QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday January 19, 2021 (Day 1)

1. (AG) Let $Y \subset \mathbb{P}^{2}$ be an irreducible curve of degree $d>1$ having a point of multiplicity $d-1$. Show that Y is a rational curve.

Solution: Recall that if $P \in Y \subset \mathbb{P}^{2}$ is a point of multiplicity m, then a generic line through P meets Y at p with multiplicity m. Then there is a dense open subset U of \mathbb{P}^{1} such that if $L \in U$ then the intersection multiplicity of Y at L along P is m.
Without loss of generality, let $P=(0,0,1) \in Y$ be the point with multiplicty $d-1$. Then consider two maps:

$$
\phi: Y \backslash P \rightarrow \mathbb{P}^{1}
$$

the projective map, and by Bezout's theorem, there is a map

$$
\psi: \mathbb{P}^{1} \supset U \rightarrow Y \backslash P
$$

which maps a point L of U to the unique point that L meets Y other than P. Thus

$$
\begin{aligned}
Y \backslash P & \xrightarrow{\phi} \mathbb{P}^{1} \rightarrow Y \backslash P \\
(a, b, c) & \mapsto(a, b, 0) \mapsto(a, b, c)
\end{aligned}
$$

are rational. Thus this gives a birational equivalence of $Y \backslash P$ and \mathbb{P}^{1}.
2. (CA) Use the method of contour integrals to find the integral

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+4} \mathrm{~d} x
$$

Solution: Consider the contour from $-R$ to $-r$, a semicircle, r to R and a large semicircle. Then the integration from $-R$ to $-r$ and r to R becomes

$$
2 \int_{r}^{R} \frac{\log x}{x^{2}+4} \mathrm{~d} x+i \int_{-R}^{-r} \frac{\pi}{x^{2}+4} \mathrm{~d} x
$$

The last term is imaginary. Hence

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+4} \mathrm{~d} x=\mathrm{d}\left[\pi i \lim _{z \rightarrow 2 i} \frac{\log z}{z+2 i}\right]=\frac{\pi \log 2}{4}
$$

3. (RA) Suppose μ and ν are two positive measures on \mathbb{R}^{n} with $n \geq 1$. For a positive function f, consider two quantities

$$
\begin{aligned}
A & :=\int \nu(d y)\left[\int f(x, y)^{p} \mu(d x)\right]^{1 / p} \\
B & :=\left[\int \mu(d x)\left(\int f(x, y) \nu(d y)\right)^{p}\right]^{1 / p}
\end{aligned}
$$

For $1 \leq p<\infty$. Assume all quantities are integrable and finite. Do we know that $A \geq B$ or $A \leq B$ for all functions f ? Prove your assertion or give a counterexample.

Solution: By duality,

$$
\begin{aligned}
& {\left[\int \mu(d x)\left(\int f(x, y) \nu(d y)\right)^{p}\right]^{1 / p}=\sup _{g:\|g\|_{L_{q}(\mu)} \leq 1} \int \mu(d x) g(x) \int f(x, y) \nu(d y)} \\
& =\sup _{g:\|g\|_{L_{q}(\mu)} \leq 1} \int \nu(d y) \int \mu(d x) g(x) f(x, y) \leq \int \nu(d y)\left[\int f(x, y)^{p} \mu(d x)\right]^{1 / p}
\end{aligned}
$$

Since ϵ was arbitrary we are done.
4. (A) Let \mathfrak{p} be a prime ideal in a commutative ring A. Show that $\mathfrak{p}[x]$ is a prime idea in $A[x]$. If m is a maximal idea in A, is $\mathrm{m}[x]$ a maximal ideal in $A[x]$?
Solution: Consider the projection

$$
A[x] \rightarrow(A / \mathfrak{a})[x]
$$

The kernel of the projection is $\mathfrak{a}[x]$ and hence $A[x] / \mathfrak{a}[x] \cong(A / \mathfrak{a})[x]$. Now consider \mathfrak{p} a prime idea of A. Then A / \mathfrak{p} is an integral domain, and so do $(A / \mathfrak{p})[x]$ by Hilbert Basis Theorem. That is $A[x] / \mathfrak{p}[x]$ is an integral domain as well. This implies $\mathfrak{p}[x]$ is prime in $A[x]$.
Note that if A is a field, $A[x]$ may not be a field. Hence if \mathfrak{m} is maximal in A does not implies $\mathrm{m}[x]$ a maximal ideal in $A[x]$.
5. (AT) What are the homology groups of the 5 -manifold $\mathbb{R P}^{2} \times \mathbb{R P}^{3}$,
(a) with coefficients in \mathbb{Z} ?
(b) with coefficients in $\mathbb{Z} / 2$?
(c) with coefficients in $\mathbb{Z} / 3$?

