(1,0,1)}=2 a
$$

which vanishes if and only if $a=0$. The values of $b, c \in \mathbb{R}$ are arbitrary.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday January 22, 2020 (Day 2)

1. (AT) Let $\Delta=\{z \in \mathbb{C}:|z| \leq 1$ be the closed unit disc in the complex plane, and let X be the space obtained by identifying z with $e^{2 \pi i / 3} z$ for all z with $|z|=1$.
2. Find the homology groups $H_{k}(X, \mathbb{Z})$ of X with coefficients in \mathbb{Z}.
3. Find the homology groups $H_{k}(X, \mathbb{Z} / 3)$ of X with coefficients in $\mathbb{Z} / 3$.

Solution: X can be realized as a CW complex with one 0 -cell, one 1-cell and one 2-cell; the 1 -skeleton is just a circle S^{1} and the attaching map for the 2 -cell is the map $z \mapsto z^{3}$. The associated cell complex is thus

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z} \longrightarrow 0,
$$

with $\beta=0$ and α given by multiplication by 3 . The homology of X is then the homology of this complex, which is to say

$$
H_{2}(X, \mathbb{Z})=0 ; \quad H_{1}(X, \mathbb{Z})=\mathbb{Z} / 3 ; \quad \text { and } \quad H_{0}(X, \mathbb{Z})=\mathbb{Z}
$$

Similarly, to find the homology with coefficients in $\mathbb{Z} / 3$ we tensor this complex with $\mathbb{Z} / 3$; now all the maps are 0 and we have

$$
H_{2}(X, \mathbb{Z} / 3)=H_{1}(X, \mathbb{Z} / 3)=H_{0}(X, \mathbb{Z} / 3)=\mathbb{Z} / 3 .
$$

2. (AG) Let C be a smooth, geometrically irreducible curve of genus 1 defined over \mathbb{Q}, and suppose L and M are line bundles on C of degrees 3 and 5 , also defined over \mathbb{Q}. Show that C has a rational point, that is, $C(\mathbb{Q}) \neq \emptyset$.

Solution. Consider the line bundle $N=L^{2} \otimes M^{-1}$, which has degree 1. By Riemann-Roch, $h^{0}(N)=1$, so N has a global section σ; the zero locus of σ is then a single point $p \in C$, which is necessarily defined over \mathbb{Q}.
3. (A) Let g be an element of the finite group G. Prove that the following are equivalent:

1. g is in the center of G.
2. For every irreducible representation (V, ρ) of G, the image $\rho(g)$ is a multiple of the identity.
3. For every irreducible representation (V, ρ) of G, the character of g has absolute value $\operatorname{dim}(G)$.

Solution. (1) implies (2): $\rho(g)$ is a G-endomorphism of V, so is a multiple of the identity by Schur's Lemma.
(2) implies (1): for any $h \in G, \rho([g, h])=\rho(i d)$ for all irreducible ρ, and thus for all ρ, including the regular representation. But then $[g, h]=i d$.
(2) implies (3): Say $\rho(g)=c \cdot I_{V}$. Then $\rho(g)$ has trace $\operatorname{dim}(V) \cdot|c|$. Since some power of g (and thus of $\rho(g)$) is the identity, c is a root of unity. Hence $|c|=1$ and the trace has absolute value $\operatorname{dim}(V)$.
(3) implies (2): Since some power of $\rho(g)$ is the identity, $\rho(g)$ is diagonalizable and all eigenvalues are roots of unity. Hence the trace has absolute value at $\operatorname{most} \operatorname{dim}(V)$ (triangle inequality), and equals $\operatorname{dim}(V)$ only when the eigenvalues are all equal to each other. But then $\rho(g)$ is a multiple of the identity, and we're done.
4. (RA)

Let $g \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$ and write \hat{g} for its Fourier transform defined by

$$
\hat{g}(k)=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{-i k \cdot x} g(x) d x
$$

For $m>0$, define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{C}$ by

$$
f(x)=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{i k \cdot x} \frac{\hat{g}(k)}{k^{2}+m^{2}} d x
$$

Show that f solves the partial differential equation $-\Delta f+m^{2} f=g$ in the distributional sense, i.e., show that for every test function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
\left\langle-\Delta \varphi+m^{2} \varphi, f\right\rangle=\langle\varphi, g\rangle .
$$

Here $\langle\cdot, \cdot\rangle$ denotes the $L^{2}\left(\mathbb{R}^{3}\right)$-inner product.

