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1. (AG) Let Y C P? be an irreducible curve of degree d > 1 having a point of
multiplicity d — 1. Show that Y is a rational curve.

Solution: Recall that if P € Y C P? is a point of multiplicity m, then a generic
line through P meets Y at p with multiplicity m. Then there is a dense open
subset U of P! such that if L € U then the intersection multiplicity of Y at L
along P is m.

Without loss of generality, let P = (0,0,1) € Y be the point with multiplicty
d — 1. Then consider two maps:

$:Y\ P — P
the projective map, and by Bezout’s theorem, there is a map
Y:POU Y \P
which maps a point L of U to the unique point that L meets Y other than P.
Thus
Y\PLP -y \ P
(a,b,c) — (a,b,0) — (a,b,c)

are rational. Thus this gives a birational equivalence of Y \ P and P!

2. (CA) Use the method of contour integrals to find the integral
o0
1
/ ydx.
0 X +4

Solution: Consider the contour from —R to —r, a semicircle, 7 to R and a
large semicircle. Then the integration from —R to —r and r to R becomes

R —r
log s
2 ———d ; —d
/T 22+ 4 xH/R 24

The last term is imaginary. Hence
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3. (RA) Suppose p and v are two positive measures on R” with n > 1. For a
positive function f, consider two quantities

A= [vtan) | [ storaian) "

5| futan [ f(x,y>u<dy>)p } h

For 1 < p < 0o. Assume all quantities are integrable and finite. Do we know
that A > B or A < B for all functions f ? Prove your assertion or give a
counterexample.

Solution: By duality,

[ utao (| f(x,wu(dy))p ] " i [ wtda@) [ sty

= sw [ utdy) [ udoygta)sew) < [ viay [ / f(:v,y)”u(dw)]l/p

9119l g () <1

Since € was arbitrary we are done.

4. (A) Let p be a prime ideal in a commutative ring A. Show that p[z] is a prime
idea in A[z]. If m is a maximal idea in A, is m[z| a maximal ideal in Ax]|?

Solution: Consider the projection
Alz] = (A/a)[z].

The kernel of the projection is a[x] and hence A[z]/a[z] = (A/a)[x]. Now
consider p a prime idea of A. Then A/p is an integral domain, and so do
(A/p)[x] by Hilbert Basis Theorem. That is A[z]/p[z] is an integral domain
as well. This implies p[z] is prime in A[z].

Note that if A is a field, A[z] may not be a field. Hence if m is maximal in A
does not implies m[x] a maximal ideal in A[x].

5. (AT) What are the homology groups of the 5-manifold RP? x RP3,

(a) with coefficients in Z?
(b) with coefficients in Z/27?
(c) with coefficients in Z/37



Solution: RP? and RP? have cell complexes with sequences
0-2Z—-2—-72—0 and 02Z—>2Z—7Z—7Z—0

where the maps are alternately 0 and multiplication by 2; from this the ho-
mology groups of RP? and RP3 can be calculated as Z,7/2,0 and Z,7/2,0, 7Z

respectively. The rest is just Kiinneth; the answers are
(a): Z, (Z)2)%, (Z)2)%, Z, Z./2, 0;

(b): Z/2, (222, (Z)2)%, (22, (22 72,

(c): Z/3,0,0,7/3,0,0

. (DG) Let a > b > 0 be positive numbers. Let C be the circle of radius
b centered at (a,0) in the (z,z)-plane. Let T be the torus obtained by re-
volving the circle C' about the z-axis in the (z,y, z)-space. The torus T' can
be identified as the product of two circles whose points are described by the
two angle-variables ¢, 6 (or arc-length-variables) of the two circles. Compute,
in terms of a, b, ¢, 6, the Gaussian curvature of T" and determine the subsets
T+, T—, T? of T where the Gaussian curvature of T is respectively positive,
negative, and zero.

Solution: Parametrize T' by two circles with angle-variable ¢, 6 as follows.
The circle C with angle-variable ¢ can be described as

(x,z) = b(cos ¢, siny) + (a,0) = (a + bcos @, bsin ).

