QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday January 19, 2021 (Day 1)

1. (AG) Let $Y \subset \mathbb{P}^{2}$ be an irreducible curve of degree $d>1$ having a point of multiplicity $d-1$. Show that Y is a rational curve.
2. (CA) Use the method of contour integrals to find the integral

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+4} \mathrm{~d} x
$$

3. (RA) Suppose μ and ν are two positive measures on \mathbb{R}^{n} with $n \geq 1$. For a positive function f, consider two quantities

$$
\begin{aligned}
A & :=\int \nu(d y)\left[\int f(x, y)^{p} \mu(d x)\right]^{1 / p} \\
B & :=\left[\int \mu(d x)\left(\int f(x, y) \nu(d y)\right)^{p}\right]^{1 / p}
\end{aligned}
$$

For $1 \leq p<\infty$. Assume all quantities are integrable and finite. Do we know that $A \geq B$ or $A \leq B$ for all functions f ? Prove your assertion or give a counterexample.
4. (A) Let \mathfrak{p} be a prime ideal in a commutative ring A. Show that $\mathfrak{p}[x]$ is a prime idea in $A[x]$. If m is a maximal idea in A, is $\mathrm{m}[x]$ a maximal ideal in $A[x]$?
5. (AT) What are the homology groups of the 5 -manifold $\mathbb{R P}^{2} \times \mathbb{R P}^{3}$,
(a) with coefficients in \mathbb{Z} ?
(b) with coefficients in $\mathbb{Z} / 2$?
(c) with coefficients in $\mathbb{Z} / 3$?
6. (DG) Let $a>b>0$ be positive numbers. Let C be the circle of radius b centered at $(a, 0)$ in the (x, z)-plane. Let T be the torus obtained by revolving the circle C about the z-axis in the (x, y, z)-space. The torus T can be identified as the product of two circles whose points are described by the two angle-variables φ, θ (or arc-length-variables) of the two circles. Compute, in terms of a, b, φ, θ, the Gaussian curvature of T and determine the subsets T^{+}, T^{-}, T^{0} of T where the Gaussian curvature of T is respectively positive, negative, and zero.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday January 20, 2021 (Day 2)

1. (CA) Let q be any positive integer. Let Ω be a connected open subset of \mathbb{C}. Suppose $f_{n}(z)$ is a sequence of holomorphic functions on Ω such that for any positive number n and for any $c \in \mathbb{C}$, the set $f_{n}^{-1}(c)$ has no more than q distinct elements. Suppose the sequence $f_{n}(z)$ converges to a function $f(z)$ uniformly on compact subsets of Ω. Prove that either $f(z)$ is constant or $f(z)$ satisfies the property that for any $c \in \mathbb{C}$ the set $f^{-1}(c)$ has no more than q distinct elements.
2. (AG) Let X be a degree 3 hypersurface in \mathbb{P}^{3}. Show that X contains a line. (You may use the fact that the Fermat cubic surface $V\left(x^{3}+y^{3}+z^{3}+w^{3}\right)$ contains a positive finite number of lines.)
3. (RA) Suppose X_{j} are independent identically distributed Poisson distributions with intensity λ, i.e.,

$$
P\left(X_{j}=k\right)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k \in \mathbb{N} \cup\{0\}
$$

Show that for any $y \geq \lambda$,

$$
P\left(\frac{X_{1}+\cdots+X_{n}}{n} \geq y\right) \leq e^{-n[y \log (y / \lambda)-y+\lambda]}
$$

and for any $y \leq \lambda$,

$$
P\left(\frac{X_{1}+\cdots+X_{n}}{n} \leq y\right) \leq e^{-n[y \log (y / \lambda)-y+\lambda]}
$$

Hint: Consider the moment generating function.
4. (A) Determine the Galois group of the polynomial $f(x)=x^{3}-2$. Let K be the splitting field of f over \mathbb{Q}. Describe the set of all intermediate fields L, $\mathbb{Q}<L<K$ and the Galois correspondence.
5. (AT) Let $X \subset \mathbb{R}^{3}$ be the union of the unit sphere $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=\right.$ $1\}$ and the line segment $I=\{(x, 0,0) \mid-1 \leq x \leq 1\}$.
(a) What are the homology groups of X ?
(b) What are the homotopy groups $\pi_{1}(X)$ and $\pi_{2}(X)$?
6. (DG) Let X be a Riemannian manifold and σ be an isometry of X. Let Y be the set of fixed points of σ in the sense that Y is the set of all points y of X such that $\sigma(y)=y$. Prove that Y is regular and is totally geodesic (in the sense that any geodesic in Y with respect to the metric induced from X is also a geodesic in X).

