QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Tuesday January 19, 2021 (Day 1)

1. (AG) Let $Y \subset \mathbb{P}^2$ be an irreducible curve of degree d > 1 having a point of multiplicity d - 1. Show that Y is a rational curve.

Solution: Recall that if $P \in Y \subset \mathbb{P}^2$ is a point of multiplicity m, then a generic line through P meets Y at p with multiplicity m. Then there is a dense open subset U of \mathbb{P}^1 such that if $L \in U$ then the intersection multiplicity of Y at L along P is m.

Without loss of generality, let $P = (0, 0, 1) \in Y$ be the point with multiplicity d - 1. Then consider two maps:

$$\phi: Y \setminus P \to \mathbb{P}^1$$

the projective map, and by Bezout's theorem, there is a map

$$\psi: \mathbb{P}^1 \supset U \to Y \setminus P$$

which maps a point L of U to the unique point that L meets Y other than P. Thus

$$Y \setminus P \xrightarrow{\phi} \mathbb{P}^1 \dashrightarrow Y \setminus P$$
$$(a, b, c) \mapsto (a, b, 0) \mapsto (a, b, c)$$

are rational. Thus this gives a birational equivalence of $Y \setminus P$ and \mathbb{P}^1 .

2. (CA) Use the method of contour integrals to find the integral

$$\int_0^\infty \frac{\log x}{x^2 + 4} \mathrm{d}x.$$

Solution: Consider the contour from -R to -r, a semicircle, r to R and a large semicircle. Then the integration from -R to -r and r to R becomes

$$2\int_{r}^{R} \frac{\log x}{x^{2}+4} dx + i \int_{-R}^{-r} \frac{\pi}{x^{2}+4} dx$$

The last term is imaginary. Hence

$$\int_0^\infty \frac{\log x}{x^2 + 4} \mathrm{d}x = \mathrm{d}\left[\pi i \lim_{z \to 2i} \frac{\log z}{z + 2i}\right] = \frac{\pi \log 2}{4}$$

3. (RA) Suppose μ and ν are two positive measures on \mathbb{R}^n with $n \ge 1$. For a positive function f, consider two quantities

$$A := \int \nu(dy) \left[\int f(x,y)^p \mu(dx) \right]^{1/p}$$
$$B := \left[\int \mu(dx) \left(\int f(x,y)\nu(dy) \right)^p \right]^{1/p}$$

For $1 \le p < \infty$. Assume all quantities are integrable and finite. Do we know that $A \ge B$ or $A \le B$ for all functions f? Prove your assertion or give a counterexample.

Solution: By duality,

$$\left[\int \mu(dx) \left(\int f(x,y)\nu(dy)\right)^{p}\right]^{1/p} = \sup_{g:\|g\|_{L_{q}(\mu)} \le 1} \int \mu(dx)g(x) \int f(x,y)\nu(dy)$$
$$= \sup_{g:\|g\|_{L_{q}(\mu)} \le 1} \int \nu(dy) \int \mu(dx)g(x)f(x,y) \le \int \nu(dy) \left[\int f(x,y)^{p}\mu(dx)\right]^{1/p}$$

Since ϵ was arbitrary we are done.

4. (A) Let p be a prime ideal in a commutative ring A. Show that p[x] is a prime idea in A[x]. If m is a maximal idea in A, is m[x] a maximal ideal in A[x]? Solution: Consider the projection

$$A[x] \to (A/\mathfrak{a})[x].$$

The kernel of the projection is $\mathfrak{a}[x]$ and hence $A[x]/\mathfrak{a}[x] \cong (A/\mathfrak{a})[x]$. Now consider \mathfrak{p} a prime idea of A. Then A/\mathfrak{p} is an integral domain, and so do $(A/\mathfrak{p})[x]$ by Hilbert Basis Theorem. That is $A[x]/\mathfrak{p}[x]$ is an integral domain as well. This implies $\mathfrak{p}[x]$ is prime in A[x].

