QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday September 3, 2019 (Day 1)

- 1. (AT) Suppose that M is a compact connected manifold of dimension 3, and that the abelianization $(\pi_1 M)_{ab}$ is trivial. Determine the homology and cohomology groups of M (with integer coefficients).
- **2.** (A) Prove that for every finite group G the number of groups homomorphisms $h: \mathbb{Z}^2 \to G$ is n|G| where n is the number of conjugacy classes of G.
- **3.** (AG) Let $X \subset \mathbb{P}^n$ be a projective variety over a field K, with ideal $I(X) \subset K[Z_0, \ldots, Z_n]$ and homogeneous coordinate ring $S(X) = K[Z_0, \ldots, Z_n]/I(X)$. The *Hilbert function* $h_X(m)$ is defined to be the dimension of the mth graded piece of S(X) as a vector space over K.
 - a. Define the Hilbert polynomial $p_X(m)$ of X.
 - b. Prove that the degree of p_X is equal to the dimension of X.
 - c. For each m, give an example of a variety $X \subset \mathbb{P}^n$ such that $h_X(m) \neq p_X(m)$.
- **4.** (CA) Use contour integration to prove that for real numbers a and b with a > b > 0,

$$\int_0^{\pi} \frac{d\theta}{a - b\cos\theta} = \frac{\pi}{\sqrt{a^2 - b^2}}.$$

- **5.** (RA) Dirichlet's function D is the function on $[0,1] \subset \mathbb{R}$ that equals 1 at every rational number and equals 0 at every irrational number. Thomae's function T is the function on [0,1] whose value at irrational numbers is 0 and whose value at any given rational number r is 1/q, where r = p/q with p and q relatively prime integers, q > 0.
 - 1. Prove that D is nowhere continuous.
 - 2. Show that T is continuous at the irrational numbers and discontinuous at the rational numbers.
 - 3. Show that T is nowhere differentiable.

6. (DG)

Consider the Riemannian manifold (\mathbb{D},g) with \mathbb{D} the unit disk in \mathbb{R}^2 and

$$g = \frac{1}{1 - x^2 - y^2} (dx^2 + dy^2)$$

Find the Riemann curvature tensor of (\mathbb{D},g) . Use this to read off the Gaussian curvature of (\mathbb{D},g) .

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday September 4, 2019 (Day 2)

- **1.** (CA) Fix $a \in \mathbb{C}$ and an integer $n \geq 2$. Show that the equation $az^n + z + 1 = 0$ has a solution with $|z| \leq 2$.
- **2.** (AG) Let \mathbb{P}^N be the space of nonzero homogeneous polynomials of degree d in n+1 variables over a field K, modulo multiplication by nonzero scalars, and let $U \subset \mathbb{P}^N$ be the subset of irreducible polynomials F such that the zero locus $V(F) \subset \mathbb{P}^n$ is smooth.
 - (a) Show that U is a Zariski open subset of \mathbb{P}^N .
 - (b) What is the dimension of the complement $D = \mathbb{P}^N \setminus U$?
 - (c) Show that *D* is irreducible.
- **3.** (RA) Let B denote the Banach space of continuous, real valued functions on $[0,1] \subset \mathbb{R}$ with the sup norm.
 - 1. State the Arzela-Ascoli theorem in the context of B.
 - 2. Define what is meant by a *compact operator* between two Banach spaces.
 - 3. Prove that the operator $T: \mathcal{B} \to \mathcal{B}$ defined by

$$(Tf)(x) = \int_0^x f(y) \, dy$$

is compact.

- **4.** (A) Let \mathbb{F}_q be the finite field with q elements. Show that the number of 3×3 nilpotent matrices over \mathbb{F}_q is q^6 .
- **5.** (AT) Let $\operatorname{Sym}^n X$ denote the *n*th symmetric power of a CW complex X, i.e. X^n/S_n , where the symmetric group S_n acts by permuting coordinates. Show that for all $n \geq 2$, the fundamental group of $\operatorname{Sym}^n X$ is abelian.

6. (DG) Let $S^2 \subset \mathbb{R}^3$ be the unit 2-sphere, with its usual orientation. Let X be the vector field generating the flow given by

$$\begin{pmatrix} \cos(t) & -\sin(t) & 0\\ \sin(t) & \cos(t) & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix},$$

and let ω be the volume form induced by the embedding in \mathbb{R}^3 (so the total "volume" is 4π). Find a function $f:S^2\to\mathbb{R}$ satisfying

$$df = \iota_X \omega$$

where $\iota_X \omega$ is the contraction of ω by X.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday September 5, 2019 (Day 3)

1. (RA) Let $f:[0,1] \to \mathbb{R}$ be in the Sobolev space $H^1([0,1])$; that is, functions f such that both f and its derivative are L^2 -integrable. Prove that

$$\lim_{n\to\infty} \left(n \int_0^1 f(x) e^{-2\pi i n x} dx\right) \ = \ 0.$$

2. (CA) Given that the sum

$$\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$$

converges uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{Z}$ to a meromorphic function on the entire complex plane, prove the identity

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}.$$

3. (AG) Let $C \subset \mathbb{P}^3$ be a smooth curve of degree 5 and genus 2.

- (a) By considering the restriction map $\rho: H^0(\mathcal{O}_{\mathbb{P}^3}(2)) \to H^0(\mathcal{O}_C(2))$, show that C must lie on a quadric surface Q.
- (b) Show that the quadric surface Q is unique.
- (c) Similarly, show that C must lie on at least one cubic surface S not containing Q.
- (d) Finally, deduce that there exists a line $L \subset \mathbb{P}^3$ such that the union $C \cup L$ is a complete intersection of a quadric and a cubic.

4. (A) Show that if p, q are distinct primes then the polynomial $(x^p-1)/(x-1)$ is irreducible mod q if an only if q is a primitive residue of p (i.e. if every integer that is not a multiple of p is congruent to $q^e \mod p$ for some integer e).

ii) Prove that $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ factors mod 23 as the product of two irreducible cubics.

5. (DG) Suppose that G is a Lie group.

- (a) Consider the map $\iota: G \to G$ defined by $\iota(g) = g^{-1}$. Show that the derivative of ι at the identity element is multiplication by -1.
- (b) For $g \in G$ define maps $L_g, R_g : G \to G$ by

$$L_g(x) = gx$$

$$R_q(x) = xg.$$

Show that if ω is a k-form which is bi-invariant in the sense that $L_g^*\omega = R_g^*\omega$ then $\iota^*\omega = (-1)^k\omega$.

- (c) Show that bi-invariant forms on G are closed.
- **6.** (AT) Suppose that m is odd. Show that if n is odd there is a fixed point free action of \mathbb{Z}/m on S^n . What happens if n is even?