QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday January 21, 2020 (Day 1)

1. (A) Show $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain for p a prime congruent to $1 \bmod 4$.
2. (AT) Determine whether $X=S^{2} \vee S^{3} \vee S^{5}$ is homotopy equivalent to (a) a manifold, (b) a compact manifold, (c) a compact, orientable manifold.
3. (AG) We say that a curve $C \subset \mathbb{P}^{3}$ is a twisted cubic if it is congruent (mod the automorphism group $P G L_{4}$ of \mathbb{P}^{3}) to the image of the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ given by

$$
\phi_{0}:[X, Y] \mapsto\left[X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right]
$$

Now let $C \subset \mathbb{P}^{3}$ be any irreducible, nondegenerate curve of degree 3 over an algebraically closed field. (Here, "nondegenerate" means that C is not contained in any plane.)
(a) Show that C cannot contain three collinear points.
(b) Show that C is rational, that is, birational to \mathbb{P}^{1}.
(c) Show that C is a twisted cubic.
4. (CA) Let $\Omega \subset \mathbb{C}$ be a connected open subset of the complex plane and f_{1}, f_{2}, \ldots a sequence of holomorphic functions on Ω converging uniformly on compact sets to a function f. Suppose that $f\left(z_{0}\right)=0$ for some $z_{0} \in \Omega$. Show that either $f \equiv 0$, or there exists a sequence $z_{1}, z_{2}, \cdots \in \Omega$ converging to z_{0}, with $f_{n}\left(z_{n}\right)=0$.
5. (RA)
(i) Specify the range of $1 \leq p<\infty$ for which

$$
\varphi(f)=\int_{0}^{1} \frac{f(t)}{\sqrt{t}} d t
$$

defines a linear functional $\varphi: L^{p}([0,1]) \rightarrow \mathbb{R}$.
(ii) For those values of p, calculate the norm of the linear functional φ : $L^{p}([0,1]) \rightarrow \mathbb{R}$. The norm of a linear functional is defined as

$$
\|\varphi\|=\sup _{\substack{f \in L^{p}([0,1]) \\ f \neq 0}} \frac{|\varphi(f)|}{\|f\|_{L^{p}}}
$$

6. (DG)

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=x^{2}+y^{2}-1$.
(i) Prove that $M=f^{-1}(0)$ is a two-dimensional embedded submanifold of \mathbb{R}^{3}.
(ii) For $a, b, c \in \mathbb{R}$, consider the vector field

$$
X=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z}
$$

For which values of a, b, c is X tangent to M at the point $(1,0,1)$?

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday January 22, 2020 (Day 2)

1. (AT) Let $\Delta=\{z \in \mathbb{C}:|z| \leq 1$ be the closed unit disc in the complex plane, and let X be the space obtained by identifying z with $e^{2 \pi i / 3} z$ for all z with $|z|=1$.
2. Find the homology groups $H_{k}(X, \mathbb{Z})$ of X with coefficients in \mathbb{Z}.
3. Find the homology groups $H_{k}(X, \mathbb{Z} / 3)$ of X with coefficients in $\mathbb{Z} / 3$.
4. (AG) Let C be a smooth, geometrically irreducible curve of genus 1 defined over \mathbb{Q}, and suppose L and M are line bundles on C of degrees 3 and 5 , also defined over \mathbb{Q}. Show that C has a rational point, that is, $C(\mathbb{Q}) \neq \emptyset$.
5. (A) Let g be an element of the finite group G. Prove that the following are equivalent:
6. g is in the center of G.
7. For every irreducible representation (V, ρ) of G, the image $\rho(g)$ is a multiple of the identity.
8. For every irreducible representation (V, ρ) of G, the character of g has absolute value $\operatorname{dim}(G)$.
9. (RA) Let $g \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$ and write \hat{g} for its Fourier transform defined by

$$
\hat{g}(k)=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{-i k \cdot x} g(x) d x
$$

For $m>0$, define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{C}$ by

$$
f(x)=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{i k \cdot x} \frac{\hat{g}(k)}{k^{2}+m^{2}} d x
$$