Note that if A is a field, A[x] may not be a field. Hence if \mathfrak{m} is maximal in A does not implies $\mathfrak{m}[x]$ a maximal ideal in A[x].

- 5. (AT) What are the homology groups of the 5-manifold $\mathbb{RP}^2 \times \mathbb{RP}^3$,
 - (a) with coefficients in \mathbb{Z} ?
 - (b) with coefficients in $\mathbb{Z}/2$?
 - (c) with coefficients in $\mathbb{Z}/3$?

Solution: \mathbb{RP}^2 and \mathbb{RP}^3 have cell complexes with sequences

 $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to 0 \quad \text{and} \quad 0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to 0$

where the maps are alternately 0 and multiplication by 2; from this the homology groups of \mathbb{RP}^2 and \mathbb{RP}^3 can be calculated as $\mathbb{Z}, \mathbb{Z}/2, 0$ and $\mathbb{Z}, \mathbb{Z}/2, 0, \mathbb{Z}$ respectively. The rest is just Künneth; the answers are

6. (DG) Let a > b > 0 be positive numbers. Let C be the circle of radius b centered at (a, 0) in the (x, z)-plane. Let T be the torus obtained by revolving the circle C about the z-axis in the (x, y, z)-space. The torus T can be identified as the product of two circles whose points are described by the two angle-variables φ, θ (or arc-length-variables) of the two circles. Compute, in terms of a, b, φ, θ , the Gaussian curvature of T and determine the subsets T^+, T^-, T^0 of T where the Gaussian curvature of T is respectively positive, negative, and zero.

Solution: Parametrize T by two circles with angle-variable φ, θ as follows. The circle C with angle-variable φ can be described as

$$(x, z) = b(\cos\varphi, \sin\varphi) + (a, 0) = (a + b\cos\varphi, b\sin\varphi).$$

The result of rotating a point P on C by an angle θ about the z-axis is the same as replacing the x-coordinate x_P of P by $(x, y) = (x_P \cos \theta, x_P \sin \theta)$. It follows that the parametrization of T is given by

$$\vec{r}(\varphi,\theta) = \left((a + b\cos\varphi)\cos\theta, \, (a + b\cos\varphi)\sin\theta, \, b\sin\varphi \right).$$

The first and second partial derivatives of $\vec{r}(\theta, \varphi)$ and the unit normal vector \vec{N} of T are given by

$$\begin{split} \vec{r}_{\varphi} &= (-b\sin\varphi\cos\theta, \, -b\sin\varphi\sin\theta, \, b\cos\varphi) \,, \\ \vec{r}_{\theta} &= (-(a+b\cos\varphi)\sin\theta, \, (a+b\cos\varphi)\cos\theta, \, 0) \,, \\ \vec{r}_{\varphi} \times \vec{r}_{\theta} &= (-(a+b\cos\varphi)\cos\theta \, b\cos\varphi, \, -(a+b\cos\varphi)\sin\theta \, b\cos\varphi, \, -(a+b\cos\varphi)b\sin\varphi) \,, \\ \vec{n} &= \frac{\vec{r}_{\varphi} \times \vec{r}_{\theta}}{\|\vec{r}_{\varphi} \times \vec{r}_{\theta}\|} = (-\cos\theta\cos\varphi, \, -\sin\theta\cos\varphi, \, -\sin\varphi) \,, \\ \vec{r}_{\varphi\varphi} &= (-b\cos\varphi\cos\theta, \, -b\cos\varphi\sin\theta, \, -b\sin\varphi) \,, \\ \vec{r}_{\varphi\theta} &= (b\sin\varphi\sin\theta, \, -b\sin\varphi\cos\theta, \, 0) \,, \\ \vec{r}_{\theta\theta} &= (-(a+b\cos\varphi)\cos\theta, \, -(a+b\cos\varphi)\sin\theta, \, 0) \,. \end{split}$$

