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1. (A) Show Z[,/p] is not a unique factorization domain for p a prime congruent
to 1 mod 4.

Solution: Consider

p-1=2.2 = (B )(VE- D)

Then we claim 2 is irreducible, as it has norm 4 and there are no elements
a+b,/p of norm 2, as that would imply a®? — pb? = 2, which is impossible mod
4. But 2 clearly does not divide either factor on the right in the given ring.

Alternatively, UFDs must be normal but (1 + ,/p)/2 is in the normalization
of the above ring.

2. (AT) Determine whether X = $2? v $3 v S5 is homotopy equivalent to (a) a
manifold, (b) a compact manifold, (c) a compact, orientable manifold.

Solution: Although its Betti numbers are symmetric, its cohomology ring does
not satisfy Poincaré duality, which shows it cannot be homotopy equivalent
to a compact, oriented manifold.

For part (b), note that if it were homotopy equivalent to a compact, nonori-
ented manifold, it would have a nontrivial orientable double cover, and yet its
fundamental group is trivial and so no nontrivial double covers exist.

Finally, for part (a) we can embed X in a Euclidean space, such as R!3 =
R3 x R* x RS, and take a small open neighborhood which deformation retracts
back to X.

3. (AG) We say that a curve C' C P3 is a twisted cubic if it is congruent (mod
the automorphism group PGL, of P?) to the image of the map P* — P3 given
by

do: [X, Y] — [X3, X2V, XY? Y3

Now let C' C P3 be any irreducible, nondegenerate curve of degree 3 over
an algebraically closed field. (Here, “nondegenerate” means that C' is not
contained in any plane.)



(a) Show that C' cannot contain three collinear points.
(b) Show that C is rational, that is, birational to P!.
(c) Show that C' is a twisted cubic.

Solution: For the first part, observe that if p,q,r € C are collinear, then for
any fourth point s € C not on the line p, ¢, 7, the plane spanned by p, ¢, and s
will meet C' in four points and hence contain C', contradicting nondegeneracy.

To see that C' is rational, choose any two distinct points p, g € C; let L C P3 be
the line they span and let { Hy},cp1 be the family of planes in P? containing L.
A general plane H) will intersect C at p, ¢ and one other point Ry; conversely,
a general point ) € C will lie on a unique plane H). This association gives a
birational isomorphism of C' with P*.

Finally, given the second part we have a rational map ¢ from P! to C' C P3,
and since P! is smooth this map is in fact regular. We can therefore write it
as

[X7 Y} = [FO(X7 Y)vFl(X7Y)7F2(X7Y)7F3(X7 Y)]

for some 4-tuple [Fy, Fy, F», F3] of homogeneous cubic polynomials on P!
Since C' is nondegenerate, the F; are linearly independent, and hence form
a basis for the 4-dimensional space of homogeneous cubic polynomials on P!. If
we let A € GL4 be the change of basis matrix from the basis { X3, XY, XY?2 Y3}
to the basis {Fp, F1, Fb, F3}, then, the action of A on P3 carries the image of
qb() to C.

4. (CA) Let Q C C be a connected open subset of the complex plane and

f1, f2,... a sequence of holomorphic functions on 2 converging uniformly on
compact sets to a function f. Suppose that f(zp) = 0 for some zy € . Show
that either f = 0, or there exists a sequence z1, 2o, -+ € ) converging to zg,

with fp(z,) = 0.

Solution: Suppose not. Then we can find a disc A C Q around zp such that
fn(2) # 0 for z € A, and such that zj is the sole zero of f in A. Now, since
the functions f,, and their derivatives converge uniformly on compact sets to

f, we have
O (P

lim — Z = .
n—o0 2701 Jan fn(2) 2mi Jon f(2)

But by the residue theorem and the hypothesis that f,(z) # 0 for z € A,
the terms on the left are all zero, while the right hand side is equal to 1, a
contradiction.

