QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday January 21, 2020 (Day 1)

- 1. (A) Show $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain for p a prime congruent to 1 mod 4.
- **2.** (AT) Determine whether $X = S^2 \vee S^3 \vee S^5$ is homotopy equivalent to (a) a manifold, (b) a compact manifold, (c) a compact, orientable manifold.
- **3.** (AG) We say that a curve $C \subset \mathbb{P}^3$ is a *twisted cubic* if it is congruent (mod the automorphism group PGL_4 of \mathbb{P}^3) to the image of the map $\mathbb{P}^1 \to \mathbb{P}^3$ given by

$$\phi_0 : [X, Y] \mapsto [X^3, X^2Y, XY^2, Y^3].$$

Now let $C \subset \mathbb{P}^3$ be any irreducible, nondegenerate curve of degree 3 over an algebraically closed field. (Here, "nondegenerate" means that C is not contained in any plane.)

- (a) Show that C cannot contain three collinear points.
- (b) Show that C is rational, that is, birational to \mathbb{P}^1 .
- (c) Show that C is a twisted cubic.
- 4. (CA) Let $\Omega \subset \mathbb{C}$ be a connected open subset of the complex plane and f_1, f_2, \ldots a sequence of holomorphic functions on Ω converging uniformly on compact sets to a function f. Suppose that $f(z_0) = 0$ for some $z_0 \in \Omega$. Show that either $f \equiv 0$, or there exists a sequence $z_1, z_2, \cdots \in \Omega$ converging to z_0 , with $f_n(z_n) = 0$.
- **5.** (RA)
 - (i) Specify the range of $1 \le p < \infty$ for which

$$\varphi(f) = \int_0^1 \frac{f(t)}{\sqrt{t}} \, dt.$$

defines a linear functional $\varphi: L^p([0,1]) \to \mathbb{R}$.

(ii) For those values of p, calculate the norm of the linear functional φ : $L^p([0,1]) \to \mathbb{R}$. The norm of a linear functional is defined as

$$\|\varphi\| = \sup_{\substack{f \in L^p([0,1]) \\ f \neq 0}} \frac{|\varphi(f)|}{\|f\|_{L^p}}$$

6. (DG)

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = x^2 + y^2 - 1$.

- (i) Prove that $M = f^{-1}(0)$ is a two-dimensional embedded submanifold of \mathbb{R}^3 .
- (ii) For $a, b, c \in \mathbb{R}$, consider the vector field

$$X = a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} + c\frac{\partial}{\partial z}$$

For which values of a, b, c is X tangent to M at the point (1, 0, 1)?

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Wednesday January 22, 2020 (Day 2)

- 1. (AT) Let $\Delta = \{z \in \mathbb{C} : |z| \le 1$ be the closed unit disc in the complex plane, and let X be the space obtained by identifying z with $e^{2\pi i/3}z$ for all z with |z| = 1.
 - 1. Find the homology groups $H_k(X, \mathbb{Z})$ of X with coefficients in \mathbb{Z} .
 - 2. Find the homology groups $H_k(X, \mathbb{Z}/3)$ of X with coefficients in $\mathbb{Z}/3$.
- **2.** (AG) Let C be a smooth, geometrically irreducible curve of genus 1 defined over \mathbb{Q} , and suppose L and M are line bundles on C of degrees 3 and 5, also defined over \mathbb{Q} . Show that C has a rational point, that is, $C(\mathbb{Q}) \neq \emptyset$.
- **3.** (A) Let g be an element of the finite group G. Prove that the following are equivalent:
 - 1. g is in the center of G.
 - 2. For every irreducible representation (V, ρ) of G, the image $\rho(g)$ is a multiple of the identity.
 - 3. For every irreducible representation (V, ρ) of G, the character of g has absolute value dim(G).
- 4. (RA) Let $g \in L^1(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$ and write \hat{g} for its Fourier transform defined by

$$\hat{g}(k) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} e^{-ik \cdot x} g(x) \, dx$$

For m > 0, define the function $f : \mathbb{R}^3 \to \mathbb{C}$ by

$$f(x) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} e^{ik \cdot x} \frac{\hat{g}(k)}{k^2 + m^2} \, dx$$

Show that f solves the partial differential equation $-\Delta f + m^2 f = g$ in the distributional sense, i.e., show that for every test function $\varphi \in C_0^{\infty}(\mathbb{R}^3)$,

$$\langle -\Delta \varphi + m^2 \varphi, f \rangle = \langle \varphi, g \rangle$$

Here $\langle \cdot, \cdot \rangle$ denotes the $L^2(\mathbb{R}^3)$ -inner product.