Solution.

We observe that $-\Delta \varphi+m^{2} \varphi$ and f lie in $L^{2}\left(\mathbb{R}^{3}\right)$. The former holds since $-\Delta \varphi+m^{2} \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ and the latter holds because f is the inverse Fourier
transform of an L^{2}-function. Hence, we can apply unitarity of the Fourier transform on $L^{2}\left(\mathbb{R}^{3}\right)$ (Parseval's theorem) and linearity to find

$$
\left\langle-\Delta \varphi+m^{2} \varphi, f\right\rangle=\left\langle-\widehat{\Delta \varphi+m^{2}} \varphi, \hat{f}\right\rangle=\left\langle\widehat{-\Delta \varphi}+m^{2} \hat{\varphi}, \hat{f}\right\rangle
$$

On the right-hand side, we use the pointwise identity $\widehat{-\widehat{\Delta \varphi}(k)}=k^{2} \hat{\varphi}(k)$ and the Fourier inversion theorem on \hat{f} to find

$$
\left\langle-\widehat{\Delta \varphi+m^{2}} \varphi, \hat{f}\right\rangle=\left\langle\left(k^{2}+m^{2}\right) \hat{\varphi}, \frac{1}{k^{2}+m^{2}} \hat{g}\right\rangle=\langle\hat{\varphi}, \hat{g}\rangle
$$

On the last expression, we use Parseval's theorem again, which is allowed because $\varphi, g \in L^{2}\left(\mathbb{R}^{3}\right)$, and we obtain

$$
\langle\hat{\varphi}, \hat{g}\rangle=\langle\varphi, g\rangle
$$

as desired.
5. (DG)

Consider \mathbb{R}^{2} as a Riemannian manifold equipped with the metric

$$
g=\left(1+x^{2}\right) \mathrm{d} x^{2}+\mathrm{d} y^{2} .
$$

(i) Compute the Christoffel symbols of the Levi-Civita connection for g.
(ii) Compute the parallel transport of an arbitrary vector $(a, b) \in \mathbb{R}^{2}$ along the curve $\gamma(t)=(t, t)$ starting at $t=0$.
(iii) Is γ a geodesic?
(iv) Are there two parallel vector fields $X(t), Y(t)$ to the curve γ, such that $g(X(t), Y(t))=2 t$?

Solution.

(i). We have

$$
g^{-1}=\left(\begin{array}{cc}
\frac{1}{1+x^{2}} & 0 \\
0 & 1
\end{array}\right)
$$

Denoting $x^{1}=x, x^{2}=y$, the only non-vanishing Christoffel symbol is

$$
\Gamma_{11}^{1}=\frac{1}{2}\left(g^{-1}\right)_{11} \partial_{1} g_{11}=\frac{x}{1+x^{2}} .
$$

(ii). The equation for parallel transport $\nabla_{\gamma^{\prime}}\left(a^{1}, a^{2}\right)=0$, with $\gamma(t)=(t, t)$, becomes

$$
\frac{\mathrm{d} a^{1}}{\mathrm{~d} t}+\frac{t}{1+t^{2}} a^{1}=0, \quad \frac{\mathrm{~d} a^{2}}{\mathrm{~d} t}=0
$$

The second equation is trivial and the first one can be solved by separation of variables. Implementing the initial conditions $\left(a^{1}(0), a^{2}(0)\right)=(a, b)$ gives the solutions $a^{1}(t)=\frac{a}{\sqrt{1+t^{2}}}$ and $a^{2}(t)=b$. The parallel transport is therefore

$$
\left(a^{1}(t), a^{2}(t)\right)=\left(\frac{a}{\sqrt{1+t^{2}}}, b\right)
$$

(iii). By part (i), the two ODE describing the geodesic $(x(t), y(t))$ are given by

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{x}{1+x^{2}}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=0, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}=0
$$

While $\gamma(t)=(t, t)$ solves the second equation, it satisfies

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{x}{1+x^{2}}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=\frac{t}{1+t^{2}} \neq 0
$$

and is therefore not a geodesic.
(iv). No. The scalar product of two vectors is preserved by parallel transport, since ∇ is the Levi-Civita connection.
6. (CA) Evaluate the contour integral of the following functions around the circle $|z|=2020$ oriented counterclockwise:
(i) $\frac{1}{\sin z}$;
(ii) $\frac{1}{e^{2 z}-e^{z}}$.