5. (RA)



(i) Specify the range of 1 < p < oo for which

1
o= | f(ftt) dt.

defines a linear functional ¢ : LP([0, 1]) — R.

(ii) For those values of p, calculate the norm of the linear functional ¢ :
LP([0,1]) — R. The norm of a linear functional is defined as

ol = sup 1A
serr(oa) 1 llze
J#0

Solution.
(i) We use the fact that for 1 < p < oo, we can identify the dual space (LP)*
with L9 where ¢ is the dual index to p, i.e., p~ ' + ¢! = 1.

By this identification, the claim can be rephrased as asking for which g-values
the function % € L9([0,1]). The answer is for all ¢ € [1,2). By the relation

p~t+¢ ! =1 and the restriction to p < oo, the answer to part (i) is the range
p € (2,00).

(ii). Let p € (2,00) or equivalently g € (1,2). We use that the identification
of (LP)* with L7 is in fact isometric and calculate

=[G - ()

. (DG)
Let f:R3 — R be defined by f(x,y,2) = 2> + 3% — 1.

(i) Prove that M = f~1(0) is a two-dimensional embedded submanifold of

R3.
(ii) For a,b,c € R, consider the vector field
0 0 0
X=a7—+b—+c—
“ox + oy + ‘oz

For which values of a,b,c is X tangent to M at the point (1,0,1)?

Solution.

(i) We note that f : R?® — R is smooth with derivative f. = Vf = (2z,2y,0).
This derivative has rank 1 everywhere on M. (Indeed, the points where the
rank vanishes satisfy # = y = 0 and are not in M = f~%(0).) Therefore



the inverse function theorem implies that M is an embedded submanifold of
dimension 3 — 1 = 2.

(ii) First, we note that (1,0,1) € M. The vector field X is tangent to M at
the point (1,0,1) if and only if X (f) =0 at (1,0,1). We compute

X(f)a,01) = (2ar +2by) 10,1y = 2a

which vanishes if and only if @ = 0. The values of b, c € R are arbitrary.
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1. (AT) Let A = {z € C: |z| <1 be the closed unit disc in the complex plane,
and let X be the space obtained by identifying z with ¢2™/3z for all z with
|z| = 1.
1. Find the homology groups Hy(X,Z) of X with coefficients in Z.
2. Find the homology groups Hy(X,Z/3) of X with coefficients in Z/3.

Solution: X can be realized as a CW complex with one 0-cell, one 1-cell and
one 2-cell; the l-skeleton is just a circle S' and the attaching map for the
2-cell is the map z — 23. The associated cell complex is thus

0 L 0,

with 8 = 0 and « given by multiplication by 3. The homology of X is then
the homology of this complex, which is to say

Hy(X,Z)=0; Hy(X,Z)=17/3; and Hy(X,Z)=1Z.

Similarly, to find the homology with coefficients in Z/3 we tensor this complex
with Z/3; now all the maps are 0 and we have

Hy(X,Z/3) = H\(X,Z/3) = Hy(X,Z/3) = Z/3.

2. (AG) Let C be a smooth, geometrically irreducible curve of genus 1 defined
over Q, and suppose L and M are line bundles on C' of degrees 3 and 5, also
defined over Q. Show that C' has a rational point, that is, C(Q) # 0.

Solution. Consider the line bundle N = L? ® M !, which has degree 1. By
Riemann-Roch, h°(N) = 1, so N has a global section o; the zero locus of o is
then a single point p € C, which is necessarily defined over Q.

3. (A) Let g be an element of the finite group G. Prove that the following are
equivalent:



1. g is in the center of G.

2. For every irreducible representation (V, p) of G, the image p(g) is a mul-
tiple of the identity.

3. For every irreducible representation (V,p) of G, the character of g has
absolute value dim(G).

Solution. (1) implies (2): p(g) is a G-endomorphism of V', so is a multiple of
the identity by Schur’s Lemma.