The first fundamental form $Ed\varphi^2 + 2Fd\varphi d\theta + Gd\theta^2$ and the second fundamental form $Ld\varphi^2 + 2Md\varphi d\theta + Nd\theta^2$ of the torus T are given by

$$E = \vec{r}_{\varphi} \cdot \vec{r}_{\varphi} = b^{2},$$

$$F = \vec{r}_{\varphi} \cdot \vec{r}_{\theta} = 0,$$

$$G = \vec{r}_{\theta} \cdot \vec{r}_{\theta} = (a + b\cos\varphi)^{2},$$

$$L = \vec{r}_{\varphi\varphi} \cdot \vec{n} = b,$$

$$M = \vec{r}_{\varphi\theta} \cdot \vec{n} = 0,$$

$$N = \vec{r}_{\theta\theta} \cdot \vec{n} = (a + b\cos\varphi)\cos\varphi.$$

The Gaussian curvature is given by

$$\frac{LN - M^2}{EF - G^2} = \frac{b(a + b\cos\varphi)\cos\varphi}{b^2(a + b\cos\varphi)^2} = \frac{\cos\varphi}{b(a + b\cos\varphi)},$$

which

- (i) is positive for $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$,
- (ii) is zero for $\varphi = \frac{\pi}{2}$ or $\frac{-\pi}{2}$, and
- (iii) is negative for $\frac{\pi}{2} < \varphi < \pi$ or $-\pi < \varphi < -\frac{\pi}{2}$.

In other words,

- (i) the Gaussian curvature of the torus T is positive on the part T^+ obtained by rotating the right-half $C \cap \{x > a\}$ of the circle C about the z-axis.
- (ii) The Gaussian curvature of the torus T is negative on the part T^- obtained by rotating the left-half $C \cap \{x < a\}$ of the circle C about the z-axis.
- (iii) The Gaussian curvature of the torus T is zero on the part T^0 obtained by rotating the highest point $C \cap \{z = b\}$ and the lowest point $C \cap \{z = -b\}$ of the circle C about the z-axis.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Wednesday January 20, 2021 (Day 2)

1. (CA) Let q be any positive integer. Let Ω be a connected open subset of \mathbb{C} . Suppose $f_n(z)$ is a sequence of holomorphic functions on Ω such that for any positive number n and for any $c \in \mathbb{C}$, the set $f_n^{-1}(c)$ has no more than q distinct elements. Suppose the sequence $f_n(z)$ converges to a function f(z) uniformly on compact subsets of Ω . Prove that either f(z) is constant or f(z) satisfies the property that for any $c \in \mathbb{C}$ the set $f^{-1}(c)$ has no more than q distinct elements.

Solution. Assume that f is nonconstant and achieves the value c at q + 1 distinct points z_1, \dots, z_{q+1} of Ω and we are going to derive a contradiction. Choose some $\varepsilon > 0$ such that

- (i) the q+1 closed disks $|z-z_j| \le \varepsilon$ for $1 \le j \le q+1$ are inside Ω and are disjoint,
- (ii) for $1 \le j \le q+1$ the function $f(z) f(z_j)$ has exactly one zero on the closed disk $|z z_j| \le \varepsilon$ which is not on the boundary $|z z_j| = \varepsilon$.

This is possible, because f is nonconstant and is holomorphic on the connected open subset Ω of \mathbb{C} (as the uniform limit on compact subsets of holomorphic functions on Ω). Let $\eta > 0$ be the minimum of |f(z) - c| on $|z - z_j| = \varepsilon$ for $1 \leq j \leq q + 1$. By uniform convergence of $f_n \to f$ on compact sets of Ω there is some n (as a matter of fact, any sufficiently large n) for which $|f_n(z) - f(z)| < \eta$ on $|z - z_j| = \varepsilon$ for $1 \leq j \leq q + 1$. Since $|f_n(z) - f(z)| < |f(z) - c|$ on $|z - z_j| = \varepsilon$ for $1 \leq j \leq q + 1$, by applying Rouché's theorem to $f_n(z) - c = (f(z) - c) + (f_n(z) - f(z))$, we conclude that $f_n(z) - c$ has the same number of zeroes as the function f(z) - c on each of the q + 1 disjoint disks $|z - z_j| < \varepsilon$. This contradicts the assumption that the set $f_n^{-1}(c)$ has no more than q distinct elements.