Solution: $\mathbb{R}^{P}{ }^{2}$ and \mathbb{R}^{3} have cell complexes with sequences

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
$$

where the maps are alternately 0 and multiplication by 2 ; from this the homology groups of $\mathbb{R P}^{2}$ and \mathbb{R}^{3} can be calculated as $\mathbb{Z}, \mathbb{Z} / 2,0$ and $\mathbb{Z}, \mathbb{Z} / 2,0, \mathbb{Z}$ respectively. The rest is just Künneth; the answers are
(a): $\mathbb{Z},(\mathbb{Z} / 2)^{2},(\mathbb{Z} / 2)^{2}, \mathbb{Z}, \mathbb{Z} / 2,0 ;$
(b): $\mathbb{Z} / 2,(\mathbb{Z} / 2)^{2},(\mathbb{Z} / 2)^{3},(\mathbb{Z} / 2)^{3},(\mathbb{Z} / 2)^{2}, \mathbb{Z} / 2$,
(c): $\mathbb{Z} / 3,0,0, \mathbb{Z} / 3,0,0$
6. (DG) Let $a>b>0$ be positive numbers. Let C be the circle of radius b centered at $(a, 0)$ in the (x, z)-plane. Let T be the torus obtained by revolving the circle C about the z-axis in the (x, y, z)-space. The torus T can be identified as the product of two circles whose points are described by the two angle-variables φ, θ (or arc-length-variables) of the two circles. Compute, in terms of a, b, φ, θ, the Gaussian curvature of T and determine the subsets T^{+}, T^{-}, T^{0} of T where the Gaussian curvature of T is respectively positive, negative, and zero.

Solution: Parametrize T by two circles with angle-variable φ, θ as follows. The circle C with angle-variable φ can be described as

$$
(x, z)=b(\cos \varphi, \sin \varphi)+(a, 0)=(a+b \cos \varphi, b \sin \varphi) .
$$

The result of rotating a point P on C by an angle θ about the z-axis is the same as replacing the x-coordinate x_{P} of P by $(x, y)=\left(x_{P} \cos \theta, x_{P} \sin \theta\right)$. It follows that the parametrization of T is given by

$$
\vec{r}(\varphi, \theta)=((a+b \cos \varphi) \cos \theta,(a+b \cos \varphi) \sin \theta, b \sin \varphi) .
$$

The first and second partial derivatives of $\vec{r}(\theta, \varphi)$ and the unit normal vector \vec{N} of T are given by

$$
\begin{aligned}
\vec{r}_{\varphi} & =(-b \sin \varphi \cos \theta,-b \sin \varphi \sin \theta, b \cos \varphi), \\
\vec{r}_{\theta} & =(-(a+b \cos \varphi) \sin \theta,(a+b \cos \varphi) \cos \theta, 0), \\
\vec{r}_{\varphi} \times \vec{r}_{\theta} & =(-(a+b \cos \varphi) \cos \theta b \cos \varphi,-(a+b \cos \varphi) \sin \theta b \cos \varphi,-(a+b \cos \varphi) b \sin \varphi), \\
\vec{n} & =\frac{\vec{r}_{\varphi} \times \vec{r}_{\theta}}{\left\|\vec{r}_{\varphi} \times \vec{r}_{\theta}\right\|}=(-\cos \theta \cos \varphi,-\sin \theta \cos \varphi,-\sin \varphi), \\
\vec{r}_{\varphi \varphi} & =(-b \cos \varphi \cos \theta,-b \cos \varphi \sin \theta,-b \sin \varphi), \\
\vec{r}_{\varphi \theta} & =(b \sin \varphi \sin \theta,-b \sin \varphi \cos \theta, 0), \\
\vec{r}_{\theta \theta} & =(-(a+b \cos \varphi) \cos \theta,-(a+b \cos \varphi) \sin \theta, 0) .
\end{aligned}
$$

