QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Tuesday January 19, 2021 (Day 1)

- 1. (AG) Let $Y \subset \mathbb{P}^2$ be an irreducible curve of degree d > 1 having a point of multiplicity d 1. Show that Y is a rational curve.
- 2. (CA) Use the method of contour integrals to find the integral

$$\int_0^\infty \frac{\log x}{x^2 + 4} \mathrm{d}x.$$

3. (RA) Suppose μ and ν are two positive measures on \mathbb{R}^n with $n \ge 1$. For a positive function f, consider two quantities

$$A := \int \nu(dy) \left[\int f(x,y)^p \mu(dx) \right]^{1/p}$$
$$B := \left[\int \mu(dx) \left(\int f(x,y)\nu(dy) \right)^p \right]^{1/p}$$

For $1 \le p < \infty$. Assume all quantities are integrable and finite. Do we know that $A \ge B$ or $A \le B$ for all functions f? Prove your assertion or give a counterexample.

- 4. (A) Let \mathfrak{p} be a prime ideal in a commutative ring A. Show that $\mathfrak{p}[x]$ is a prime idea in A[x]. If m is a maximal idea in A, is m[x] a maximal ideal in A[x]?
- **5.** (AT) What are the homology groups of the 5-manifold $\mathbb{RP}^2 \times \mathbb{RP}^3$,
 - (a) with coefficients in \mathbb{Z} ?
 - (b) with coefficients in $\mathbb{Z}/2$?
 - (c) with coefficients in $\mathbb{Z}/3$?

6. (DG) Let a > b > 0 be positive numbers. Let C be the circle of radius b centered at (a, 0) in the (x, z)-plane. Let T be the torus obtained by revolving the circle C about the z-axis in the (x, y, z)-space. The torus T can be identified as the product of two circles whose points are described by the two angle-variables φ, θ (or arc-length-variables) of the two circles. Compute, in terms of a, b, φ, θ , the Gaussian curvature of T and determine the subsets T^+, T^-, T^0 of T where the Gaussian curvature of T is respectively positive, negative, and zero.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Wednesday January 20, 2021 (Day 2)

- 1. (CA) Let q be any positive integer. Let Ω be a connected open subset of \mathbb{C} . Suppose $f_n(z)$ is a sequence of holomorphic functions on Ω such that for any positive number n and for any $c \in \mathbb{C}$, the set $f_n^{-1}(c)$ has no more than q distinct elements. Suppose the sequence $f_n(z)$ converges to a function f(z) uniformly on compact subsets of Ω . Prove that either f(z) is constant or f(z) satisfies the property that for any $c \in \mathbb{C}$ the set $f^{-1}(c)$ has no more than q distinct elements.
- **2.** (AG) Let X be a degree 3 hypersurface in \mathbb{P}^3 . Show that X contains a line. (You may use the fact that the Fermat cubic surface $V(x^3 + y^3 + z^3 + w^3)$ contains a positive finite number of lines.)
- **3.** (RA) Suppose X_j are independent identically distributed Poisson distributions with intensity λ , i.e.,

$$P(X_j = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N} \cup \{0\}$$

Show that for any $y \geq \lambda$,

$$P(\frac{X_1 + \dots + X_n}{n} \ge y) \le e^{-n[y \log(y/\lambda) - y + \lambda]}$$

and for any $y \leq \lambda$,

$$P(\frac{X_1 + \dots + X_n}{n} \le y) \le e^{-n[y \log(y/\lambda) - y + \lambda]}$$

Hint: Consider the moment generating function.

- 4. (A) Determine the Galois group of the polynomial $f(x) = x^3 2$. Let K be the splitting field of f over \mathbb{Q} . Describe the set of all intermediate fields L, $\mathbb{Q} < L < K$ and the Galois correspondence.
- 5. (AT) Let $X \subset \mathbb{R}^3$ be the union of the unit sphere $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ and the line segment $I = \{(x, 0, 0) \mid -1 \le x \le 1\}$.