2. (AG) Let X be a degree 3 hypersurface in \mathbb{P}^3 . Show that X contains a line. (You may use the fact that the Fermat cubic surface $V(x^3 + y^3 + z^3 + w^3)$ contains a positive finite number of lines.)

Solution: Let $P = |\mathcal{O}_{\mathbb{P}^3}(3)| \cong \mathbb{P}^{19}$ be the projective space of cubics in \mathbb{P}^3 (Note $\binom{3+3}{3} - 1 = 19$.) and let $G = \operatorname{Gr}(\mathbb{P}^1, \mathbb{P}^3)$ which is of dimension $(1+1) \times ((3+1) - (1+1)) = 4$. Consider the incidence variety $Z = \{(\ell, S) \in G \times P \mid \ell \subseteq S\}$. Then we have

Let the coordinate on \mathbb{P}^3 be (x, y, z, w). A cubic surface $S \subset \mathbb{P}^3$ contains the line $\ell = \{z = w = 0\}$ if and only if the defining equation of S having the terms x^3, x^2y, xy^2, y^3 vanish. This shows that $p_1^{-1}(\ell)$ is irreducible of dimension dim P - 4. Hence

$$\dim Z = \dim P.$$

If there is a degree 3 hypersurface X not containing a line, then $p_2(Z) \subseteq P$ is of codimensional ≥ 1 in P. Hence for any $S \in P$, the fibre $p_2^{-1}(S)$ is either empty or of positive dimension. However this contradicts to the del Pezzo surfaces having only finitely many line.

3. (RA) Suppose X_j are independent identically distributed Poisson distributions with intensity λ , i.e.,

$$P(X_j = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N} \cup \{0\}$$

Show that for any $y \geq \lambda$,

$$P(\frac{X_1 + \dots + X_n}{n} \ge y) \le e^{-n[y \log(y/\lambda) - y + \lambda]}$$

and for any $y \leq \lambda$,

$$P(\frac{X_1 + \dots + X_n}{n} \le y) \le e^{-n[y \log(y/\lambda) - y + \lambda]}$$

Hint: Consider the moment generating function.

Solution: By the Markov inequality, for any $\lambda \leq y$,

$$P(\frac{X_1 + \dots + X_n}{n} \ge y) \le \inf_{t \ge 0} e^{-tny} \mathbb{E} e^{t(X_1 + \dots + X_n)} = \inf_{t \ge 0} e^{-n[ty - \lambda(e^t - 1)]}$$
$$= e^{-n[y \log(y/\lambda) - y + \lambda]}$$

Similarly, for any $y \leq \lambda$,

$$P(\frac{X_1 + \dots + X_n}{n} \le y) \le \inf_{t \ge 0} e^{tny} \mathbb{E} e^{-t(X_1 + \dots + X_n)} = \inf_{t \ge 0} e^{n[ty + \lambda(e^{-t} - 1)]}$$
$$= e^{-n[y \log(y/\lambda) - y + \lambda]}$$

4. (A) Determine the Galois group of the polynomial $f(x) = x^3 - 2$. Let K be the splitting field of f over \mathbb{Q} . Describe the set of all intermediate fields L, $\mathbb{Q} < L < K$ and the Galois correspondence.