The first fundamental form $E d \varphi^{2}+2 F d \varphi d \theta+G d \theta^{2}$ and the second fundamental form $L d \varphi^{2}+2 M d \varphi d \theta+N d \theta^{2}$ of the torus T are given by

$$
\begin{aligned}
E & =\vec{r}_{\varphi} \cdot \vec{r}_{\varphi}=b^{2}, \\
F & =\vec{r}_{\varphi} \cdot \vec{r}_{\theta}=0, \\
G & =\vec{r}_{\theta} \cdot \vec{r}_{\theta}=(a+b \cos \varphi)^{2}, \\
L & =\vec{r}_{\varphi \varphi} \cdot \vec{n}=b, \\
M & =\vec{r}_{\varphi \theta} \cdot \vec{n}=0, \\
N & =\vec{r}_{\theta \theta} \cdot \vec{n}=(a+b \cos \varphi) \cos \varphi .
\end{aligned}
$$

The Gaussian curvature is given by

$$
\frac{L N-M^{2}}{E F-G^{2}}=\frac{b(a+b \cos \varphi) \cos \varphi}{b^{2}(a+b \cos \varphi)^{2}}=\frac{\cos \varphi}{b(a+b \cos \varphi)},
$$

which
(i) is positive for $-\frac{\pi}{2}<\varphi<\frac{\pi}{2}$,
(ii) is zero for $\varphi=\frac{\pi}{2}$ or $\frac{-\pi}{2}$, and
(iii) is negative for $\frac{\pi}{2}<\varphi<\pi$ or $-\pi<\varphi<-\frac{\pi}{2}$.

In other words,
(i) the Gaussian curvature of the torus T is positive on the part T^{+}obtained by rotating the right-half $C \cap\{x>a\}$ of the circle C about the z-axis.
(ii) The Gaussian curvature of the torus T is negative on the part T^{-}obtained by rotating the left-half $C \cap\{x<a\}$ of the circle C about the z-axis.
(iii) The Gaussian curvature of the torus T is zero on the part T^{0} obtained by rotating the the highest point $C \cap\{z=b\}$ and the lowest point $C \cap\{z=-b\}$ of the circle C about the z-axis.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics

Wednesday January 20, 2021 (Day 2)

1. (CA) Let q be any positive integer. Let Ω be a connected open subset of \mathbb{C}. Suppose $f_{n}(z)$ is a sequence of holomorphic functions on Ω such that for any positive number n and for any $c \in \mathbb{C}$, the set $f_{n}^{-1}(c)$ has no more than q distinct elements. Suppose the sequence $f_{n}(z)$ converges to a function $f(z)$ uniformly on compact subsets of Ω. Prove that either $f(z)$ is constant or $f(z)$ satisfies the property that for any $c \in \mathbb{C}$ the set $f^{-1}(c)$ has no more than q distinct elements.

Solution. Assume that f is nonconstant and achieves the value c at $q+1$ distinct points z_{1}, \cdots, z_{q+1} of Ω and we are going to derive a contradiction. Choose some $\varepsilon>0$ such that
(i) the $q+1$ closed disks $\left|z-z_{j}\right| \leq \varepsilon$ for $1 \leq j \leq q+1$ are inside Ω and are disjoint,
(ii) for $1 \leq j \leq q+1$ the function $f(z)-f\left(z_{j}\right)$ has exactly one zero on the closed disk $\left|z-z_{j}\right| \leq \varepsilon$ which is not on the boundary $\left|z-z_{j}\right|=\varepsilon$.

