1. (AG) Let $Y \subset \mathbb{P}^2$ be an irreducible curve of degree $d > 1$ having a point of multiplicity $d - 1$. Show that Y is a rational curve.

2. (CA) Use the method of contour integrals to find the integral
$$\int_{0}^{\infty} \frac{\log x}{x^2 + 4} \, dx.$$

3. (RA) Suppose μ and ν are two positive measures on \mathbb{R}^n with $n \geq 1$. For a positive function f, consider two quantities
$$A := \int \nu(dy) \left[\int f(x, y)^p \mu(dx) \right]^{1/p}$$
$$B := \left[\int \mu(dx) \left(\int f(x, y)^p \nu(dy) \right)^p \right]^{1/p}$$

For $1 \leq p < \infty$. Assume all quantities are integrable and finite. Do we know that $A \geq B$ or $A \leq B$ for all functions f? Prove your assertion or give a counterexample.

4. (A) Let p be a prime ideal in a commutative ring A. Show that $p[x]$ is a prime ideal in $A[x]$. If m is a maximal ideal in A, is $m[x]$ a maximal ideal in $A[x]$?

5. (AT) What are the homology groups of the 5-manifold $\mathbb{RP}^2 \times \mathbb{RP}^3$,
 (a) with coefficients in \mathbb{Z}?
 (b) with coefficients in $\mathbb{Z}/2$?
 (c) with coefficients in $\mathbb{Z}/3$?
6. (DG) Let $a > b > 0$ be positive numbers. Let C be the circle of radius b centered at $(a,0)$ in the (x,z)-plane. Let T be the torus obtained by revolving the circle C about the z-axis in the (x,y,z)-space. The torus T can be identified as the product of two circles whose points are described by the two angle-variables ϕ, θ (or arc-length-variables) of the two circles. Compute, in terms of a, b, ϕ, θ, the Gaussian curvature of T and determine the subsets T^+, T^-, T^0 of T where the Gaussian curvature of T is respectively positive, negative, and zero.
1. (CA) Let q be any positive integer. Let Ω be a connected open subset of \mathbb{C}. Suppose $f_n(z)$ is a sequence of holomorphic functions on Ω such that for any positive number n and for any $c \in \mathbb{C}$, the set $f_n^{-1}(c)$ has no more than q distinct elements. Suppose the sequence $f_n(z)$ converges to a function $f(z)$ uniformly on compact subsets of Ω. Prove that either $f(z)$ is constant or $f(z)$ satisfies the property that for any $c \in \mathbb{C}$ the set $f^{-1}(c)$ has no more than q distinct elements.

2. (AG) Let X be a degree 3 hypersurface in \mathbb{P}^3. Show that X contains a line. (You may use the fact that the Fermat cubic surface $V(x^3 + y^3 + z^3 + w^3)$ contains a positive finite number of lines.)

3. (RA) Suppose X_j are independent identically distributed Poisson distributions with intensity λ, i.e.,

$$P(X_j = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N} \cup \{0\}$$

Show that for any $y \geq \lambda$,

$$P\left(\frac{X_1 + \cdots + X_n}{n} \geq y\right) \leq e^{-n[y \log(y/\lambda) - y + \lambda]}$$

and for any $y \leq \lambda$,

$$P\left(\frac{X_1 + \cdots + X_n}{n} \leq y\right) \leq e^{-n[y \log(y/\lambda) - y + \lambda]}$$

Hint: Consider the moment generating function.

4. (A) Determine the Galois group of the polynomial $f(x) = x^3 - 2$. Let K be the splitting field of f over \mathbb{Q}. Describe the set of all intermediate fields L, $\mathbb{Q} < L < K$ and the Galois correspondence.

5. (AT) Let $X \subset \mathbb{R}^3$ be the union of the unit sphere $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ and the line segment $I = \{(x, 0, 0) \mid -1 \leq x \leq 1\}$.
(a) What are the homology groups of X?
(b) What are the homotopy groups $\pi_1(X)$ and $\pi_2(X)$?