Solution: Let K be the splitting field of f over \mathbb{Q} . Then $K = \mathbb{Q}(\sqrt[3]{2}, \zeta)$ is generated by $\sqrt[3]{2}$, $\sqrt[3]{2}\zeta$, and $\sqrt[3]{2}\zeta^2$, where ζ is the primitive cubic root of unity. The discriminant of $f(x) = x^3 - 2$ is $D = -27(2)^2$ and square root of D is not rational. Hence the Galois group $\operatorname{Gal}(K/\mathbb{Q}) = S_3$ which is the permutation group of order 6. As a permutation group, S_3 can be expressed as $\{\operatorname{id}, (12), (13), (23), (123), (132)\}$. The four proper subgroup of S_3 are $\{\operatorname{id}, (12)\}$, $\{\operatorname{id}, (13)\}$, $\{\operatorname{id}, (23)\}$, and $\{\operatorname{id}, (123), (132)\}$.

The intermediate fields L are \mathbb{Q} , $\mathbb{Q}(\sqrt[3]{2}\zeta)$, $\mathbb{Q}(\sqrt[3]{2}\zeta^2)$, $\mathbb{Q}(\sqrt[3]{2}\zeta^2)$, $\mathbb{Q}(\zeta)$, and K. They corresponds to the subgroups {id}, {id, (12)}, {id, (13)}, {id, (23)}, {id, (23)}, {id, (123), (132)}, and S_3 .

- **5.** (AT) Let $X \subset \mathbb{R}^3$ be the union of the unit sphere $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ and the line segment $I = \{(x, 0, 0) \mid -1 \le x \le 1\}$.
 - (a) What are the homology groups of X?
 - (b) What are the homotopy groups $\pi_1(X)$ and $\pi_2(X)$?

Solution: Under the attaching map $I \hookrightarrow X$, the boundary $\varphi(I)$ is homologous to 0, so attaching I simply adds one new, non-torsion generator to H^1 ; thus

$$H_0(X) = H^1(X) = H^2(X) = \mathbb{Z},$$

and all other homology groups are 0. Similarly, $\pi_1(X) = \mathbb{Z}$. For $\pi_2(X)$, note that the universal cover of X is a string of spheres attached in a sequence by line segments; $\pi_2(X)$ is thus the free abelian group on countably many generators.

Solution: The space X can be realized as a CW complex with one 0-cell, one 1-cell and one 2-cell, with the 1-skeleton the unit circle S^1 in \mathbb{C} and the 2-cell attached via the map $S^1 \to S^1$ given by $z \mapsto z^5$. The cellular complex is thus

$$\mathbb{Z} \ \rightarrow \ \mathbb{Z} \ \rightarrow \ \mathbb{Z}$$

with the first map multiplication by 5 and the second map 0; the homology groups with coefficients in \mathbb{Z} are thus

$$H^0(X,\mathbb{Z}) = \mathbb{Z};$$
 $H^1(X,\mathbb{Z}) = \mathbb{Z}/5,$ and $H^2(X,\mathbb{Z}) = 0$

If we use coefficients in $\mathbb{Z}/5$, then both maps are 0 and we have

$$H^{0}(X,\mathbb{Z}) = \mathbb{Z}/5; \quad H^{1}(X,\mathbb{Z}) = \mathbb{Z}/5, \text{ and } H^{2}(X,\mathbb{Z}) = \mathbb{Z}/5.$$

6. (DG) Let X be a Riemannian manifold and σ be an isometry of X. Let Y be the set of fixed points of σ in the sense that Y is the set of all points y of X such that $\sigma(y) = y$. Prove that Y is regular and is totally geodesic (in the sense that any geodesic in Y with respect to the metric induced from X is also a geodesic in X).

