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1. (AG) Let Y ⊂ P2 be an irreducible curve of degree d > 1 having a point of
multiplicity d− 1. Show that Y is a rational curve.

Solution: Recall that if P ∈ Y ⊂ P2 is a point of multiplicity m, then a generic
line through P meets Y at p with multiplicity m. Then there is a dense open
subset U of P1 such that if L ∈ U then the intersection multiplicity of Y at L
along P is m.

Without loss of generality, let P = (0, 0, 1) ∈ Y be the point with multiplicty
d− 1. Then consider two maps:

φ : Y \ P → P1

the projective map, and by Bezout’s theorem, there is a map

ψ : P1 ⊃ U → Y \ P

which maps a point L of U to the unique point that L meets Y other than P .

Thus

Y \ P φ−→ P1 99K Y \ P
(a, b, c) 7→ (a, b, 0) 7→ (a, b, c)

are rational. Thus this gives a birational equivalence of Y \ P and P1.

2. (CA) Use the method of contour integrals to find the integral∫ ∞
0

log x

x2 + 4
dx.

Solution: Consider the contour from −R to −r, a semicircle, r to R and a
large semicircle. Then the integration from −R to −r and r to R becomes

2

∫ R

r

log x

x2 + 4
dx+ i

∫ −r
−R

π

x2 + 4
dx

The last term is imaginary. Hence∫ ∞
0

log x

x2 + 4
dx = d

[
πi lim

z→2i

log z

z + 2i

]
=
π log 2

4



3. (RA) Suppose µ and ν are two positive measures on Rn with n ≥ 1. For a
positive function f , consider two quantities

A :=

∫
ν(dy)

[∫
f(x, y)pµ(dx)

]1/p

B :=

[∫
µ(dx)

(∫
f(x, y)ν(dy)

)p ]1/p

For 1 ≤ p <∞. Assume all quantities are integrable and finite. Do we know
that A ≥ B or A ≤ B for all functions f ? Prove your assertion or give a
counterexample.

Solution: By duality,[∫
µ(dx)

(∫
f(x, y)ν(dy)

)p ]1/p

= sup
g:‖g‖Lq(µ)≤1

∫
µ(dx)g(x)

∫
f(x, y)ν(dy)

= sup
g:‖g‖Lq(µ)≤1

∫
ν(dy)

∫
µ(dx)g(x)f(x, y) ≤

∫
ν(dy)

[∫
f(x, y)pµ(dx)

]1/p

Since ε was arbitrary we are done.

4. (A) Let p be a prime ideal in a commutative ring A. Show that p[x] is a prime
idea in A[x]. If m is a maximal idea in A, is m[x] a maximal ideal in A[x]?

Solution: Consider the projection

A[x]→ (A/a)[x].

The kernel of the projection is a[x] and hence A[x]/a[x] ∼= (A/a)[x]. Now
consider p a prime idea of A. Then A/p is an integral domain, and so do
(A/p)[x] by Hilbert Basis Theorem. That is A[x]/p[x] is an integral domain
as well. This implies p[x] is prime in A[x].

Note that if A is a field, A[x] may not be a field. Hence if m is maximal in A
does not implies m[x] a maximal ideal in A[x].

5. (AT) What are the homology groups of the 5-manifold RP2 × RP3,

(a) with coefficients in Z?

(b) with coefficients in Z/2?

(c) with coefficients in Z/3?



Solution: RP2 and RP3 have cell complexes with sequences

0→ Z→ Z→ Z→ 0 and 0→ Z→ Z→ Z→ Z→ 0

where the maps are alternately 0 and multiplication by 2; from this the ho-
mology groups of RP2 and RP3 can be calculated as Z,Z/2, 0 and Z,Z/2, 0,Z
respectively. The rest is just Künneth; the answers are

(a): Z, (Z/2)2, (Z/2)2, Z, Z/2, 0;

(b): Z/2, (Z/2)2, (Z/2)3, (Z/2)3, (Z/2)2, Z/2,

(c): Z/3, 0, 0, Z/3, 0, 0

6. (DG) Let a > b > 0 be positive numbers. Let C be the circle of radius
b centered at (a, 0) in the (x, z)-plane. Let T be the torus obtained by re-
volving the circle C about the z-axis in the (x, y, z)-space. The torus T can
be identified as the product of two circles whose points are described by the
two angle-variables ϕ, θ (or arc-length-variables) of the two circles. Compute,
in terms of a, b, ϕ, θ, the Gaussian curvature of T and determine the subsets
T+, T−, T 0 of T where the Gaussian curvature of T is respectively positive,
negative, and zero.