(2) implies (1): for any h € G, p([g, h]) = p(id) for all irreducible p, and thus
for all p, including the regular representation. But then [g, h] = id.

(2) implies (3): Say p(g) = c¢-Iy. Then p(g) has trace dim(V') - |¢|. Since some
power of g (and thus of p(g)) is the identity, ¢ is a root of unity. Hence |c| =1
and the trace has absolute value dim(V).

(3) implies (2): Since some power of p(g) is the identity, p(g) is diagonalizable
and all eigenvalues are roots of unity. Hence the trace has absolute value at
most dim(V) (triangle inequality), and equals dim(V') only when the eigen-
values are all equal to each other. But then p(g) is a multiple of the identity,
and we're done.

. (RA)
Let g € L'(R3) N L?(R3) and write § for its Fourier transform defined by

~ 1 —ik-x
10) = s [, ¢ ate) e

For m > 0, define the function f: R?® — C by

f(@—(zw):w/ﬂ@e iy me

Show that f solves the partial differential equation —Af + m?f = g in the
distributional sense, i.e., show that for every test function ¢ € C5°(R3?),

Here (-, -) denotes the L?(R3)-inner product.
Solution.

We observe that —Ap + m?p and f lie in L?(R3). The former holds since
—Ap +m?p € C§°(R3) and the latter holds because f is the inverse Fourier



transform of an L2-function. Hence, we can apply unitarity of the Fourier
transform on L?(R3) (Parseval’s theorem) and linearity to find

(—Ap+m2p, f) = (—=Ap + m2p, f) = (Ap + m2p, f)

—

On the right-hand side, we use the pointwise identity —Ap(k) = k25(k) and
the Fourier inversion theorem on f to find

— “ . 1 . .
<_A90 + m2907 f> = <(k2 + m2)@7 mg> = <907 g>

On the last expression, we use Parseval’s theorem again, which is allowed
because ¢, g € L2(R?), and we obtain

(©:9) = (»,9)

as desired.

. (DQ)

Consider R? as a Riemannian manifold equipped with the metric
g = (14 2%)dz? + dy°.

(i) Compute the Christoffel symbols of the Levi-Civita connection for g.

(i) Compute the parallel transport of an arbitrary vector (a,b) € R? along
the curve v(t) = (t,t) starting at ¢t = 0.

(iii) Is «y a geodesic?
(iv) Are there two parallel vector fields X (¢),Y (¢) to the curve v, such that
9(X (1), Y (1)) = 2t7

Solution.
(1). We have

0o 1)

Denoting x! = z, 2% = y, the only non-vanishing Christoffel symbol is

X

1
Fl = — -1 a = —\
11 2(9 )1101911 11 22

(ii). The equation for parallel transport V. (a',a?) = 0, with v(t) = (¢, 1),

becomes . )

da t da

—t ——a =0 — =0.
dt+1+ﬂa ’ dt



The second equation is trivial and the first one can be solved by separation of
variables. Implementing the initial conditions (a'(0),a?(0)) = (a,b) gives the
solutions a!(t) = —%— and a?(t) = b. The parallel transport is therefore

Vit
(al(t),a2(t)) = (\/1177521)) .

(iii). By part (i), the two ODE describing the geodesic (x(t),y(t)) are given

by
Az T <dx>2 d?y

Cde
While ~(t) = (t,t) solves the second equation, it satisfies

w12 \@w) T =

d?x T dz\? t
B) + 2 T = 2 ?é 0
dt 1+ dt 1+t
and is therefore not a geodesic.

(iv). No. The scalar product of two vectors is preserved by parallel transport,
since V is the Levi-Civita connection.

. (CA) Evaluate the contour integral of the following functions around the circle
|z| = 2020 oriented counterclockwise:

(1) sz
(i) =t
Note that 2220 ~ 642.98597.