Solution. For any geodesic C in X, if some point P of C and the tangent vector of C at P is fixed by σ , then the entire geodesic C is pointwise fixed by σ by the uniqueness theorem of ordinary differential equation of second order. Moreover, in a sufficiently small neighborhood of a given point P of X, any two points are joined by a unique geodesic and as a consequence the unique geodesic is pointwise fixed by σ if the two points are fixed by σ . The exponential map at any point P of X maps an open neighborhood of the tangent space $T_{X,P}$ of X at P to an open neighborhood of P in X. For P in Y, by using the exponential map at P we can conclude that some open neighborhood of P in Y is the diffeomorphic image of some vector subspace of $T_{Y,P}$ under the exponential map.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Thursday January 21, 2021 (Day 3)

1. (AG) Let $X \subset \mathbb{P}^3$ be a curve that is not contained in any proper linear subspace of \mathbb{P}^3 . Show that if deg X is a prime number, then the homogeneous ideal I(X) cannot be generated by two elements.

Solution: Assume for a contradiction that we have I(X) = (f,g) for two homogeneous polynomials $f, g \in \mathbb{k}[x, y, z, w]$. Clearly, g does not vanish identically on any irreducible component of V(f), since otherwise the zero locus of (f, g) would have codimension 1.

By Bezout's theorem, $\deg X = \deg f \cdot \deg g$. This implies either $\deg f$ or $\deg g = 1$. However this means one of f or g is linear which contradicts to the assumption.

2. (RA) Let \mathcal{E} be the space of even \mathcal{C}^{∞} functions $\mathbf{R}/\mathbf{Z} \to \mathbf{R}$. Prove that for every $f \in \mathcal{E}$ there exists a unique $g \in \mathcal{E}$ such that

$$f(x) = \int_0^1 \int_0^1 g(y) g(z) g(x - y - z) \, dy \, dz$$

for all $x \in \mathbf{R}/\mathbf{Z}$. [Hint: write the integral formula for f as a convolution.]

Solution. The right-hand side of the displayed equation is the value at x of the convolution f * f * f. We shall use the following standard facts:

• The \mathcal{C}^{∞} functions $\mathbf{R}/\mathbf{Z} \to \mathbf{C}$ are exactly the Fourier series

$$f(x) = \sum_{n \in \mathbf{Z}} a_n(f) e^{2\pi i n x}$$

whose coefficient sequence $\{a_n\}_{-\infty}^{\infty}$ is "Schwartz",¹ i.e., such that for every M > 0 the sequence $\{|n|^M a_n\}$ is bounded.

• If $\sum_{n \in \mathbf{Z}} |a_n(f)| < \infty \sum_{n \in \mathbf{Z}} |a_n(g)| < \infty$ then

$$(f*g)(x) = \sum_{n \in \mathbf{Z}} a_n(f) a_n(g) e^{2\pi i n x}$$

for all x.

¹This may be a neologism. A "Schwartz function" on a real vector space is one that is both $O(||x||^{-M})$ (all M) and \mathcal{C}^{∞} . For a function on **Z** only the decay condition makes sense.

• A real-valued \mathcal{C}^{∞} function f on \mathbf{R}/\mathbf{Z} is even if and only if $a_n \in \mathbf{R}$ and $a_n = a_{-n}$ for all n.

Thus we are to show that for every even real Schwartz sequence $\{a_n\} = \{a_n(f)\}\$ there exists a unique even real Schwartz sequence $\{b_n\} = \{a_n(g)\}\$ such that $a_n = b_n^3$ for all n. This is clear because every real number has a unique real cube root and $\{a_n^{1/3}\}\$ is even (resp. Schwartz) if and only if $\{a_n\}\$ is.

3. (CA) Suppose f(z) is analytic and bounded for |z| < 1. Let $\zeta = x + iy$. If |z| < 1, prove that

$$f(z) = \frac{1}{\pi} \int \int_{|\zeta| < 1} \frac{f(\zeta)}{(1 - z\overline{\zeta})^2} dx dy$$

