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1. (A) Show Z[
√
p] is not a unique factorization domain for p a prime congruent

to 1 mod 4.

Solution: Consider

p− 1 = 2 · p− 1

2
= (
√
p+ 1)(

√
p− 1).

Then we claim 2 is irreducible, as it has norm 4 and there are no elements
a+ b

√
p of norm 2, as that would imply a2−pb2 = 2, which is impossible mod

4. But 2 clearly does not divide either factor on the right in the given ring.

Alternatively, UFDs must be normal but (1 +
√
p)/2 is in the normalization

of the above ring.

2. (AT) Determine whether X = S2 ∨ S3 ∨ S5 is homotopy equivalent to (a) a
manifold, (b) a compact manifold, (c) a compact, orientable manifold.

Solution: Although its Betti numbers are symmetric, its cohomology ring does
not satisfy Poincaré duality, which shows it cannot be homotopy equivalent
to a compact, oriented manifold.

For part (b), note that if it were homotopy equivalent to a compact, nonori-
ented manifold, it would have a nontrivial orientable double cover, and yet its
fundamental group is trivial and so no nontrivial double covers exist.

Finally, for part (a) we can embed X in a Euclidean space, such as R13 =
R3×R4×R6, and take a small open neighborhood which deformation retracts
back to X.

3. (AG) We say that a curve C ⊂ P3 is a twisted cubic if it is congruent (mod
the automorphism group PGL4 of P3) to the image of the map P1 → P3 given
by

φ0 : [X,Y ] 7→ [X3, X2Y,XY 2, Y 3].

Now let C ⊂ P3 be any irreducible, nondegenerate curve of degree 3 over
an algebraically closed field. (Here, “nondegenerate” means that C is not
contained in any plane.)



(a) Show that C cannot contain three collinear points.

(b) Show that C is rational, that is, birational to P1.

(c) Show that C is a twisted cubic.

Solution: For the first part, observe that if p, q, r ∈ C are collinear, then for
any fourth point s ∈ C not on the line p, q, r, the plane spanned by p, q, r and s
will meet C in four points and hence contain C, contradicting nondegeneracy.

To see that C is rational, choose any two distinct points p, q ∈ C; let L ⊂ P3 be
the line they span and let {Hλ}λ∈P1 be the family of planes in P3 containing L.
A general plane Hλ will intersect C at p, q and one other point Rλ; conversely,
a general point rλ ∈ C will lie on a unique plane Hλ. This association gives a
birational isomorphism of C with P1.

Finally, given the second part we have a rational map φ from P1 to C ⊂ P3,
and since P1 is smooth this map is in fact regular. We can therefore write it
as

[X,Y ] 7→ [F0(X,Y ), F1(X,Y ), F2(X,Y ), F3(X,Y )]

for some 4-tuple [F0, F1, F2, F3] of homogeneous cubic polynomials on P1.
Since C is nondegenerate, the Fi are linearly independent, and hence form
a basis for the 4-dimensional space of homogeneous cubic polynomials on P1. If
we letA ∈ GL4 be the change of basis matrix from the basis {X3, X2Y,XY 2, Y 3}
to the basis {F0, F1, F2, F3}, then, the action of A on P3 carries the image of
φ0 to C.

4. (CA) Let Ω ⊂ C be a connected open subset of the complex plane and
f1, f2, . . . a sequence of holomorphic functions on Ω converging uniformly on
compact sets to a function f . Suppose that f(z0) = 0 for some z0 ∈ Ω. Show
that either f ≡ 0, or there exists a sequence z1, z2, · · · ∈ Ω converging to z0,
with fn(zn) = 0.

Solution: Suppose not. Then we can find a disc ∆ ⊂ Ω around z0 such that
fn(z) 6= 0 for z ∈ ∆, and such that z0 is the sole zero of f in ∆. Now, since
the functions fn and their derivatives converge uniformly on compact sets to
f , we have

lim
n→∞

1

2πi

∫
∂∆

f ′n(z)

fn(z)
dz =

1

2πi

∫
∂∆

f ′(z)

f(z)
dz.

But by the residue theorem and the hypothesis that fn(z) 6= 0 for z ∈ ∆,
the terms on the left are all zero, while the right hand side is equal to 1, a
contradiction.

5. (RA)



(i) Specify the range of 1 ≤ p <∞ for which

ϕ(f) =

∫ 1

0

f(t)√
t
dt.

defines a linear functional ϕ : Lp([0, 1])→ R.