Note that $\frac{2020}{\pi} \sim 642.98597$.

Solution:

(i) $f(z)=\frac{1}{\sin z}$ is analytic in $\{z \neq n \pi: n \in \mathbb{Z}\}$. It has a pole of order one at $n \pi$ (reason: $\left.\left.(\sin z)^{\prime}\right|_{z=n \pi}=\cos (n \pi)=(-1)^{n} \neq 0\right)$. So

$$
\operatorname{Res}_{z=n \pi} \frac{1}{\sin z}=\frac{1}{\cos (n \pi)}=(-1)^{n} .
$$

Therefore,

$$
\begin{aligned}
\int_{|z|=2020} \frac{d z}{\sin z} & =2 \pi i \sum_{|n \pi| \leq 2020} \operatorname{Res}_{z=n \pi} \frac{1}{\sin z} \\
& =2 \pi i \sum_{|n| \leq 642}(-1)^{n}=2 \pi i .
\end{aligned}
$$

(ii) $f(z)=\frac{1}{e^{2 z}-e^{z}}$ is analytic in $\left\{e^{2 z}-e^{z} \neq 0\right\}=\left\{e^{z} \neq 1\right\}=\{z \neq 2 n \pi i$: $n \in \mathbb{Z}\}$. Since $\left.\left(e^{2 z}-e^{z}\right)^{\prime}\right|_{z=2 n \pi i}=1 \neq 0, f(z)$ has a pole of order one at $2 n \pi i$. So

$$
\operatorname{Res}_{z=2 n \pi} \frac{1}{e^{2 z}-e^{z}}=\left.\frac{1}{2 e^{2 z}-e^{z}}\right|_{z=2 n \pi}=1 .
$$

Therefore,

$$
\begin{aligned}
\int_{|z|=2020} \frac{1}{e^{2 z}-e^{z}} & =2 \pi i \sum_{|2 n \pi i| \leq 2020} \operatorname{Res}_{z=2 n \pi i} \frac{1}{e^{2 z}-e^{z}} \\
& =2 \pi i \sum_{|n \pi| \leq 321} 1 \\
& =1286 \pi i .
\end{aligned}
$$

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday January 23, 2020 (Day 3)

1. (A) Let V be an n-dimensional vector space over an arbitrary field K, and let $T_{1}, \ldots, T_{n}: V \rightarrow V$ be pairwise commuting nilpotent operators on V.
2. Show that the composition $T_{1} T_{2} \cdots T_{n}=0$.
3. Does this conclusion still hold if we drop the hypothesis that the T_{i} are pairwise commuting?

Solution. The key step for Part a is the
Lemma 1 If S and T are commuting nilpotent operators on V then either $\operatorname{im}(S T) \subsetneq \operatorname{im}(T)$ or $T=0$.

Proof Since S and T commute, $\operatorname{im}(S T)=\operatorname{im}(T S) \subset \operatorname{im}(T)$; that is, S carries the image of T to itself. If we had the equality $\operatorname{im}(S T)=\operatorname{im}(T)$, with $\operatorname{im}(T) \neq$ 0 , then the restriction $\left.S\right|_{\operatorname{im}(T)}$ would be invertible, and no power of S could be 0 .
Part (1) follows immediately. For part (2), the simplest counterexample is to take $V=K^{2}, S=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
2. (RA)
(a) Let H be a Hilbert space, $K \subset H$ a closed subspace, and x a point in H. Show that there exists a unique y in K that minimizes the distance $\|x-y\|$ to x.
(b) Give an example to show that the conclusion can fail if H is an inner product space which is not complete.