Solution: By Green's theorem and analyticity of f, for |z| < 1, we have up to a constant,

$$\int \int_{|\zeta|<1} \frac{f(\zeta)}{(1-z\bar{\zeta})^2} dx dy = \int_{|\zeta|<1} \left(\frac{1}{z}\partial_{\bar{\zeta}}\frac{1}{(1-z\bar{\zeta})}\right) f(\zeta) d\zeta d\bar{\zeta}$$
$$= \frac{1}{z} \int_{|\zeta|<1} d\left[\frac{f(\zeta)}{(1-z\bar{\zeta})} d\zeta\right] = \frac{1}{z} \int_{|\zeta|=1} \frac{\zeta f(\zeta)}{(\zeta-z)} d\zeta = f(z)$$

4. (AT) Suppose f is an orientation-preserving self-homeomorphism of \mathbb{CP}^n such that the graph $\Gamma_f \subset \mathbb{CP}^n \times \mathbb{CP}^n$ intersects the diagonal transversely. Compute all possibilities for the number of its fixed points.

Solution: We apply the Lefschetz fixed-point theorem, recalling that $H^*(\mathbb{CP}^n;\mathbb{C}) \simeq \mathbb{C}[u]/(u^{n+1})$ for u a generator in degree 2. If λ is the eigenvalue by which f acts on H^2 , then f acts on H^{2k} with eigenvalue λ^{2k} . But $\lambda \in \mathbb{Z}$, as the action of f is defined on $H^2(\mathbb{CP}^n;\mathbb{Z})$, and $\lambda^n = 1$, as f acts trivially on the volume form by virtue of preserving orientation. Hence if n is odd, $\lambda = 1$ while if n is even, $\lambda \in \{\pm 1\}$. In either case, the Lefschetz fixed-point theorem tells us the number of fixed points – or, more generally, the Euler characteristic of the fixed point locus F – is $\chi(F) = 1 + \lambda + \cdots + \lambda^n$, so if $\lambda = 1$, we obtain $\chi(F) = n+1$ while if $\lambda = -1$, we obtain $\chi(F) = 1$. To show both possibilities are realized, we may simply take f a 'general' rotation for the case of $\lambda = 1$. With more details – we have the action of $(\mathbb{C}^*)^n$ on \mathbb{CP}^n , and if we take a rotation in $(S^1)^n$ such that all the angles are rationally independent of one another and of 2π , then the fixed point locus will be n + 1 points. On the

other hand, when n is even, then complex-conjugation composed with a rotation such as above is an orientation-preserving self-homeomorphism which may be checked to have a unique fixed point.

5. (DG) Let G be an open subset of \mathbb{R}^n . For $1 \leq p \leq n-1$ denote by $\wedge^p T_G$ the exterior product of p copies of the tangent bundle T_G of G. For $1 \leq j \leq m$ let η_j be a C^{∞} section of $\wedge^p T_G$ over G. For a C^{∞} vector field ξ on an open subset of G, denote by $\mathcal{L}_{\xi} \eta_j$ the Lie derivative of η_j with respect to ξ , which means that if $\varphi_{\xi,t}$ is the local diffeomorphism defined by ξ so that the tangent vector $\frac{d}{dt}\varphi_{\xi,t}$ equals the value of ξ at $\varphi_{\xi,t}$, then

$$\mathcal{L}_{\xi} \boldsymbol{\eta}_{j} = \lim_{t \to 0} \frac{1}{t} \left((\varphi_{\xi,t})_{*} \boldsymbol{\eta}_{j} - \boldsymbol{\eta}_{j} \right),$$

where $(\varphi_{\xi,t})_* \eta_j$ is the pushforward of η_j under $\varphi_{\xi,t}$. Let $\Phi_{\eta_j} : T_G \to \wedge^{p+1} T_G$ be defined by exterior product with η_j . Assume that the intersection $\cap_{j=1}^m \operatorname{Ker} \Phi_{\eta_j}$ of the kernel $\operatorname{Ker} \Phi_{\eta_j}$ of Φ_{η_j} for $1 \leq j \leq m$ is a subbundle of T_G of rank q over G. Suppose for any C^{∞} tangent vector field ζ in any open subset W there exist C^{∞} functions $g_{j,k,\zeta}$ on W for $1 \leq j, k \leq m$ such that