This is possible, because f is nonconstant and is holomorphic on the connected open subset Ω of \mathbb{C} (as the uniform limit on compact subsets of holomorphic functions on Ω). Let $\eta>0$ be the minimum of $|f(z)-c|$ on $\left|z-z_{j}\right|=\varepsilon$ for $1 \leq j \leq q+1$. By uniform convergence of $f_{n} \rightarrow f$ on compact sets of Ω there is some n (as a matter of fact, any sufficiently large n) for which $\left|f_{n}(z)-f(z)\right|<\eta$ on $\left|z-z_{j}\right|=\varepsilon$ for $1 \leq j \leq q+1$. Since $\left|f_{n}(z)-f(z)\right|<$ $|f(z)-c|$ on $\left|z-z_{j}\right|=\varepsilon$ for $1 \leq j \leq q+1$, by applying Rouché's theorem to $f_{n}(z)-c=(f(z)-c)+\left(f_{n}(z)-f(z)\right)$, we conclude that $f_{n}(z)-c$ has the same number of zeroes as the function $f(z)-c$ on each of the $q+1$ disjoint disks $\left|z-z_{j}\right|<\varepsilon$. This contradicts the assumption that the set $f_{n}^{-1}(c)$ has no more than q distinct elements.
2. (AG) Let X be a degree 3 hypersurface in \mathbb{P}^{3}. Show that X contains a line. (You may use the fact that the Fermat cubic surface $V\left(x^{3}+y^{3}+z^{3}+w^{3}\right)$ contains a positive finite number of lines.)

Solution: Let $P=\left|\mathcal{O}_{\mathbb{P}^{3}}(3)\right| \cong \mathbb{P}^{19}$ be the projective space of cubics in \mathbb{P}^{3} (Note $\binom{3+3}{3}-1=19$.) and let $G=\operatorname{Gr}\left(\mathbb{P}^{1}, \mathbb{P}^{3}\right)$ which is of dimension $(1+1) \times$ $((3+1)-(1+1))=4$.

Consider the incidence variety $Z=\{(\ell, S) \in G \times P \mid \ell \subseteq S\}$. Then we have

Let the coordinate on \mathbb{P}^{3} be (x, y, z, w). A cubic surface $S \subset \mathbb{P}^{3}$ contains the line $\ell=\{z=w=0\}$ if and only if the defining equation of S having the terms $x^{3}, x^{2} y, x y^{2}, y^{3}$ vanish. This shows that $p_{1}^{-1}(\ell)$ is irreducible of dimension $\operatorname{dim} P-4$. Hence

$$
\operatorname{dim} Z=\operatorname{dim} P .
$$

If there is a degree 3 hypersurface X not containing a line, then $p_{2}(Z) \subseteq P$ is of codimensional ≥ 1 in P. Hence for any $S \in P$, the fibre $p_{2}^{-1}(S)$ is either empty or of positive dimension. However this contradicts to the del Pezzo surfaces having only finitely many line.
3. (RA) Suppose X_{j} are independent identically distributed Poisson distributions with intensity λ, i.e.,

$$
P\left(X_{j}=k\right)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k \in \mathbb{N} \cup\{0\}
$$

Show that for any $y \geq \lambda$,

$$
P\left(\frac{X_{1}+\cdots+X_{n}}{n} \geq y\right) \leq e^{-n[y \log (y / \lambda)-y+\lambda]}
$$

and for any $y \leq \lambda$,

$$
P\left(\frac{X_{1}+\cdots+X_{n}}{n} \leq y\right) \leq e^{-n[y \log (y / \lambda)-y+\lambda]}
$$

Hint: Consider the moment generating function.

Solution: By the Markov inequality, for any $\lambda \leq y$,

$$
\begin{gathered}
P\left(\frac{X_{1}+\cdots+X_{n}}{n} \geq y\right) \leq \inf _{t \geq 0} e^{-t n y} \mathbb{E} e^{t\left(X_{1}+\cdots+X_{n}\right)}=\inf _{t \geq 0} e^{-n\left[t y-\lambda\left(e^{t}-1\right)\right]} \\
=e^{-n[y \log (y / \lambda)-y+\lambda]}
\end{gathered}
$$

Similarly, for any $y \leq \lambda$,

$$
\begin{gathered}
P\left(\frac{X_{1}+\cdots+X_{n}}{n} \leq y\right) \leq \inf _{t \geq 0} e^{t n y} \mathbb{E} e^{-t\left(X_{1}+\cdots+X_{n}\right)}=\inf _{t \geq 0} e^{n\left[t y+\lambda\left(e^{-t}-1\right)\right]} \\
=e^{-n[y \log (y / \lambda)-y+\lambda]}
\end{gathered}
$$

4. (A) Determine the Galois group of the polynomial $f(x)=x^{3}-2$. Let K be the splitting field of f over \mathbb{Q}. Describe the set of all intermediate fields L, $\mathbb{Q}<L<K$ and the Galois correspondence.