6. (DG) Let X be a Riemannian manifold and σ be an isometry of X. Let Y be the set of fixed points of σ in the sense that Y is the set of all points y of X such that $\sigma(y) = y$. Prove that Y is regular and is totally geodesic (in the sense that any geodesic in Y with respect to the metric induced from X is also a geodesic in X).
1. (AG) Let $X \subset \mathbb{P}^3$ be a curve that is not contained in any proper linear subspace of \mathbb{P}^3. Show that if $\deg X$ is a prime number, then the homogeneous ideal $I(X)$ cannot be generated by two elements.

2. (RA) Let E be the space of even C^∞ functions $\mathbb{R}/\mathbb{Z} \to \mathbb{R}$. Prove that for every $f \in E$ there exists a unique $g \in E$ such that

$$f(x) = \int_0^1 \int_0^1 g(y) g(z) g(x - y - z) \, dy \, dz$$

for all $x \in \mathbb{R}/\mathbb{Z}$. [Hint: write the integral formula for f as a convolution.]

3. (CA) Suppose $f(z)$ is analytic and bounded for $|z| < 1$. Let $\zeta = x + iy$. If $|z| < 1$, prove that

$$f(z) = \frac{1}{\pi} \int_{|\zeta| < 1} \frac{f(\zeta)}{(1 - z \bar{\zeta})^2} \, dxdy$$

4. (AT) Suppose f is an orientation-preserving self-homeomorphism of $\mathbb{C}P^n$ such that the graph $\Gamma_f \subset \mathbb{C}P^n \times \mathbb{C}P^n$ intersects the diagonal transversely. Compute all possibilities for the number of its fixed points.

5. (DG) Let G be an open subset of \mathbb{R}^n. For $1 \leq p \leq n - 1$ denote by $\wedge^p T_G$ the exterior product of p copies of the tangent bundle T_G of G. For $1 \leq j \leq m$ let η_j be a C^∞ section of $\wedge^p T_G$ over G. For a C^∞ vector field ξ on an open subset of G, denote by $\mathcal{L}_\xi \eta_j$ the Lie derivative of η_j with respect to ξ, which means that if $\varphi_{\xi,t}$ is the local diffeomorphism defined by ξ so that the tangent vector $\frac{d}{dt} \varphi_{\xi,t}$ equals the value of ξ at $\varphi_{\xi,t}$, then

$$\mathcal{L}_\xi \eta_j = \lim_{t \to 0} \frac{1}{t} ((\varphi_{\xi,t})_* \eta_j - \eta_j),$$

where $(\varphi_{\xi,t})_* \eta_j$ is the pushforward of η_j under $\varphi_{\xi,t}$. Let $\Phi_{\eta_j} : T_G \to \wedge^{p+1} T_G$ be defined by exterior product with η_j. Assume that the intersection $\cap_{j=1}^{m} \text{Ker} \Phi_{\eta_j}$
of the kernel \(\text{Ker} \Phi_{\eta_j} \) of \(\Phi_{\eta_j} \) for \(1 \leq j \leq m \) is a subbundle of \(T_G \) of rank \(q \) over \(G \). Suppose for any \(C^\infty \) tangent vector field \(\zeta \) in any open subset \(W \) there exist \(C^\infty \) functions \(g_{j,k,\zeta} \) on \(W \) for \(1 \leq j, k \leq m \) such that

\[
\mathcal{L}_\zeta \eta_j = \sum_{k=1}^{m} g_{j,k,\zeta} \eta_k
\]
on \(W \). Prove that for every point \(x \) of \(G \) there exist some open neighborhood \(U_x \) of \(x \) in \(G \) and \(C^\infty \) functions \(f_1, \ldots, f_{n-q} \) on \(U_x \) such that the fiber of \(\cap_{j=1}^{m} \text{Ker} \Phi_{\eta_j} \) at \(y \) is equal to \(\cap_{k=1}^{n-q} \text{Ker} df_k \) at \(y \) for \(y \in U_x \).

6. (A) Let \(\pi \) be a finite dimensional representation of a finite group \(G \) with the character \(\chi_\pi \). Prove that \(\pi \) is irreducible if and only if

\[
\frac{1}{|G|} \sum_{g \in G} |\chi_\pi(g)|^2 = 1.
\]