Solution:

(i) f(2) = =i is analytic in {z # n7 : n € Z}. It has a pole of order one at

n (reason: (sin 2)'|,_ny = cos(nm) = (—1)™ # 0). So

1 1
Res, _pr—— = = (—1)".
=T n 2 cos(nm) (=1)

Therefore,

dz , 1
/I = 2m Z ReSZ:nTr @

_ sin z
#|=2020 In7| <2020

n|<642



(ii)) f(z) = ﬁ is analytic in {€?* —e* # 0} = {e* # 1} = {z # 2n7i :
n € Z}. Since (€2* — €*)'|,—onri = 1 # 0, f(z) has a pole of order one at

2nmi. So

1 1

Res,—opnr = =1.
= 2z _ oz 2z _ oz
e e 2e €|, —onr
Therefore,
1 . 1
/ 2z _ ez = 2mi Z Res;=2nri e2z _ oz
|2|=2020 |2nmi| <2020
= 2m E 1
[nm| <321

= 1286m3.
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(A) Let V be an n-dimensional vector space over an arbitrary field K, and let
T1,...,1, : V — V be pairwise commuting nilpotent operators on V.

1. Show that the composition 1115 ---T, = 0.
2. Does this conclusion still hold if we drop the hypothesis that the T; are

pairwise commuting?

Solution. The key step for Part a is the

Lemma 1 If S and T are commuting nilpotent operators on V then either
im(ST) C im(T) or T = 0.

Proof Since S and T' commute, im(ST) = im(7'S) C im(7T); that is, S carries
the image of T to itself. If we had the equality im(ST") = im(7’), with im(T") #
0, then the restriction S |im(T) would be invertible, and no power of S could
be 0.

Part (1) follows immediately. For part (2), the simplest counterexample is to

0 1 00
_ 12 _ _
takeV-K,S-(O O)andT—<1 O).

. (RA)

(a) Let H be a Hilbert space, K C H a closed subspace, and z a point in
H. Show that there exists a unique y in K that minimizes the distance
|z =yl to .

(b) Give an example to show that the conclusion can fail if H is an inner
product space which is not complete.

Solution: (a): If y,3y’ € K both minimize distance to x, then by the parallel-
ogram law:

y+y y—y 1
|z — THQ + HTII2 = g(Hw —ylI*+llz—yI?) = |l — y|?

But %y, cannot be closer to x than y, by assumption, so y = v/'.

Let C = infyek ||z — y||, then 0 < C < oo because K is non-empty. We can
find a sequence y, € K such that |z — y,| — C, which we want to show is



Cauchy. The midpoints W% are in K by convexity, so ||z — W%H >C

and using the parallelogram law as above one sees that ||y, — ym|| — 0 as
n,m — oco. By completeness of H the sequence y, converges to a limit y,
which is in K, since K is closed. Finally, continuity of the norm implies that
lz =yl =C.

(b): For example choose H = C([0,1]) € L?([0,1]), K the subspace of func-
tions with support contained in [0, %], and and x = 1 the constant function.

If f, is a sequence in K converging to f € H in L?>-norm, then

1
[ 1s=0
1/2

thus f vanishes on [1/2,1], showing that K is closed. The distance ||z — y||
can be made arbitrarily close to 1/4/2 for y € K by approximating X[0,1/2] by
continuous functions, but the infimum is not attained.

3. (AG)
1. Let the homogeneous coordinates of P be xq, ..., Z,,, and the homoge-
neous coordinates of P" be yg,...,yn, N = (m+1)(n+ 1) — 1, and the
homogeneous coordinates of PV be z;j fori =0,...,m, j =0,...,n.

Consider the Segre embedding
f:P™ x P — PV,
given by z; ; = x;y;. Show that the degree of the Segre embedding of
P x P s (P,
2. Let Y be a variety of dimension k£ in P, with Hilbert polynomial hy .
Define the arithmetic genus of Y to be g = (—1)*(py (0) — 1). Show that

the arithmetic genus of the hypersurface H of degree d in P" is (dgl).