(ii) For those values of p, calculate the norm of the linear functional ϕ :
Lp([0, 1])→ R. The norm of a linear functional is defined as

‖ϕ‖ = sup
f∈Lp([0,1])

f 6=0

|ϕ(f)|
‖f‖Lp

Solution.
(i) We use the fact that for 1 ≤ p <∞, we can identify the dual space (Lp)∗

with Lq where q is the dual index to p, i.e., p−1 + q−1 = 1.

By this identification, the claim can be rephrased as asking for which q-values
the function 1√

t
∈ Lq([0, 1]). The answer is for all q ∈ [1, 2). By the relation

p−1 +q−1 = 1 and the restriction to p <∞, the answer to part (i) is the range
p ∈ (2,∞).

(ii). Let p ∈ (2,∞) or equivalently q ∈ (1, 2). We use that the identification
of (Lp)∗ with Lq is in fact isometric and calculate

‖ϕ‖ =

(∫ 1

0

(
1√
t

)q
dt

)1/q

=

(
1

1− q/2

)1/q

.

6. (DG)

Let f : R3 → R be defined by f(x, y, z) = x2 + y2 − 1.

(i) Prove that M = f−1(0) is a two-dimensional embedded submanifold of
R3.

(ii) For a, b, c ∈ R, consider the vector field

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

For which values of a, b, c is X tangent to M at the point (1, 0, 1)?

Solution.
(i) We note that f : R3 → R is smooth with derivative f∗ = ∇f = (2x, 2y, 0).
This derivative has rank 1 everywhere on M . (Indeed, the points where the
rank vanishes satisfy x = y = 0 and are not in M = f−1(0).) Therefore



the inverse function theorem implies that M is an embedded submanifold of
dimension 3− 1 = 2.

(ii) First, we note that (1, 0, 1) ∈ M . The vector field X is tangent to M at
the point (1, 0, 1) if and only if X(f) = 0 at (1, 0, 1). We compute

X(f)(1,0,1) = (2ax+ 2by)(1,0,1) = 2a

which vanishes if and only if a = 0. The values of b, c ∈ R are arbitrary.
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1. (AT) Let ∆ = {z ∈ C : |z| ≤ 1 be the closed unit disc in the complex plane,
and let X be the space obtained by identifying z with e2πi/3z for all z with
|z| = 1.

1. Find the homology groups Hk(X,Z) of X with coefficients in Z.

2. Find the homology groups Hk(X,Z/3) of X with coefficients in Z/3.

Solution: X can be realized as a CW complex with one 0-cell, one 1-cell and
one 2-cell; the 1-skeleton is just a circle S1 and the attaching map for the
2-cell is the map z 7→ z3. The associated cell complex is thus

0 - Z
α

- Z
β

- Z - 0,

with β = 0 and α given by multiplication by 3. The homology of X is then
the homology of this complex, which is to say

H2(X,Z) = 0; H1(X,Z) = Z/3; and H0(X,Z) = Z.

Similarly, to find the homology with coefficients in Z/3 we tensor this complex
with Z/3; now all the maps are 0 and we have

H2(X,Z/3) = H1(X,Z/3) = H0(X,Z/3) = Z/3.

2. (AG) Let C be a smooth, geometrically irreducible curve of genus 1 defined
over Q, and suppose L and M are line bundles on C of degrees 3 and 5, also
defined over Q. Show that C has a rational point, that is, C(Q) 6= ∅.

Solution. Consider the line bundle N = L2 ⊗M−1, which has degree 1. By
Riemann-Roch, h0(N) = 1, so N has a global section σ; the zero locus of σ is
then a single point p ∈ C, which is necessarily defined over Q.

3. (A) Let g be an element of the finite group G. Prove that the following are
equivalent:



1. g is in the center of G.

2. For every irreducible representation (V, ρ) of G, the image ρ(g) is a mul-
tiple of the identity.

3. For every irreducible representation (V, ρ) of G, the character of g has
absolute value dim(G).

Solution. (1) implies (2): ρ(g) is a G-endomorphism of V , so is a multiple of
the identity by Schur’s Lemma.

(2) implies (1): for any h ∈ G, ρ([g, h]) = ρ(id) for all irreducible ρ, and thus
for all ρ, including the regular representation. But then [g, h] = id.

(2) implies (3): Say ρ(g) = c ·IV . Then ρ(g) has trace dim(V ) · |c|. Since some
power of g (and thus of ρ(g)) is the identity, c is a root of unity. Hence |c| =1
and the trace has absolute value dim(V ).