5. (DG)

Consider \mathbb{R}^2 as a Riemannian manifold equipped with the metric

$$g = (1+x^2)\mathrm{d}x^2 + \mathrm{d}y^2.$$

- (i) Compute the Christoffel symbols of the Levi-Civita connection for g.
- (ii) Compute the parallel transport of an arbitrary vector $(a, b) \in \mathbb{R}^2$ along the curve $\gamma(t) = (t, t)$ starting at t = 0.
- (iii) Is γ a geodesic?
- (iv) Are there two parallel vector fields X(t), Y(t) to the curve γ , such that g(X(t), Y(t)) = 2t?
- 6. (CA) Evaluate the contour integral of the following functions around the circle |z| = 2020 oriented counterclockwise:
 - (i) $\frac{1}{\sin z}$; (ii) $\frac{1}{e^{2z}-e^z}$.

Note that $\frac{2020}{\pi} \sim 642.98597$.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday January 23, 2020 (Day 3)

- 1. (A) Let V be an n-dimensional vector space over an arbitrary field K, and let $T_1, \ldots, T_n : V \to V$ be pairwise commuting nilpotent operators on V.
 - 1. Show that the composition $T_1T_2\cdots T_n=0$.
 - 2. Does this conclusion still hold if we drop the hypothesis that the T_i are pairwise commuting?
- **2.** (RA)
 - (a) Let H be a Hilbert space, $K \subset H$ a closed subspace, and x a point in H. Show that there exists a unique y in K that minimizes the distance ||x y|| to x.
 - (b) Give an example to show that the conclusion can fail if H is an inner product space which is not complete.
- **3.** (AG)
 - 1. Let the homogeneous coordinates of \mathbb{P}^m be x_0, \ldots, x_m , and the homogeneous coordinates of \mathbb{P}^n be y_0, \ldots, y_n , N = (m+1)(n+1) 1, and the homogeneous coordinates of \mathbb{P}^N be $z_{i,j}$ for $i = 0, \ldots, m, j = 0, \ldots, n$. Consider the Segre embedding

$$f: \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^N,$$

given by $z_{i,j} = x_i y_j$. Show that the degree of the Segre embedding of $\mathbb{P}^n \times \mathbb{P}^n$ is $\binom{n+m}{n}$.

- 2. Let Y be a variety of dimension k in \mathbb{P}^n , with Hilbert polynomial h_Y . Define the arithmetic genus of Y to be $g = (-1)^k (p_Y(0) - 1)$. Show that the arithmetic genus of the hypersurface H of degree d in \mathbb{P}^n is $\binom{d-1}{n}$.
- 4. (CA) Find the Laurent series expansion of the meromorphic function

$$f(z) = \frac{1}{(z-1)(z-2)}$$

around the origin, valid in the annulus $\{z : 1 < |z| < 2\}$.

5. (DG)

Define the set

$$H = \left\{ \left(\begin{array}{rrr} 1 & x & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{array} \right) : x, y \in \mathbb{R} \right\}$$

- (i) Equip H with a C^{∞} differentiable structure so that it is diffeomorphic to \mathbb{R}^2 .
- (ii) Show that H is a Lie group under matrix multiplication.
- (iii) Show that

$$\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial x} + x\frac{\partial}{\partial y}\right\}$$

forms a basis of left-invariant vector fields of the associated Lie algebra.

- 6. (AT) Suppose that X is a space written as a union of two simply connected open subsets U_1 and U_2 .
 - (a) Show that H_1X is a free abelian group.
 - (b) Find an example in which $\pi_1 X$ is a non-trivial group. Why does this not contradict the Seifert-van Kampen theorem?
 - (c) Find an example in which $\pi_1 X$ is non-abelian.