Solution:

1. Note that the Hilbert polynomial pmpmypn) of the Segre embedding of
P™ x P™ is the product of the Hilbert polynomials ppm, ppr, of P™ and
P™. Then

Py(emxon)(d) = pom (d) - pon (d) = (m; d) (” ’ d) |

(Or one can note that a homogeneous of degree d in PV pulls back to a
bihomogeneous polynomial of bidgree (d, d).)

Thus
deg(F(P™ x P")) = (m + n)! - <;n}”> - (m”)



2. Note that the Hilbert polynomial is pg(m) = (") — (m7d+n). Then

put0) =1 (") =1 ().

4. (CA) Find the Laurent series expansion of the meromorphic function

B
z-1)(z-2)

around the origin, valid in the annulus {z : 1 < |z| < 2}.

f(z) =

Solution: We use partial fractions to write f as a sum of functions with only
a single pole, yielding
1 -1 1

G-1)(-2) 2-1 ' 2-2

We now take the power series expansion of the second term valid in the disc
|z| < 2, that is,

o0

1 -1 1 1
z—2_2'1—z/2_;)2n+1z

and the Laurent series expansion of the first term valid in the annulus |z| > 1;

that is,
-1 1 - —n—1
21 1.1 :—Zz
n=0

The sum of these two is the Laurent series expansion.

5. (DG)
Define the set

=
I

1
0 rx,y €R
0

O = 8
— 8

(i) Equip H with a C* differentiable structure so that it is diffeomorphic
to R2.

(ii) Show that H is a Lie group under matrix multiplication.

(iii) Show that
90 o
Oy’ Ox :Eé?y

forms a basis of left-invariant vector fields of the associated Lie algebra.



Solution (1). We use a single, global coordinate chart

o:H—>R?

1
0 = (7, 9)
0

o = 8
=8 <

The differentiable structure defined by H and ¢ is then diffeomorphic to R2.
(ii). Let A, B € H with

1 a b 1 =z y
A= 01 a |, B=|01 «x
0 0 1 0 0 1
Elementary computation shows that
1 at+z bt+ar+y 1 —a a®>—b
AB=10 1 a+x € H, Alt=[0 1 —a €H,
0 0 1 0 O 1

so H is a group. In coordinates, these maps can be written as
(a,b,z,y) — (a+ z,b+ ax + y), (a,b) — (—a,a® —b)

which are clearly C*°, so H is a Lie group.

(iii). Since dimH = 2 and the vector fields are obviously linearly independent,
it suffices to show they are left-invariant. It is convenient to identify elements
A € H with their coordinate vectors, say A = (a,b). As computed above, the
left translation Ly of B = (z,y) can be written as L4(B) = (a+z,b+ax+y).
It has the Jacobian

From this we can check directly that both vector fields satisfy (L4).Xp =
X ap. Indeed,

(LA)*<§y>B:<61L ?)((1)>:<(1)>:<§Z/>LA(B)
and
(LA)*<§x+araay>B=<i (1)>(i>:(:via>:<§x+x£)LA(B)

. (AT) Suppose that X is a space written as a union of two simply connected
open subsets U; and Us.



(a) Show that HyX is a free abelian group.

(b) Find an example in which 7 X is a non-trivial group. Why does this not
contradict the the Seifert-van Kampen theorem?

(c) Find an example in which 71X is non-abelian.

Solution: The Mayer-Vietoris sequence
HU® HYV - HX — Ho(U N V)

identifies H1 X with a subgroup of Hy(U N V') which is a free abelian group.
The claim follows from the fact that a subgroup of a free abelian group is
free abelian. The circle S' is the union of two contractible open sets and has
fundamental group Z. (This doesn’t contradict Seifert-van Kampen theorem
because the intersection is not connected.)

Finally, if S is any discrete set, the suspension of .S is the union of two cones
on S, each of which is contractible. The fundamental group of the suspension
of S is the free group on the points of S, so taking S to consist simply of three
points (so that the suspension is a figure 8) provides an example for part (c).