Solution: Parametrize T by two circles with angle-variable ϕ, θ as follows.
The circle C with angle-variable ϕ can be described as

(x, z) = b(cosϕ, sinϕ) + (a, 0) = (a+ b cosϕ, b sinϕ).

The result of rotating a point P on C by an angle θ about the z-axis is the
same as replacing the x-coordinate xP of P by (x, y) = (xP cos θ, xP sin θ). It
follows that the parametrization of T is given by

~r(ϕ, θ) = ((a+ b cosϕ) cos θ, (a+ b cosϕ) sin θ, b sinϕ) .

The first and second partial derivatives of ~r(θ, ϕ) and the unit normal vector
~N of T are given by

~rϕ = (−b sinϕ cos θ, −b sinϕ sin θ, b cosϕ) ,

~rθ = (−(a+ b cosϕ) sin θ, (a+ b cosϕ) cos θ, 0) ,

~rϕ × ~rθ = (−(a+ b cosϕ) cos θ b cosϕ,−(a+ b cosϕ) sin θ b cosϕ, −(a+ b cosϕ)b sinϕ) ,

~n =
~rϕ × ~rθ
‖~rϕ × ~rθ‖

= (− cos θ cosϕ, − sin θ cosϕ, − sinϕ) ,

~rϕϕ = (−b cosϕ cos θ, −b cosϕ sin θ, −b sinϕ) ,

~rϕθ = (b sinϕ sin θ, −b sinϕ cos θ, 0) ,

~rθθ = (−(a+ b cosϕ) cos θ, −(a+ b cosϕ) sin θ, 0) .



The first fundamental form Edϕ2 + 2Fdϕdθ + Gdθ2 and the second funda-
mental form Ldϕ2 + 2Mdϕdθ +Ndθ2 of the torus T are given by

E = ~rϕ · ~rϕ = b2,

F = ~rϕ · ~rθ = 0,

G = ~rθ · ~rθ = (a+ b cosϕ)2,

L = ~rϕϕ · ~n = b,

M = ~rϕθ · ~n = 0,

N = ~rθθ · ~n = (a+ b cosϕ) cosϕ.

The Gaussian curvature is given by

LN −M2

EF −G2
=
b(a+ b cosϕ) cosϕ

b2(a+ b cosϕ)2
=

cosϕ

b(a+ b cosϕ)
,

which

(i) is positive for −π
2 < ϕ < π

2 ,

(ii) is zero for ϕ = π
2 or −π2 , and

(iii) is negative for π
2 < ϕ < π or −π < ϕ < −π

2 .

In other words,

(i) the Gaussian curvature of the torus T is positive on the part T+ obtained
by rotating the right-half C ∩ {x > a} of the circle C about the z-axis.

(ii) The Gaussian curvature of the torus T is negative on the part T− ob-
tained by rotating the left-half C ∩ {x < a} of the circle C about the
z-axis.

(iii) The Gaussian curvature of the torus T is zero on the part T 0 obtained
by rotating the the highest point C ∩ {z = b} and the lowest point
C ∩ {z = −b} of the circle C about the z-axis.
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1. (CA) Let q be any positive integer. Let Ω be a connected open subset of
C. Suppose fn(z) is a sequence of holomorphic functions on Ω such that for
any positive number n and for any c ∈ C, the set f−1

n (c) has no more than
q distinct elements. Suppose the sequence fn(z) converges to a function f(z)
uniformly on compact subsets of Ω. Prove that either f(z) is constant or f(z)
satisfies the property that for any c ∈ C the set f−1(c) has no more than q
distinct elements.

Solution. Assume that f is nonconstant and achieves the value c at q + 1
distinct points z1, · · · , zq+1 of Ω and we are going to derive a contradiction.
Choose some ε > 0 such that

(i) the q + 1 closed disks |z − zj | ≤ ε for 1 ≤ j ≤ q + 1 are inside Ω and are
disjoint,

(ii) for 1 ≤ j ≤ q + 1 the function f(z) − f(zj) has exactly one zero on the
closed disk |z − zj | ≤ ε which is not on the boundary |z − zj | = ε.