Solution: Let K be the splitting field of f over \mathbb{Q}. Then $K=\mathbb{Q}(\sqrt[3]{2}, \zeta)$ is generated by $\sqrt[3]{2}, \sqrt[3]{2} \zeta$, and $\sqrt[3]{2} \zeta^{2}$, where ζ is the primitive cubic root of unity. The discriminant of $f(x)=x^{3}-2$ is $D=-27(2)^{2}$ and square root of D is not rational. Hence the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})=S_{3}$ which is the permutation group of order 6 . As a permutation group, S_{3} can be expressed as $\{\operatorname{id},(12),(13),(23),(123),(132)\}$. The four proper subgroup of S_{3} are $\{\mathrm{id},(12)\}$, $\{\mathrm{id},(13)\},\{\mathrm{id},(23)\}$, and $\{\mathrm{id},(123),(132)\}$.
The intermediate fields L are $\mathbb{Q}, \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\sqrt[3]{2} \zeta), \mathbb{Q}\left(\sqrt[3]{2} \zeta^{2}\right) \mathbb{Q}(\zeta)$, and K. They corresponds to the subgroups $\{\mathrm{id}\},\{\mathrm{id},(12)\},\{\mathrm{id},(13)\},\{\mathrm{id},(23)\}$, $\{\mathrm{id},(123),(132)\}$, and S_{3}.
5. (AT) Let $X \subset \mathbb{R}^{3}$ be the union of the unit sphere $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=\right.$ $1\}$ and the line segment $I=\{(x, 0,0) \mid-1 \leq x \leq 1\}$.
(a) What are the homology groups of X ?
(b) What are the homotopy groups $\pi_{1}(X)$ and $\pi_{2}(X)$?

Solution: Under the attaching map $I \hookrightarrow X$, the boundary $\varphi(I)$ is homologous to 0 , so attaching I simply adds one new, non-torsion generator to H^{1}; thus

$$
H_{0}(X)=H^{1}(X)=H^{2}(X)=\mathbb{Z}
$$

and all other homology groups are 0 . Similarly, $\pi_{1}(X)=\mathbb{Z}$. For $\pi_{2}(X)$, note that the universal cover of X is a string of spheres attached in a sequence by line segments; $\pi_{2}(X)$ is thus the free abelian group on countably many generators.

Solution: The space X can be realized as a CW complex with one 0 -cell, one 1 -cell and one 2-cell, with the 1 -skeleton the unit circle S^{1} in \mathbb{C} and the 2 -cell attached via the map $S^{1} \rightarrow S^{1}$ given by $z \mapsto z^{5}$. The cellular complex is thus

$$
\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}
$$

with the first map multiplication by 5 and the second map 0 ; the homology groups with coefficients in \mathbb{Z} are thus

$$
H^{0}(X, \mathbb{Z})=\mathbb{Z} ; \quad H^{1}(X, \mathbb{Z})=\mathbb{Z} / 5, \quad \text { and } \quad H^{2}(X, \mathbb{Z})=0
$$

If we use coefficients in $\mathbb{Z} / 5$, then both maps are 0 and we have

$$
H^{0}(X, \mathbb{Z})=\mathbb{Z} / 5 ; \quad H^{1}(X, \mathbb{Z})=\mathbb{Z} / 5, \quad \text { and } \quad H^{2}(X, \mathbb{Z})=\mathbb{Z} / 5
$$

6. (DG) Let X be a Riemannian manifold and σ be an isometry of X. Let Y be the set of fixed points of σ in the sense that Y is the set of all points y of X such that $\sigma(y)=y$. Prove that Y is regular and is totally geodesic (in the sense that any geodesic in Y with respect to the metric induced from X is also a geodesic in X).

Solution. For any geodesic C in X, if some point P of C and the tangent vector of C at P is fixed by σ, then the entire geodesic C is pointwise fixed by σ by the uniqueness theorem of ordinary differential equation of second order. Moreover, in a sufficiently small neighborhood of a given point P of X, any two points are joined by a unique geodesic and as a consequence the unique geodesic is pointwise fixed by σ if the two points are fixed by σ. The exponential map at any point P of X maps an open neighborhood of the tangent space $T_{X, P}$ of X at P to an open neighborhood of P in X. For P in Y, by using the exponential map at P we can conclude that some open neighborhood of P in Y is the diffeomorphic image of some vector subspace of $T_{Y, P}$ under the exponential map.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday January 21, 2021 (Day 3)

1. (AG) Let $X \subset \mathbb{P}^{3}$ be a curve that is not contained in any proper linear subspace of \mathbb{P}^{3}. Show that if $\operatorname{deg} X$ is a prime number, then the homogeneous ideal $I(X)$ cannot be generated by two elements.