The result of rotating a point P on C' by an angle 6 about the z-axis is the
same as replacing the z-coordinate zp of P by (z,y) = (zpcosf, zpsinf). It
follows that the parametrization of T' is given by

7, 0) = ((a + bcosp) cos b, (a+ bcosy)sinf, bsinp) .

The first and second partial derivatives of 7(6, ¢) and the unit normal vector
N of T are given by

1

\3
|

» = (—bsinpcosf, —bsingsinb, beosp),

9 = (—(a+beosp)sinb, (a+ bceosyp)cosb, 0),
T, X Tg = (—(a + bcos p) cos @ bcos p, —(a + bcos ) sin B bcos p, —(a + beos p)bsin ) ,
S
n= M = (—cosfcosp, —sinfcosp, —siny),
17 7o

—

70 = (bsinsin®, —bsinpcosd, 0),
799 = (—(a + bcos ) cos, —(a + bcosp)sind, 0).



The first fundamental form Edg? + 2Fdpdd + Gdh? and the second funda-
mental form Ldg? + 2Mdpd + Ndf? of the torus T are given by

E =7, 1, =0,

F =7, =0,

G =7y -7 = (a+ bcosp)?,
L=r,, =0,

M =7g-7 =0,

N =79 -7l = (a+ bcos p) cos p.

The Gaussian curvature is given by

LN — M?*  bla+bcosp)cosp Cos ¢
EF—-G?2  b(a+bcosp)?  bla+bcosyp)’

which

(i) is positive for =5 < ¢ < 7,
(ii) is zero for ¢ = § or 57, and

(iii) is negative for § < o <mor —m < < —7.
In other words,

(i) the Gaussian curvature of the torus 7' is positive on the part T obtained
by rotating the right-half C' N {z > a} of the circle C' about the z-axis.

(ii) The Gaussian curvature of the torus 7' is negative on the part 7~ ob-
tained by rotating the left-half C' N {z < a} of the circle C' about the
z-axis.

(iii) The Gaussian curvature of the torus T is zero on the part T° obtained
by rotating the the highest point C' N {z = b} and the lowest point
C N {z = —b} of the circle C about the z-axis.
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1. (CA) Let ¢ be any positive integer. Let © be a connected open subset of
C. Suppose fn(z) is a sequence of holomorphic functions on  such that for
any positive number n and for any ¢ € C, the set f,!(c) has no more than
q distinct elements. Suppose the sequence f,(z) converges to a function f(z)
uniformly on compact subsets of 2. Prove that either f(z) is constant or f(z)
satisfies the property that for any ¢ € C the set f~1(c) has no more than ¢
distinct elements.

Solution. Assume that f is nonconstant and achieves the value ¢ at ¢ + 1
distinct points z1,--- , 2441 of € and we are going to derive a contradiction.
Choose some € > 0 such that

(i) the ¢ + 1 closed disks |z — z;| < e for 1 < j < g+ 1 are inside 2 and are
disjoint,

(ii) for 1 < j < ¢+ 1 the function f(z) — f(2;) has exactly one zero on the
closed disk |z — z;| < e which is not on the boundary |z — z;| = ¢.

This is possible, because f is nonconstant and is holomorphic on the connected
open subset  of C (as the uniform limit on compact subsets of holomorphic
functions on Q). Let n > 0 be the minimum of [f(z) —¢c| on |z — 2j| = ¢
for 1 < j < g+ 1. By uniform convergence of f,, — f on compact sets of
Q) there is some n (as a matter of fact, any sufficiently large n) for which
|fn(2) — f(2)] <mon |z —zj| =¢efor 1 <j < g+ 1. Since |f,(2) — f(2)| <
|f(2) —c| on |z — zj| = ¢ for 1 < j < ¢+ 1, by applying Rouché’s theorem to
fa(z) —c = (f(2) — ¢) + (fu(z) — f(2)), we conclude that f,(z) — ¢ has the
same number of zeroes as the function f(z) — ¢ on each of the ¢ + 1 disjoint
disks |z — 2| < . This contradicts the assumption that the set f,,!(c) has no
more than ¢ distinct elements.