(3) implies (2): Since some power of ρ(g) is the identity, ρ(g) is diagonalizable
and all eigenvalues are roots of unity. Hence the trace has absolute value at
most dim(V ) (triangle inequality), and equals dim(V ) only when the eigen-
values are all equal to each other. But then ρ(g) is a multiple of the identity,
and we’re done.

4. (RA)

Let g ∈ L1(R3) ∩ L2(R3) and write ĝ for its Fourier transform defined by

ĝ(k) =
1

(2π)3/2

∫
R3

e−ik·xg(x) dx

For m > 0, define the function f : R3 → C by

f(x) =
1

(2π)3/2

∫
R3

eik·x
ĝ(k)

k2 +m2
dx

Show that f solves the partial differential equation −∆f + m2f = g in the
distributional sense, i.e., show that for every test function ϕ ∈ C∞0 (R3),

〈−∆ϕ+m2ϕ, f〉 = 〈ϕ, g〉.

Here 〈·, ·〉 denotes the L2(R3)-inner product.

Solution.
We observe that −∆ϕ + m2ϕ and f lie in L2(R3). The former holds since
−∆ϕ + m2ϕ ∈ C∞0 (R3) and the latter holds because f is the inverse Fourier



transform of an L2-function. Hence, we can apply unitarity of the Fourier
transform on L2(R3) (Parseval’s theorem) and linearity to find

〈−∆ϕ+m2ϕ, f〉 = 〈 ̂−∆ϕ+m2ϕ, f̂〉 = 〈−̂∆ϕ+m2ϕ̂, f̂〉

On the right-hand side, we use the pointwise identity −̂∆ϕ(k) = k2ϕ̂(k) and
the Fourier inversion theorem on f̂ to find

〈 ̂−∆ϕ+m2ϕ, f̂〉 = 〈(k2 +m2)ϕ̂,
1

k2 +m2
ĝ〉 = 〈ϕ̂, ĝ〉

On the last expression, we use Parseval’s theorem again, which is allowed
because ϕ, g ∈ L2(R3), and we obtain

〈ϕ̂, ĝ〉 = 〈ϕ, g〉

as desired.

5. (DG)

Consider R2 as a Riemannian manifold equipped with the metric

g = (1 + x2)dx2 + dy2.

(i) Compute the Christoffel symbols of the Levi-Civita connection for g.

(ii) Compute the parallel transport of an arbitrary vector (a, b) ∈ R2 along
the curve γ(t) = (t, t) starting at t = 0.

(iii) Is γ a geodesic?

(iv) Are there two parallel vector fields X(t), Y (t) to the curve γ, such that
g(X(t), Y (t)) = 2t?

Solution.
(i). We have

g−1 =

( 1
1+x2

0

0 1

)
.

Denoting x1 = x, x2 = y, the only non-vanishing Christoffel symbol is

Γ1
11 =

1

2
(g−1)11∂1g11 =

x

1 + x2
.

(ii). The equation for parallel transport ∇γ′(a1, a2) = 0, with γ(t) = (t, t),
becomes

da1

dt
+

t

1 + t2
a1 = 0,

da2

dt
= 0.



The second equation is trivial and the first one can be solved by separation of
variables. Implementing the initial conditions (a1(0), a2(0)) = (a, b) gives the
solutions a1(t) = a√

1+t2
and a2(t) = b. The parallel transport is therefore

(a1(t), a2(t)) =

(
a√

1 + t2
, b

)
.

(iii). By part (i), the two ODE describing the geodesic (x(t), y(t)) are given
by

d2x

dt2
+

x

1 + x2

(
dx

dt

)2

= 0,
d2y

dt2
= 0.

While γ(t) = (t, t) solves the second equation, it satisfies

d2x

dt2
+

x

1 + x2

(
dx

dt

)2

=
t

1 + t2
6= 0

and is therefore not a geodesic.

(iv). No. The scalar product of two vectors is preserved by parallel transport,
since ∇ is the Levi-Civita connection.

6. (CA) Evaluate the contour integral of the following functions around the circle
|z| = 2020 oriented counterclockwise:

(i) 1
sin z ;

(ii) 1
e2z−ez .

Note that 2020
π ∼ 642.98597.

Solution:

(i) f(z) = 1
sin z is analytic in {z 6= nπ : n ∈ Z}. It has a pole of order one at

nπ (reason: (sin z)′|z=nπ = cos(nπ) = (−1)n 6= 0). So

Resz=nπ
1

sin z
=

1

cos(nπ)
= (−1)n.