Solution: Assume for a contradiction that we have $I(X)=(f, g)$ for two homogeneous polynomials $f, g \in \mathbb{k}[x, y, z, w]$. Clearly, g does not vanish identically on any irreducible component of $V(f)$, since otherwise the zero locus of (f, g) would have codimension 1 .
By Bezout's theorem, $\operatorname{deg} X=\operatorname{deg} f \cdot \operatorname{deg} g$. This implies either $\operatorname{deg} f$ or $\operatorname{deg} g=1$. However this means one of f or g is linear which contradicts to the assumption.
2. (RA) Let \mathcal{E} be the space of even \mathcal{C}^{∞} functions $\mathbf{R} / \mathbf{Z} \rightarrow \mathbf{R}$. Prove that for every $f \in \mathcal{E}$ there exists a unique $g \in \mathcal{E}$ such that

$$
f(x)=\int_{0}^{1} \int_{0}^{1} g(y) g(z) g(x-y-z) d y d z
$$

for all $x \in \mathbf{R} / \mathbf{Z}$. [Hint: write the integral formula for f as a convolution.]

Solution. The right-hand side of the displayed equation is the value at x of the convolution $f * f * f$. We shall use the following standard facts:

- The \mathcal{C}^{∞} functions $\mathbf{R} / \mathbf{Z} \rightarrow \mathbf{C}$ are exactly the Fourier series

$$
f(x)=\sum_{n \in \mathbf{Z}} a_{n}(f) e^{2 \pi i n x}
$$

whose coefficient sequence $\left\{a_{n}\right\}_{-\infty}^{\infty}$ is "Schwartz", ${ }^{1}$ i.e., such that for every $M>0$ the sequence $\left\{|n|^{M} a_{n}\right\}$ is bounded.

- If $\sum_{n \in \mathbf{Z}}\left|a_{n}(f)\right|<\infty \sum_{n \in \mathbf{Z}}\left|a_{n}(g)\right|<\infty$ then

$$
(f * g)(x)=\sum_{n \in \mathbf{Z}} a_{n}(f) a_{n}(g) e^{2 \pi i n x}
$$

for all x.

[^0]- A real-valued \mathcal{C}^{∞} function f on \mathbf{R} / \mathbf{Z} is even if and only if $a_{n} \in \mathbf{R}$ and $a_{n}=a_{-n}$ for all n.

Thus we are to show that for every even real Schwartz sequence $\left\{a_{n}\right\}=$ $\left\{a_{n}(f)\right\}$ there exists a unique even real Schwartz sequence $\left\{b_{n}\right\}=\left\{a_{n}(g)\right\}$ such that $a_{n}=b_{n}^{3}$ for all n. This is clear because every real number has a unique real cube root and $\left\{a_{n}^{1 / 3}\right\}$ is even (resp. Schwartz) if and only if $\left\{a_{n}\right\}$ is.
3. (CA) Suppose $f(z)$ is analytic and bounded for $|z|<1$. Let $\zeta=x+i y$. If $|z|<1$, prove that

$$
f(z)=\frac{1}{\pi} \iint_{|\zeta|<1} \frac{f(\zeta)}{(1-z \bar{\zeta})^{2}} d x d y
$$

Solution: By Green's theorem and analyticity of f, for $|z|<1$, we have up to a constant,

$$
\begin{aligned}
& \iint_{|\zeta|<1} \frac{f(\zeta)}{(1-z \bar{\zeta})^{2}} d x d y=\int_{|\zeta|<1}\left(\frac{1}{z} \partial_{\bar{\zeta}} \frac{1}{(1-z \bar{\zeta})}\right) f(\zeta) d \zeta d \bar{\zeta} \\
& \quad=\frac{1}{z} \int_{|\zeta|<1} d\left[\frac{f(\zeta)}{(1-z \bar{\zeta})} d \zeta\right]=\frac{1}{z} \int_{|\zeta|=1} \frac{\zeta f(\zeta)}{(\zeta-z)} d \zeta=f(z)
\end{aligned}
$$

4. (AT) Suppose f is an orientation-preserving self-homeomorphism of $\mathbb{C P}^{n}$ such that the graph $\Gamma_{f} \subset \mathbb{C P}^{n} \times \mathbb{C P}^{n}$ intersects the diagonal transversely. Compute all possibilities for the number of its fixed points.