$$\mathcal{L}_{\zeta}oldsymbol{\eta}_{j} = \sum_{k=1}^{m} g_{j,k,\zeta}oldsymbol{\eta}_{k}$$

on W. Prove that for every point x of G there exist some open neighborhood U_x of x in G and C^{∞} functions f_1, \dots, f_{n-q} on U_x such that the fiber of $\bigcap_{j=1}^m \operatorname{Ker} \Phi_{\eta_j}$ at y is equal to $\bigcap_{k=1}^{n-q} \operatorname{Ker} df_k$ at y for $y \in U_x$.

Solution. For any C^{∞} tangent vector fields ξ, ζ on an open subset W of G, the product formula

$$\mathcal{L}_{\xi}\left(\boldsymbol{\eta}_{j}\wedge\boldsymbol{\zeta}\right)=\left(\mathcal{L}_{\xi}\boldsymbol{\eta}_{j}\right)\wedge\boldsymbol{\zeta}+\boldsymbol{\eta}_{j}\wedge\mathcal{L}_{\xi}\boldsymbol{\zeta}$$

for Lie differentiation holds. Moreover, $\mathcal{L}_{\xi}\zeta$ is equal to the Lie bracket $[\xi, \zeta]$ of the tangent vector fields ξ, ζ .

If ξ, ζ are C^{∞} sections of $\bigcap_{i=1}^{m} \operatorname{Ker} \Phi_{\eta_i}$ over an open subset W of G, then

$$0 = \mathcal{L}_{\xi} (\eta_{j} \land \zeta)$$

= $(\mathcal{L}_{\xi} \eta_{j}) \land \zeta + \eta_{j} \land \mathcal{L}_{\xi} \zeta$
= $\left(\sum_{k=1}^{m} g_{j,k,\xi} \eta_{k}\right) \land \zeta + \eta_{j} \land \mathcal{L}_{\xi} \zeta$
= $\eta_{j} \land \mathcal{L}_{\xi} \zeta$

for $1 \leq j \leq m$, which implies that $[\xi, \zeta]$ is a section of $\bigcap_{j=1}^{m} \operatorname{Ker} \Phi_{\eta_j}$ over W. The conclusion now follows from applying Frobenius integrability theorem to the subbundle $\bigcap_{j=1}^{m} \operatorname{Ker} \Phi_{\eta_j}$ of T_G over G.

6. (A) Let π be a finite dimensional representation of a finite group G with the character χ_{π} . Prove that π is irreducible if and only if

$$\frac{1}{|G|} \sum_{g \in G} |\chi_{\pi}(g)|^2 = 1.$$

Solution: A finite dimensional representation is semi-simple and hence we can express

$$\chi_{\pi} = \sum_{\sigma \in \widehat{G}} n_{\pi}(\sigma) \chi_{\sigma},$$

where \widehat{G} denotes the collection of the isomorphism classes of irreducible representations of G, and $n_{\pi}(\sigma) = \dim \operatorname{Hom}_{G}(\pi, \sigma)$. Then

$$\frac{1}{|G|} \sum_{g \in G} |\chi_{\pi}(g)|^2 = \sum_{\rho, \tau \in \widehat{G}} n_{\pi}(\sigma) n_{\pi}(\tau) \frac{1}{|G|} \sum_{g \in G} \chi_{\sigma}(g) \overline{\chi_{\tau}(g)} = \sum_{\sigma \in \widehat{G}} n_{\pi}(\sigma)^2.$$

Note that $n_{\pi}(\sigma) = 1$ if and only if $n_{\pi}(\sigma) = 1$ for some $\sigma \in \widehat{G}$ and $n_{\pi}(\tau) = 0$ for $\tau \neq \sigma, \tau \in \widehat{G}$. This is equivalent of saying that π is isomorphic to the irreducible representation σ .