Therefore, ∫
|z|=2020

dz

sin z
= 2πi

∑
|nπ|≤2020

Resz=nπ
1

sin z

= 2πi
∑
|n|≤642

(−1)n = 2πi.



(ii) f(z) = 1
e2z−ez is analytic in {e2z − ez 6= 0} = {ez 6= 1} = {z 6= 2nπi :

n ∈ Z}. Since (e2z − ez)′|z=2nπi = 1 6= 0, f(z) has a pole of order one at
2nπi. So

Resz=2nπ
1

e2z − ez
=

1

2e2z − ez

∣∣∣∣
z=2nπ

= 1.

Therefore,∫
|z|=2020

1

e2z − ez
= 2πi

∑
|2nπi|≤2020

Resz=2nπi
1

e2z − ez

= 2πi
∑

|nπ|≤321

1

= 1286πi.
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1. (A) Let V be an n-dimensional vector space over an arbitrary field K, and let
T1, . . . , Tn : V → V be pairwise commuting nilpotent operators on V .

1. Show that the composition T1T2 · · ·Tn = 0.

2. Does this conclusion still hold if we drop the hypothesis that the Ti are
pairwise commuting?

Solution. The key step for Part a is the

Lemma 1 If S and T are commuting nilpotent operators on V then either
im(ST ) ( im(T ) or T = 0.

Proof Since S and T commute, im(ST ) = im(TS) ⊂ im(T ); that is, S carries
the image of T to itself. If we had the equality im(ST ) = im(T ), with im(T ) 6=
0, then the restriction S|im(T ) would be invertible, and no power of S could
be 0.

Part (1) follows immediately. For part (2), the simplest counterexample is to

take V = K2, S =

(
0 1
0 0

)
and T =

(
0 0
1 0

)
.

2. (RA)

(a) Let H be a Hilbert space, K ⊂ H a closed subspace, and x a point in
H. Show that there exists a unique y in K that minimizes the distance
‖x− y‖ to x.

(b) Give an example to show that the conclusion can fail if H is an inner
product space which is not complete.

Solution: (a): If y, y′ ∈ K both minimize distance to x, then by the parallel-
ogram law:

‖x− y + y′

2
‖2 + ‖y − y

′

2
‖2 =

1

2
(‖x− y‖2 + ‖x− y′‖2) = ‖x− y‖2

But y+y′

2 cannot be closer to x than y, by assumption, so y = y′.

Let C = infy∈K ‖x − y‖, then 0 ≤ C < ∞ because K is non-empty. We can
find a sequence yn ∈ K such that ‖x − yn‖ → C, which we want to show is



Cauchy. The midpoints yn+ym
2 are in K by convexity, so ‖x − yn+ym

2 ‖ ≥ C
and using the parallelogram law as above one sees that ‖yn − ym‖ → 0 as
n,m → ∞. By completeness of H the sequence yn converges to a limit y,
which is in K, since K is closed. Finally, continuity of the norm implies that
‖x− y‖ = C.

(b): For example choose H = C([0, 1]) ⊂ L2([0, 1]), K the subspace of func-
tions with support contained in [0, 1

2 ], and and x = 1 the constant function.

If fn is a sequence in K converging to f ∈ H in L2-norm, then∫ 1

1/2
|f |2 = 0

thus f vanishes on [1/2, 1], showing that K is closed. The distance ‖x − y‖
can be made arbitrarily close to 1/

√
2 for y ∈ K by approximating χ[0,1/2] by

continuous functions, but the infimum is not attained.

3. (AG)

1. Let the homogeneous coordinates of Pm be x0, . . . , xm, and the homoge-
neous coordinates of Pn be y0, . . . , yn, N = (m + 1)(n + 1)− 1, and the
homogeneous coordinates of PN be zi,j for i = 0, . . . ,m, j = 0, . . . , n.
Consider the Segre embedding

f : Pm × Pn → PN ,

given by zi,j = xiyj . Show that the degree of the Segre embedding of
Pn × Pn is

(
n+m
n

)
.

2. Let Y be a variety of dimension k in Pn, with Hilbert polynomial hY .
Define the arithmetic genus of Y to be g = (−1)k(pY (0)− 1). Show that
the arithmetic genus of the hypersurface H of degree d in Pn is

(
d−1
n

)
.

Solution:

1. Note that the Hilbert polynomial pf(Pm×Pn) of the Segre embedding of
Pm × Pn is the product of the Hilbert polynomials pPm , pPn , of Pm and
Pn. Then

pf(Pm×Pn)(d) = pPm(d) · pPn(d) =

(
m+ d

d

)(
n+ d

d

)
.