Show that f solves the partial differential equation $-\Delta f+m^{2} f=g$ in the distributional sense, i.e., show that for every test function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
\left\langle-\Delta \varphi+m^{2} \varphi, f\right\rangle=\langle\varphi, g\rangle .
$$

Here $\langle\cdot, \cdot\rangle$ denotes the $L^{2}\left(\mathbb{R}^{3}\right)$-inner product.
5. (DG)

Consider \mathbb{R}^{2} as a Riemannian manifold equipped with the metric

$$
g=\left(1+x^{2}\right) \mathrm{d} x^{2}+\mathrm{d} y^{2} .
$$

(i) Compute the Christoffel symbols of the Levi-Civita connection for g.
(ii) Compute the parallel transport of an arbitrary vector $(a, b) \in \mathbb{R}^{2}$ along the curve $\gamma(t)=(t, t)$ starting at $t=0$.
(iii) Is γ a geodesic?
(iv) Are there two parallel vector fields $X(t), Y(t)$ to the curve γ, such that $g(X(t), Y(t))=2 t ?$
6. (CA) Evaluate the contour integral of the following functions around the circle $|z|=2020$ oriented counterclockwise:
(i) $\frac{1}{\sin z}$;
(ii) $\frac{1}{e^{2 z}-e^{z}}$.

Note that $\frac{2020}{\pi} \sim 642.98597$.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday January 23, 2020 (Day 3)

1. (A) Let V be an n-dimensional vector space over an arbitrary field K, and let $T_{1}, \ldots, T_{n}: V \rightarrow V$ be pairwise commuting nilpotent operators on V.
2. Show that the composition $T_{1} T_{2} \cdots T_{n}=0$.
3. Does this conclusion still hold if we drop the hypothesis that the T_{i} are pairwise commuting?
4. (RA)
(a) Let H be a Hilbert space, $K \subset H$ a closed subspace, and x a point in H. Show that there exists a unique y in K that minimizes the distance $\|x-y\|$ to x.
(b) Give an example to show that the conclusion can fail if H is an inner product space which is not complete.
5. (AG)
6. Let the homogeneous coordinates of \mathbb{P}^{m} be x_{0}, \ldots, x_{m}, and the homogeneous coordinates of \mathbb{P}^{n} be $y_{0}, \ldots, y_{n}, N=(m+1)(n+1)-1$, and the homogeneous coordinates of \mathbb{P}^{N} be $z_{i, j}$ for $i=0, \ldots, m, j=0, \ldots, n$. Consider the Segre embedding

$$
f: \mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}
$$

given by $z_{i, j}=x_{i} y_{j}$. Show that the degree of the Segre embedding of $\mathbb{P}^{n} \times \mathbb{P}^{n}$ is $\binom{n+m}{n}$.
2. Let Y be a variety of dimension k in \mathbb{P}^{n}, with Hilbert polynomial h_{Y}. Define the arithmetic genus of Y to be $g=(-1)^{k}\left(p_{Y}(0)-1\right)$. Show that the arithmetic genus of the hypersurface H of degree d in \mathbb{P}^{n} is $\binom{d-1}{n}$.
4. (CA) Find the Laurent series expansion of the meromorphic function

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

around the origin, valid in the annulus $\{z: 1<|z|<2\}$.
5. (DG)

Define the set

$$
H=\left\{\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right): x, y \in \mathbb{R}\right\}
$$

(i) Equip H with a C^{∞} differentiable structure so that it is diffeomorphic to \mathbb{R}^{2}.
(ii) Show that H is a Lie group under matrix multiplication.
(iii) Show that

$$
\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right\}
$$

forms a basis of left-invariant vector fields of the associated Lie algebra.
6. (AT) Suppose that X is a space written as a union of two simply connected open subsets U_{1} and U_{2}.
(a) Show that $H_{1} X$ is a free abelian group.
(b) Find an example in which $\pi_{1} X$ is a non-trivial group. Why does this not contradict the the Seifert-van Kampen theorem?
(c) Find an example in which $\pi_{1} X$ is non-abelian.