Solution: (a): If $y, y^{\prime} \in K$ both minimize distance to x, then by the parallelogram law:

$$
\left\|x-\frac{y+y^{\prime}}{2}\right\|^{2}+\left\|\frac{y-y^{\prime}}{2}\right\|^{2}=\frac{1}{2}\left(\|x-y\|^{2}+\left\|x-y^{\prime}\right\|^{2}\right)=\|x-y\|^{2}
$$

But $\frac{y+y^{\prime}}{2}$ cannot be closer to x than y, by assumption, so $y=y^{\prime}$.
Let $C=\inf _{y \in K}\|x-y\|$, then $0 \leq C<\infty$ because K is non-empty. We can find a sequence $y_{n} \in K$ such that $\left\|x-y_{n}\right\| \rightarrow C$, which we want to show is

Cauchy. The midpoints $\frac{y_{n}+y_{m}}{2}$ are in K by convexity, so $\left\|x-\frac{y_{n}+y_{m}}{2}\right\| \geq C$ and using the parallelogram law as above one sees that $\left\|y_{n}-y_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. By completeness of H the sequence y_{n} converges to a limit y, which is in K, since K is closed. Finally, continuity of the norm implies that $\|x-y\|=C$.
(b): For example choose $H=C([0,1]) \subset L^{2}([0,1]), K$ the subspace of functions with support contained in $\left[0, \frac{1}{2}\right]$, and and $x=1$ the constant function.
If f_{n} is a sequence in K converging to $f \in H$ in L^{2}-norm, then

$$
\int_{1 / 2}^{1}|f|^{2}=0
$$

thus f vanishes on $[1 / 2,1]$, showing that K is closed. The distance $\|x-y\|$ can be made arbitrarily close to $1 / \sqrt{2}$ for $y \in K$ by approximating $\chi_{[0,1 / 2]}$ by continuous functions, but the infimum is not attained.
3. (AG)

1. Let the homogeneous coordinates of \mathbb{P}^{m} be x_{0}, \ldots, x_{m}, and the homogeneous coordinates of \mathbb{P}^{n} be $y_{0}, \ldots, y_{n}, N=(m+1)(n+1)-1$, and the homogeneous coordinates of \mathbb{P}^{N} be $z_{i, j}$ for $i=0, \ldots, m, j=0, \ldots, n$. Consider the Segre embedding

$$
f: \mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}
$$

given by $z_{i, j}=x_{i} y_{j}$. Show that the degree of the Segre embedding of $\mathbb{P}^{n} \times \mathbb{P}^{n}$ is $\binom{n+m}{n}$.
2. Let Y be a variety of dimension k in \mathbb{P}^{n}, with Hilbert polynomial h_{Y}. Define the arithmetic genus of Y to be $g=(-1)^{k}\left(p_{Y}(0)-1\right)$. Show that the arithmetic genus of the hypersurface H of degree d in \mathbb{P}^{n} is $\binom{d-1}{n}$.

Solution:

1. Note that the Hilbert polynomial $p_{f\left(\mathbb{P}^{m} \times \mathbb{P}^{n}\right)}$ of the Segre embedding of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ is the product of the Hilbert polynomials $p_{\mathbb{P}^{m}}, p_{\mathbb{P}^{n}}$, of \mathbb{P}^{m} and \mathbb{P}^{n}. Then

$$
p_{f\left(\mathbb{P}^{m} \times \mathbb{P}^{n}\right)}(d)=p_{\mathbb{P}^{m}}(d) \cdot p_{\mathbb{P}^{n}}(d)=\binom{m+d}{d}\binom{n+d}{d} .
$$

(Or one can note that a homogeneous of degree d in \mathbb{P}^{N} pulls back to a bihomogeneous polynomial of bidgree (d, d).)
Thus

$$
\operatorname{deg}\left(f\left(\mathbb{P}^{m} \times \mathbb{P}^{n}\right)\right)=(m+n)!\cdot\left(\frac{1}{n!} \frac{1}{m!}\right)=\binom{m+n}{n} .
$$