(Or one can note that a homogeneous of degree d in PN pulls back to a
bihomogeneous polynomial of bidgree (d, d).)

Thus

deg(f(Pm × Pn)) = (m+ n)! ·
(

1

n!

1

m!

)
=

(
m+ n

n

)
.



2. Note that the Hilbert polynomial is pH(m) =
(
m+n
n

)
−
(
m−d+n

n

)
. Then

pH(0) = 1−
(
n− d
n

)
= 1− (−1)n

(
d− 1

n

)
.

4. (CA) Find the Laurent series expansion of the meromorphic function

f(z) =
1

(z − 1)(z − 2)

around the origin, valid in the annulus {z : 1 < |z| < 2}.
Solution: We use partial fractions to write f as a sum of functions with only
a single pole, yielding

1

(z − 1)(z − 2)
=
−1

z − 1
+

1

z − 2

We now take the power series expansion of the second term valid in the disc
|z| < 2, that is,

1

z − 2
=
−1

2
· 1

1− z/2
=
∞∑
n=0

−1

2n+1
zn

and the Laurent series expansion of the first term valid in the annulus |z| > 1;
that is,

−1

z − 1
= −z−1 1

1− z−1
= −

∞∑
n=0

z−n−1

The sum of these two is the Laurent series expansion.

5. (DG)

Define the set

H =


 1 x y

0 1 x
0 0 1

 : x, y ∈ R


(i) Equip H with a C∞ differentiable structure so that it is diffeomorphic

to R2.

(ii) Show that H is a Lie group under matrix multiplication.

(iii) Show that {
∂

∂y
,
∂

∂x
+ x

∂

∂y

}
forms a basis of left-invariant vector fields of the associated Lie algebra.



Solution (i). We use a single, global coordinate chart

ϕ : H → R2 1 x y
0 1 x
0 0 1

 7→ (x, y)

The differentiable structure defined by H and ϕ is then diffeomorphic to R2.

(ii). Let A,B ∈ H with

A =

 1 a b
0 1 a
0 0 1

 , B =

 1 x y
0 1 x
0 0 1

 .

Elementary computation shows that

AB =

 1 a+ x b+ ax+ y
0 1 a+ x
0 0 1

 ∈ H, A−1 =

 1 −a a2 − b
0 1 −a
0 0 1

 ∈ H,
so H is a group. In coordinates, these maps can be written as

(a, b, x, y) 7→ (a+ x, b+ ax+ y), (a, b) 7→ (−a, a2 − b)

which are clearly C∞, so H is a Lie group.

(iii). Since dimH = 2 and the vector fields are obviously linearly independent,
it suffices to show they are left-invariant. It is convenient to identify elements
A ∈ H with their coordinate vectors, say A = (a, b). As computed above, the
left translation LA of B = (x, y) can be written as LA(B) = (a+x, b+ax+y).
It has the Jacobian

(LA)∗ =

(
1 0
a 1

)
From this we can check directly that both vector fields satisfy (LA)∗XB =
XAB. Indeed,

(LA)∗

(
∂

∂y

)
B

=

(
1 0
a 1

)(
0
1

)
=

(
0
1

)
=

(
∂

∂y

)
LA(B)

and

(LA)∗

(
∂

∂x
+ x

∂

∂y

)
B

=

(
1 0
a 1

)(
1
x

)
=

(
1

x+ a

)
=

(
∂

∂x
+ x

∂

∂y

)
LA(B)

6. (AT) Suppose that X is a space written as a union of two simply connected
open subsets U1 and U2.



(a) Show that H1X is a free abelian group.

(b) Find an example in which π1X is a non-trivial group. Why does this not
contradict the the Seifert-van Kampen theorem?

(c) Find an example in which π1X is non-abelian.

Solution: The Mayer-Vietoris sequence

H1U ⊕H1V → H1X → H0(U ∩ V )

identifies H1X with a subgroup of H0(U ∩ V ) which is a free abelian group.
The claim follows from the fact that a subgroup of a free abelian group is
free abelian. The circle S1 is the union of two contractible open sets and has
fundamental group Z. (This doesn’t contradict Seifert-van Kampen theorem
because the intersection is not connected.)

Finally, if S is any discrete set, the suspension of S is the union of two cones
on S, each of which is contractible. The fundamental group of the suspension
of S is the free group on the points of S, so taking S to consist simply of three
points (so that the suspension is a figure 8) provides an example for part (c).