2. (AG) Let X be a degree 3 hypersurface in P2. Show that X contains a line.
(You may use the fact that the Fermat cubic surface V(23 + 3 + 2% + w?)
contains a positive finite number of lines.)

Solution: Let P = |Ops(3)] = P! be the projective space of cubics in P3
(Note (°1%) —1=19.) and let G = Gr(P',P?) which is of dimension (1+ 1) x
(B+1)—(1+1)) =4



Consider the incidence variety Z = {(¢,S) € G x P | ¢ C S}. Then we have

A
p2
p1
G P

Let the coordinate on P3 be (x,y,2,w). A cubic surface S C P3 contains
the line ¢ = {z = w = 0} if and only if the defining equation of S having
the terms 2, 2%y, xy?,y® vanish. This shows that pfl(f) is irreducible of
dimension dim P — 4. Hence

dim Z = dim P.

If there is a degree 3 hypersurface X not containing a line, then pa(Z) C P
is of codimensional > 1 in P. Hence for any S € P, the fibre p,'(S) is either
empty or of positive dimension. However this contradicts to the del Pezzo
surfaces having only finitely many line.

. (RA) Suppose X are independent identically distributed Poisson distributions
with intensity A, i.e.,

)\k
P(X;=k) = e*Ag, ke Nu{0}
Show that for any y > A,
Xi+--+ X,

P( -

and for any y < A,

X1+ + X,

P( -

< y) < e "ylosly/N)—y+A

Hint: Consider the moment generating function.

Solution: By the Markov inequality, for any A <y,

X1+ + X,

> y) < inft>0€ftnyEet(X1+---+Xn) _ inft>oefn[ty—)\(ei71)]
n > >

P( >qy) <
— e~ nlylog(y/A)—y+A]
Similarly, for any y < A,

X1+ + X,
n

P < y) < infyspe™VEeH Xt +Xn) nfty+A(e™ —1)]

== inftzoe

— e nlylog(y/A)—y+Al



4. (A) Determine the Galois group of the polynomial f(z) = 2% — 2. Let K be
the splitting field of f over Q. Describe the set of all intermediate fields L,
Q < L < K and the Galois correspondence.

Solution: Let K be the splitting field of f over Q. Then K = Q(v/2,() is
generated by v/2, ¥/2¢, and v/2¢2, where ( is the primitive cubic root of unity.

The discriminant of f(r) = 23 — 2 is D = —27(2)? and square root of D
is not rational. Hence the Galois group Gal(K/Q) = Ss which is the per-
mutation group of order 6. As a permutation group, S3 can be expressed as
{id, (12), (13), (23), (123), (132)}. The four proper subgroup of S5 are {id, (12)},
{id, (13)}, {id, (23)}, and {id, (123), (132)}.

The intermediate fields L are Q, Q(+/2), Q(v/2¢), Q(v/2¢?) Q(¢), and K.
They corresponds to the subgroups {id}, {id, (12)}, {id, (13)}, {id,(23)},
{id, (123), (132)}, and S;.

5. (AT) Let X C R3 be the union of the unit sphere S% = {(z,y, 2) | 22+y*+2% =
1} and the line segment I = {(2,0,0) | =1 <z < 1}.

(a) What are the homology groups of X7
(b) What are the homotopy groups m1(X) and ma(X)?

Solution: Under the attaching map I < X, the boundary ¢(I) is homologous
to 0, so attaching I simply adds one new, non-torsion generator to H'; thus

Hy(X) = H'(X) = H*(X) = Z,

and all other homology groups are 0. Similarly, m (X) = Z. For m(X), note
that the universal cover of X is a string of spheres attached in a sequence
by line segments; mo(X) is thus the free abelian group on countably many
generators.