Solution: We apply the Lefschetz fixed-point theorem, recalling that $H^{*}\left(\mathbb{C P}^{n} ; \mathbb{C}\right) \simeq$ $\mathbb{C}[u] /\left(u^{n+1}\right)$ for u a generator in degree 2 . If λ is the eigenvalue by which f acts on H^{2}, then f acts on $H^{2 k}$ with eigenvalue $\lambda^{2 k}$. But $\lambda \in \mathbb{Z}$, as the action of f is defined on $H^{2}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right)$, and $\lambda^{n}=1$, as f acts trivially on the volume form by virtue of preserving orientation. Hence if n is odd, $\lambda=1$ while if n is even, $\lambda \in\{ \pm 1\}$. In either case, the Lefschetz fixed-point theorem tells us the number of fixed points - or, more generally, the Euler characteristic of the fixed point locus F - is $\chi(F)=1+\lambda+\cdots+\lambda^{n}$, so if $\lambda=1$, we obtain $\chi(F)=n+1$ while if $\lambda=-1$, we obtain $\chi(F)=1$. To show both possibilities are realized, we may simply take f a 'general' rotation for the case of $\lambda=1$. With more details - we have the action of $\left(\mathbb{C}^{*}\right)^{n}$ on $\mathbb{C P}^{n}$, and if we take a rotation in $\left(S^{1}\right)^{n}$ such that all the angles are rationally independent of one another and of 2π, then the fixed point locus will be $n+1$ points. On the
other hand, when n is even, then complex-conjugation composed with a rotation such as above is an orientation-preserving self-homeomorphism which may be checked to have a unique fixed point.
5. (DG) Let G be an open subset of \mathbb{R}^{n}. For $1 \leq p \leq n-1$ denote by $\wedge^{p} T_{G}$ the exterior product of p copies of the tangent bundle T_{G} of G. For $1 \leq j \leq m$ let $\boldsymbol{\eta}_{j}$ be a C^{∞} section of $\wedge^{p} T_{G}$ over G. For a C^{∞} vector field ξ on an open subset of G, denote by $\mathcal{L}_{\xi} \boldsymbol{\eta}_{j}$ the Lie derivative of $\boldsymbol{\eta}_{j}$ with respect to ξ, which means that if $\varphi_{\xi, t}$ is the local diffeomorphism defined by ξ so that the tangent vector $\frac{d}{d t} \varphi_{\xi, t}$ equals the value of ξ at $\varphi_{\xi, t}$, then

$$
\mathcal{L}_{\xi} \boldsymbol{\eta}_{j}=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\varphi_{\xi, t}\right)_{*} \boldsymbol{\eta}_{j}-\boldsymbol{\eta}_{j}\right)
$$

where $\left(\varphi_{\xi, t}\right)_{*} \boldsymbol{\eta}_{j}$ is the pushforward of $\boldsymbol{\eta}_{j}$ under $\varphi_{\xi, t}$. Let $\Phi_{\boldsymbol{\eta}_{j}}: T_{G} \rightarrow \wedge^{p+1} T_{G}$ be defined by exterior product with $\boldsymbol{\eta}_{j}$. Assume that the intersection $\cap_{j=1}^{m} \operatorname{Ker} \Phi_{\boldsymbol{\eta}_{j}}$ of the kernel $\operatorname{Ker} \Phi_{\boldsymbol{\eta}_{j}}$ of $\Phi_{\boldsymbol{\eta}_{j}}$ for $1 \leq j \leq m$ is a subbundle of T_{G} of rank q over G. Suppose for any C^{∞} tangent vector field ζ in any open subset W there exist C^{∞} functions $g_{j, k, \zeta}$ on W for $1 \leq j, k \leq m$ such that

$$
\mathcal{L}_{\zeta} \boldsymbol{\eta}_{j}=\sum_{k=1}^{m} g_{j, k, \zeta} \boldsymbol{\eta}_{k}
$$