2. Note that the Hilbert polynomial is $p_{H}(m)=\binom{m+n}{n}-\binom{m-d+n}{n}$. Then

$$
p_{H}(0)=1-\binom{n-d}{n}=1-(-1)^{n}\binom{d-1}{n} .
$$

4. (CA) Find the Laurent series expansion of the meromorphic function

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

around the origin, valid in the annulus $\{z: 1<|z|<2\}$.
Solution: We use partial fractions to write f as a sum of functions with only a single pole, yielding

$$
\frac{1}{(z-1)(z-2)}=\frac{-1}{z-1}+\frac{1}{z-2}
$$

We now take the power series expansion of the second term valid in the disc $|z|<2$, that is,

$$
\frac{1}{z-2}=\frac{-1}{2} \cdot \frac{1}{1-z / 2}=\sum_{n=0}^{\infty} \frac{-1}{2^{n+1}} z^{n}
$$

and the Laurent series expansion of the first term valid in the annulus $|z|>1$; that is,

$$
\frac{-1}{z-1}=-z^{-1} \frac{1}{1-z^{-1}}=-\sum_{n=0}^{\infty} z^{-n-1}
$$

The sum of these two is the Laurent series expansion.
5. (DG)

Define the set

$$
H=\left\{\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right): x, y \in \mathbb{R}\right\}
$$

(i) Equip H with a C^{∞} differentiable structure so that it is diffeomorphic to \mathbb{R}^{2}.
(ii) Show that H is a Lie group under matrix multiplication.
(iii) Show that

$$
\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right\}
$$

forms a basis of left-invariant vector fields of the associated Lie algebra.

Solution (i). We use a single, global coordinate chart

$$
\begin{gathered}
\varphi: H \\
\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right) \mapsto(x, y)
\end{gathered}
$$

The differentiable structure defined by H and φ is then diffeomorphic to \mathbb{R}^{2}. (ii). Let $A, B \in H$ with

$$
A=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right) .
$$

Elementary computation shows that
$A B=\left(\begin{array}{ccc}1 & a+x & b+a x+y \\ 0 & 1 & a+x \\ 0 & 0 & 1\end{array}\right) \in H, \quad A^{-1}=\left(\begin{array}{ccc}1 & -a & a^{2}-b \\ 0 & 1 & -a \\ 0 & 0 & 1\end{array}\right) \in H$,
so H is a group. In coordinates, these maps can be written as

$$
(a, b, x, y) \mapsto(a+x, b+a x+y), \quad(a, b) \mapsto\left(-a, a^{2}-b\right)
$$

which are clearly C^{∞}, so H is a Lie group.
(iii). Since $\operatorname{dim} H=2$ and the vector fields are obviously linearly independent, it suffices to show they are left-invariant. It is convenient to identify elements $A \in H$ with their coordinate vectors, say $A=(a, b)$. As computed above, the left translation L_{A} of $B=(x, y)$ can be written as $L_{A}(B)=(a+x, b+a x+y)$. It has the Jacobian

$$
\left(L_{A}\right)_{*}=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)
$$

From this we can check directly that both vector fields satisfy $\left(L_{A}\right)_{*} X_{B}=$ $X_{A B}$. Indeed,

$$
\left(L_{A}\right)_{*}\left(\frac{\partial}{\partial y}\right)_{B}=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)\binom{0}{1}=\binom{0}{1}=\left(\frac{\partial}{\partial y}\right)_{L_{A}(B)}
$$

and
$\left(L_{A}\right)_{*}\left(\frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)_{B}=\left(\begin{array}{cc}1 & 0 \\ a & 1\end{array}\right)\binom{1}{x}=\binom{1}{x+a}=\left(\frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)_{L_{A}(B)}$
6. (AT) Suppose that X is a space written as a union of two simply connected open subsets U_{1} and U_{2}.
(a) Show that $H_{1} X$ is a free abelian group.
(b) Find an example in which $\pi_{1} X$ is a non-trivial group. Why does this not contradict the the Seifert-van Kampen theorem?
(c) Find an example in which $\pi_{1} X$ is non-abelian.

Solution: The Mayer-Vietoris sequence

$$
H_{1} U \oplus H_{1} V \rightarrow H_{1} X \rightarrow H_{0}(U \cap V)
$$

identifies $H_{1} X$ with a subgroup of $H_{0}(U \cap V)$ which is a free abelian group. The claim follows from the fact that a subgroup of a free abelian group is free abelian. The circle S^{1} is the union of two contractible open sets and has fundamental group \mathbb{Z}. (This doesn't contradict Seifert-van Kampen theorem because the intersection is not connected.)

Finally, if S is any discrete set, the suspension of S is the union of two cones on S, each of which is contractible. The fundamental group of the suspension of S is the free group on the points of S, so taking S to consist simply of three points (so that the suspension is a figure 8) provides an example for part (c).