- (a) What are the homology groups of X?
- (b) What are the homotopy groups $\pi_1(X)$ and $\pi_2(X)$?
- 6. (DG) Let X be a Riemannian manifold and σ be an isometry of X. Let Y be the set of fixed points of σ in the sense that Y is the set of all points y of X such that $\sigma(y) = y$. Prove that Y is regular and is totally geodesic (in the sense that any geodesic in Y with respect to the metric induced from X is also a geodesic in X).

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Thursday January 21, 2021 (Day 3)

- **1.** (AG) Let $X \subset \mathbb{P}^3$ be a curve that is not contained in any proper linear subspace of \mathbb{P}^3 . Show that if deg X is a prime number, then the homogeneous ideal I(X) cannot be generated by two elements.
- **2.** (RA) Let \mathcal{E} be the space of even \mathcal{C}^{∞} functions $\mathbf{R}/\mathbf{Z} \to \mathbf{R}$. Prove that for every $f \in \mathcal{E}$ there exists a unique $g \in \mathcal{E}$ such that

$$f(x) = \int_0^1 \int_0^1 g(y) g(z) g(x - y - z) \, dy \, dz$$

for all $x \in \mathbf{R}/\mathbf{Z}$. [Hint: write the integral formula for f as a convolution.]

3. (CA) Suppose f(z) is analytic and bounded for |z| < 1. Let $\zeta = x + iy$. If |z| < 1, prove that

$$f(z) = \frac{1}{\pi} \int \int_{|\zeta| < 1} \frac{f(\zeta)}{(1 - z\overline{\zeta})^2} dx dy$$

- 4. (AT) Suppose f is an orientation-preserving self-homeomorphism of \mathbb{CP}^n such that the graph $\Gamma_f \subset \mathbb{CP}^n \times \mathbb{CP}^n$ intersects the diagonal transversely. Compute all possibilities for the number of its fixed points.
- 5. (DG) Let G be an open subset of \mathbb{R}^n . For $1 \leq p \leq n-1$ denote by $\wedge^p T_G$ the exterior product of p copies of the tangent bundle T_G of G. For $1 \leq j \leq m$ let η_j be a C^{∞} section of $\wedge^p T_G$ over G. For a C^{∞} vector field ξ on an open subset of G, denote by $\mathcal{L}_{\xi}\eta_j$ the Lie derivative of η_j with respect to ξ , which means that if $\varphi_{\xi,t}$ is the local diffeomorphism defined by ξ so that the tangent vector $\frac{d}{dt}\varphi_{\xi,t}$ equals the value of ξ at $\varphi_{\xi,t}$, then

$$\mathcal{L}_{\xi} \boldsymbol{\eta}_{j} = \lim_{t \to 0} \frac{1}{t} \left((\varphi_{\xi,t})_{*} \boldsymbol{\eta}_{j} - \boldsymbol{\eta}_{j} \right),$$

where $(\varphi_{\xi,t})_* \eta_j$ is the pushforward of η_j under $\varphi_{\xi,t}$. Let $\Phi_{\eta_j} : T_G \to \wedge^{p+1} T_G$ be defined by exterior product with η_j . Assume that the intersection $\cap_{j=1}^m \operatorname{Ker} \Phi_{\eta_j}$

of the kernel Ker Φ_{η_j} of Φ_{η_j} for $1 \leq j \leq m$ is a subbundle of T_G of rank q over G. Suppose for any C^{∞} tangent vector field ζ in any open subset W there exist C^{∞} functions $g_{j,k,\zeta}$ on W for $1 \leq j,k \leq m$ such that

$$\mathcal{L}_{\zeta}oldsymbol{\eta}_{j} = \sum_{k=1}^{m} g_{j,k,\zeta}oldsymbol{\eta}_{k}$$

on W. Prove that for every point x of G there exist some open neighborhood U_x of x in G and C^{∞} functions f_1, \dots, f_{n-q} on U_x such that the fiber of $\bigcap_{j=1}^m \operatorname{Ker} \Phi_{\eta_j}$ at y is equal to $\bigcap_{k=1}^{n-q} \operatorname{Ker} df_k$ at y for $y \in U_x$.

6. (A) Let π be a finite dimensional representation of a finite group G with the character χ_{π} . Prove that π is irreducible if and only if

$$\frac{1}{|G|} \sum_{g \in G} |\chi_{\pi}(g)|^2 = 1.$$