Solution: The space X can be realized as a CW complex with one 0-cell, one
1-cell and one 2-cell, with the 1-skeleton the unit circle S! in C and the 2-cell
attached via the map S* — S! given by z — 2°. The cellular complex is thus

7 — 7 — 7

with the first map multiplication by 5 and the second map 0; the homology
groups with coefficients in Z are thus

HY(X,2)=17; HYX,Z)=17/5, and H*X,Z)=0.



If we use coefficients in Z/5, then both maps are 0 and we have

HY(X,7)=17/5 HYX,Z)=17/5, and H*X,Z)=17/5.

. (DG) Let X be a Riemannian manifold and o be an isometry of X. Let Y
be the set of fixed points of ¢ in the sense that Y is the set of all points y
of X such that o(y) = y. Prove that Y is regular and is totally geodesic (in
the sense that any geodesic in Y with respect to the metric induced from X
is also a geodesic in X).

Solution. For any geodesic C' in X, if some point P of C' and the tangent
vector of C' at P is fixed by o, then the entire geodesic C' is pointwise fixed
by o by the uniqueness theorem of ordinary differential equation of second
order. Moreover, in a sufficiently small neighborhood of a given point P of
X, any two points are joined by a unique geodesic and as a consequence the
unique geodesic is pointwise fixed by o if the two points are fixed by ¢. The
exponential map at any point P of X maps an open neighborhood of the
tangent space T'x p of X at P to an open neighborhood of P in X. For P
in Y, by using the exponential map at P we can conclude that some open
neighborhood of P in Y is the diffeomorphic image of some vector subspace
of Ty, p under the exponential map.
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1. (AG) Let X C P? be a curve that is not contained in any proper linear
subspace of P3. Show that if deg X is a prime number, then the homogeneous
ideal I(X) cannot be generated by two elements.

Solution: Assume for a contradiction that we have I(X) = (f,g) for two
homogeneous polynomials f, g € k[z,y, z, w]. Clearly, g does not vanish iden-
tically on any irreducible component of V(f), since otherwise the zero locus
of (f,g) would have codimension 1.

By Bezout’s theorem, deg X = deg f - degg. This implies either deg f or
deg g = 1. However this means one of f or g is linear which contradicts to the
assumption.

2. (RA) Let & be the space of even C*° functions R/Z — R. Prove that for
every f € & there exists a unique g € £ such that

1 r1
f(w)Z/O/O 9(y) 9(2) g(x —y — 2) dy d=

for all x € R/Z. [Hint: write the integral formula for f as a convolution.]

Solution. The right-hand side of the displayed equation is the value at x of
the convolution f * f x f. We shall use the following standard facts:

e The C* functions R/Z — C are exactly the Fourier series
flx) =" an(f)e™
nez

whose coefficient sequence {a, }*° is “Schwartz”,! i.e., such that for every
M > 0 the sequence {|n|a,} is bounded.

o If 3 ez lan(f)] <00 3 ez lan(g)] < oo then
(f*9)(2) = Y _ an(f) an(g) €™
nez

for all z.

!This may be a neologism. A “Schwartz function” on a real vector space is one that is both
O(||=||=™) (all M) and C*. For a function on Z only the decay condition makes sense.



e A real-valued C* function f on R/Z is even if and only if a, € R and
an = a_n, for all n.

Thus we are to show that for every even real Schwartz sequence {a,} =
{an(f)} there exists a unique even real Schwartz sequence {b,} = {an(g)}
such that a, = b2 for all n. This is clear because every real number has a

unique real cube root and {%1/ 3} is even (resp. Schwartz) if and only if {a,}
is.

. (CA) Suppose f(z) is analytic and bounded for |z| < 1. Let ( = = + iy. If
|z| < 1, prove that
1
o) - // 1O oy
mJ Jig<a (1= 20)

Solution: By Green’s theorem and analyticity of f, for |z| < 1, we have up to
a constant,

f(©) _
//|<|<1 Tz = /|¢|<1 (ia(l—lzg))f(odcdg
1

B O 1 1O,
- z/.<|<1d{<1—z§>d4 - z/|<:1 - g% =16

. (AT) Suppose f is an orientation-preserving self-homeomorphism of CP" such
that the graph I'y C CP" x CPP" intersects the diagonal transversely . Compute
all possibilities for the number of its fixed points.