on W. Prove that for every point x of G there exist some open neighborhood U_{x} of x in G and C^{∞} functions f_{1}, \cdots, f_{n-q} on U_{x} such that the fiber of $\cap_{j=1}^{m} \operatorname{Ker} \Phi_{\boldsymbol{\eta}_{j}}$ at y is equal to $\cap_{k=1}^{n-q} \operatorname{Ker} d f_{k}$ at y for $y \in U_{x}$.
Solution. For any C^{∞} tangent vector fields ξ, ζ on an open subset W of G, the product formula

$$
\mathcal{L}_{\xi}\left(\boldsymbol{\eta}_{j} \wedge \zeta\right)=\left(\mathcal{L}_{\xi} \boldsymbol{\eta}_{j}\right) \wedge \zeta+\boldsymbol{\eta}_{j} \wedge \mathcal{L}_{\xi} \zeta
$$

for Lie differentiation holds. Moreover, $\mathcal{L}_{\xi} \zeta$ is equal to the Lie bracket $[\xi, \zeta]$ of the tangent vector fields ξ, ζ.

If ξ, ζ are C^{∞} sections of $\cap_{j=1}^{m} \operatorname{Ker} \Phi_{\boldsymbol{\eta}_{j}}$ over an open subset W of G, then

$$
\begin{aligned}
0 & =\mathcal{L}_{\xi}\left(\boldsymbol{\eta}_{j} \wedge \zeta\right) \\
& =\left(\mathcal{L}_{\xi} \boldsymbol{\eta}_{j}\right) \wedge \zeta+\boldsymbol{\eta}_{j} \wedge \mathcal{L}_{\xi} \zeta \\
& =\left(\sum_{k=1}^{m} g_{j, k, \xi} \boldsymbol{\eta}_{k}\right) \wedge \zeta+\boldsymbol{\eta}_{j} \wedge \mathcal{L}_{\xi} \zeta \\
& =\boldsymbol{\eta}_{j} \wedge \mathcal{L}_{\xi} \zeta
\end{aligned}
$$

for $1 \leq j \leq m$, which implies that $[\xi, \zeta]$ is a section of $\cap_{j=1}^{m} \operatorname{Ker} \Phi_{\eta_{j}}$ over W. The conclusion now follows from applying Frobenius integrability theorem to the subbundle $\cap_{j=1}^{m} \operatorname{Ker} \Phi_{\eta_{j}}$ of T_{G} over G.
6. (A) Let π be a finite dimensional representation of a finite group G with the character χ_{π}. Prove that π is irreducible if and only if

$$
\frac{1}{|G|} \sum_{g \in G}\left|\chi_{\pi}(g)\right|^{2}=1
$$

Solution: A finite dimensional representation is semi-simple and hence we can express

$$
\chi_{\pi}=\sum_{\sigma \in \widehat{G}} n_{\pi}(\sigma) \chi_{\sigma},
$$

where \widehat{G} denotes the collection of the isomorphism classes of irreducible representations of G, and $n_{\pi}(\sigma)=\operatorname{dim} \operatorname{Hom}_{G}(\pi, \sigma)$. Then

$$
\frac{1}{|G|} \sum_{g \in G}\left|\chi_{\pi}(g)\right|^{2}=\sum_{\rho, \tau \in \widehat{G}} n_{\pi}(\sigma) n_{\pi}(\tau) \frac{1}{|G|} \sum_{g \in G} \chi_{\sigma}(g) \overline{\chi_{\tau}(g)}=\sum_{\sigma \in \widehat{G}} n_{\pi}(\sigma)^{2} .
$$

Note that $n_{\pi}(\sigma)=1$ if and only if $n_{\pi}(\sigma)=1$ for some $\sigma \in \widehat{G}$ and $n_{\pi}(\tau)=0$ for $\tau \neq \sigma, \tau \in \widehat{G}$. This is equivalent of saying that π is isomorphic to the irreducible representation σ.

[^0]: ${ }^{1}$ This may be a neologism. A "Schwartz function" on a real vector space is one that is both $O\left(\|x\|^{-M}\right)($ all $M)$ and \mathcal{C}^{∞}. For a function on \mathbf{Z} only the decay condition makes sense.