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday January 21, 2021 (Day 3)

1. (AG) Let $X \subset \mathbb{P}^{3}$ be a curve that is not contained in any proper linear subspace of \mathbb{P}^{3}. Show that if $\operatorname{deg} X$ is a prime number, then the homogeneous ideal $I(X)$ cannot be generated by two elements.
2. (RA) Let \mathcal{E} be the space of even \mathcal{C}^{∞} functions $\mathbf{R} / \mathbf{Z} \rightarrow \mathbf{R}$. Prove that for every $f \in \mathcal{E}$ there exists a unique $g \in \mathcal{E}$ such that

$$
f(x)=\int_{0}^{1} \int_{0}^{1} g(y) g(z) g(x-y-z) d y d z
$$

for all $x \in \mathbf{R} / \mathbf{Z}$. [Hint: write the integral formula for f as a convolution.]
3. (CA) Suppose $f(z)$ is analytic and bounded for $|z|<1$. Let $\zeta=x+i y$. If $|z|<1$, prove that

$$
f(z)=\frac{1}{\pi} \iint_{|\zeta|<1} \frac{f(\zeta)}{(1-z \bar{\zeta})^{2}} d x d y
$$

4. (AT) Suppose f is an orientation-preserving self-homeomorphism of $\mathbb{C P}^{n}$ such that the graph $\Gamma_{f} \subset \mathbb{C P}^{n} \times \mathbb{C P}^{n}$ intersects the diagonal transversely. Compute all possibilities for the number of its fixed points.
5. (DG) Let G be an open subset of \mathbb{R}^{n}. For $1 \leq p \leq n-1$ denote by $\wedge^{p} T_{G}$ the exterior product of p copies of the tangent bundle T_{G} of G. For $1 \leq j \leq m$ let $\boldsymbol{\eta}_{j}$ be a C^{∞} section of $\wedge^{p} T_{G}$ over G. For a C^{∞} vector field ξ on an open subset of G, denote by $\mathcal{L}_{\xi} \boldsymbol{\eta}_{j}$ the Lie derivative of $\boldsymbol{\eta}_{j}$ with respect to ξ, which means that if $\varphi_{\xi, t}$ is the local diffeomorphism defined by ξ so that the tangent vector $\frac{d}{d t} \varphi_{\xi, t}$ equals the value of ξ at $\varphi_{\xi, t}$, then

$$
\mathcal{L}_{\xi} \boldsymbol{\eta}_{j}=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\varphi_{\xi, t}\right)_{*} \boldsymbol{\eta}_{j}-\boldsymbol{\eta}_{j}\right)
$$

where $\left(\varphi_{\xi, t}\right)_{*} \boldsymbol{\eta}_{j}$ is the pushforward of $\boldsymbol{\eta}_{j}$ under $\varphi_{\xi, t}$. Let $\Phi_{\boldsymbol{\eta}_{j}}: T_{G} \rightarrow \wedge^{p+1} T_{G}$ be defined by exterior product with $\boldsymbol{\eta}_{j}$. Assume that the intersection $\cap_{j=1}^{m} \operatorname{Ker} \Phi_{\boldsymbol{\eta}_{j}}$
of the kernel $\operatorname{Ker} \Phi_{\boldsymbol{\eta}_{j}}$ of $\Phi_{\boldsymbol{\eta}_{j}}$ for $1 \leq j \leq m$ is a subbundle of T_{G} of $\operatorname{rank} q$ over G. Suppose for any C^{∞} tangent vector field ζ in any open subset W there exist C^{∞} functions $g_{j, k, \zeta}$ on W for $1 \leq j, k \leq m$ such that

$$
\mathcal{L}_{\zeta} \boldsymbol{\eta}_{j}=\sum_{k=1}^{m} g_{j, k, \zeta} \boldsymbol{\eta}_{k}
$$

on W. Prove that for every point x of G there exist some open neighborhood U_{x} of x in G and C^{∞} functions f_{1}, \cdots, f_{n-q} on U_{x} such that the fiber of $\cap_{j=1}^{m} \operatorname{Ker} \Phi_{\eta_{j}}$ at y is equal to $\cap_{k=1}^{n-q} \operatorname{Ker} d f_{k}$ at y for $y \in U_{x}$.
6. (A) Let π be a finite dimensional representation of a finite group G with the character χ_{π}. Prove that π is irreducible if and only if

$$
\frac{1}{|G|} \sum_{g \in G}\left|\chi_{\pi}(g)\right|^{2}=1 .
$$