Solution: We apply the Lefschetz fixed-point theorem, recalling that H*(CP"; C) ~
Clu]/(u"*1) for u a generator in degree 2. If \ is the eigenvalue by which f
acts on H?, then f acts on H?* with eigenvalue A2*. But A € Z, as the action
of f is defined on H%(CP";Z), and \" = 1, as f acts trivially on the volume
form by virtue of preserving orientation. Hence if n is odd, A = 1 while if
n is even, A € {£1}. In either case, the Lefschetz fixed-point theorem tells
us the number of fixed points — or, more generally, the Euler characteristic of
the fixed point locus F' —is x(F) =14+ X+ ---+ A", so if A = 1, we obtain
X(F) =n+1 while if A = —1, we obtain x(F') = 1. To show both possibilities
are realized, we may simply take f a ‘general’” rotation for the case of A = 1.
With more details — we have the action of (C*)"™ on CP", and if we take a
rotation in (S')" such that all the angles are rationally independent of one
another and of 27, then the fixed point locus will be n + 1 points. On the



other hand, when n is even, then complex-conjugation composed with a ro-
tation such as above is an orientation-preserving self-homeomorphism which
may be checked to have a unique fixed point.

. (DG) Let G be an open subset of R™. For 1 < p <n — 1 denote by APT¢ the
exterior product of p copies of the tangent bundle T of G. For 1 < j < m
let 7; be a C* section of APT over G. For a C* vector field £ on an open
subset of G, denote by L¢n; the Lie derivative of n; with respect to £, which
means that if ¢¢ ; is the local diffeomorphism defined by £ so that the tangent
vector %tp&t equals the value of { at ¢, then

1
Leny = lim — ((pe,t)«mj — mj) 5

where (¢ ¢)«n; is the pushforward of n; under ¢ ;. Let @y, : T — APHTG be
defined by exterior product with 7;. Assume that the intersection ML, Ker @),
of the kernel Ker ®y,; of ®,, for 1 < j < m is a subbundle of T¢; of rank g over
G. Suppose for any C*° tangent vector field ¢ in any open subset W there
exist C'*° functions g; ¢ on W for 1 < j,k < m such that

m
Leny = 9k
k=1

on W. Prove that for every point x of GG there exist some open neighborhood
Uy of z in G and C* functions fi,---, fn—q on U, such that the fiber of
N7 Ker @, at y is equal to M;_{Kerdfy, at y for y € U,.

Solution. For any C* tangent vector fields &, ( on an open subset W of G,
the product formula

Le (i ACQ) = (Lemy) ANC+mj A LeC

for Lie differentiation holds. Moreover, L¢( is equal to the Lie bracket [¢, (]
of the tangent vector fields &, (.

If §, ¢ are C sections of N7, Ker @5, over an open subset W of G, then

0=Le(n; AC)
= (Lenj) NC+mj AN LeC

= (Z gj,k,é"?k) ANC+m; N LeC
k=1

=mn; N LeC



for 1 < 7 < m, which implies that [, (] is a section of N7, Ker &y, over W.
The conclusion now follows from applying Frobenius integrability theorem to
the subbundle N7, Ker &, of Tg over G.

. (A) Let 7 be a finite dimensional representation of a finite group G with the
character x,. Prove that 7 is irreducible if and only if

@l Z X (g

geqG

Solution: A finite dimensional representation is semi-simple and hence we can

express
g nw Xoa
oe@

where G denotes the collection of the isomorphism classes of irreducible rep-
resentations of G, and n,(c) = dim Homg(7, o). Then

|G| Z |X7T = Z nﬂ' |G‘ ZXO' = Znﬂ(0)2

9eG p,re@ gea oeG

Note that ny(c) = 1 if and only if ny(c) = 1 for some o € G and ny(7) = 0
for 7 # o, 7 € G. This is equivalent of saying that 7 is isomorphic to the
irreducible representation o.