This is possible, because f is nonconstant and is holomorphic on the connected
open subset Ω of C (as the uniform limit on compact subsets of holomorphic
functions on Ω). Let η > 0 be the minimum of |f(z) − c| on |z − zj | = ε
for 1 ≤ j ≤ q + 1. By uniform convergence of fn → f on compact sets of
Ω there is some n (as a matter of fact, any sufficiently large n) for which
|fn(z) − f(z)| < η on |z − zj | = ε for 1 ≤ j ≤ q + 1. Since |fn(z) − f(z)| <
|f(z)− c| on |z − zj | = ε for 1 ≤ j ≤ q + 1, by applying Rouché’s theorem to
fn(z) − c = (f(z) − c) + (fn(z) − f(z)), we conclude that fn(z) − c has the
same number of zeroes as the function f(z) − c on each of the q + 1 disjoint
disks |z− zj | < ε. This contradicts the assumption that the set f−1

n (c) has no
more than q distinct elements.

2. (AG) Let X be a degree 3 hypersurface in P3. Show that X contains a line.
(You may use the fact that the Fermat cubic surface V (x3 + y3 + z3 + w3)
contains a positive finite number of lines.)

Solution: Let P = |OP3(3)| ∼= P19 be the projective space of cubics in P3

(Note
(

3+3
3

)
−1 = 19.) and let G = Gr(P1,P3) which is of dimension (1 + 1)×

((3 + 1)− (1 + 1)) = 4.



Consider the incidence variety Z = {(`, S) ∈ G× P | ` ⊆ S}. Then we have

Z

G P

p1

p2

Let the coordinate on P3 be (x, y, z, w). A cubic surface S ⊂ P3 contains
the line ` = {z = w = 0} if and only if the defining equation of S having
the terms x3, x2y, xy2, y3 vanish. This shows that p−1

1 (`) is irreducible of
dimension dimP − 4. Hence

dimZ = dimP.

If there is a degree 3 hypersurface X not containing a line, then p2(Z) ⊆ P
is of codimensional ≥ 1 in P . Hence for any S ∈ P , the fibre p−1

2 (S) is either
empty or of positive dimension. However this contradicts to the del Pezzo
surfaces having only finitely many line.

3. (RA) SupposeXj are independent identically distributed Poisson distributions
with intensity λ, i.e.,

P (Xj = k) = e−λ
λk

k!
, k ∈ N ∪ {0}

Show that for any y ≥ λ,

P (
X1 + · · ·+Xn

n
≥ y) ≤ e−n[y log(y/λ)−y+λ]

and for any y ≤ λ,

P (
X1 + · · ·+Xn

n
≤ y) ≤ e−n[y log(y/λ)−y+λ]

Hint: Consider the moment generating function.

Solution: By the Markov inequality, for any λ ≤ y,

P (
X1 + · · ·+Xn

n
≥ y) ≤ inft≥0e

−tnyEet(X1+···+Xn) = inft≥0e
−n[ty−λ(et−1)]

= e−n[y log(y/λ)−y+λ]

Similarly, for any y ≤ λ,

P (
X1 + · · ·+Xn

n
≤ y) ≤ inft≥0e

tnyEe−t(X1+···+Xn) = inft≥0e
n[ty+λ(e−t−1)]

= e−n[y log(y/λ)−y+λ]



4. (A) Determine the Galois group of the polynomial f(x) = x3 − 2. Let K be
the splitting field of f over Q. Describe the set of all intermediate fields L,
Q < L < K and the Galois correspondence.

Solution: Let K be the splitting field of f over Q. Then K = Q( 3
√

2, ζ) is
generated by 3

√
2, 3
√

2ζ, and 3
√

2ζ2, where ζ is the primitive cubic root of unity.

The discriminant of f(x) = x3 − 2 is D = −27(2)2 and square root of D
is not rational. Hence the Galois group Gal(K/Q) = S3 which is the per-
mutation group of order 6. As a permutation group, S3 can be expressed as
{id, (12), (13), (23), (123), (132)}. The four proper subgroup of S3 are {id, (12)},
{id, (13)}, {id, (23)}, and {id, (123), (132)}.
The intermediate fields L are Q, Q( 3

√
2), Q( 3

√
2ζ), Q( 3

√
2ζ2) Q(ζ), and K.

They corresponds to the subgroups {id}, {id, (12)}, {id, (13)}, {id, (23)},
{id, (123), (132)}, and S3.

5. (AT) Let X ⊂ R3 be the union of the unit sphere S2 = {(x, y, z) | x2+y2+z2 =
1} and the line segment I = {(x, 0, 0) | −1 ≤ x ≤ 1}.

(a) What are the homology groups of X?

(b) What are the homotopy groups π1(X) and π2(X)?

Solution: Under the attaching map I ↪→ X, the boundary ϕ(I) is homologous
to 0, so attaching I simply adds one new, non-torsion generator to H1; thus

H0(X) = H1(X) = H2(X) = Z,

and all other homology groups are 0. Similarly, π1(X) = Z. For π2(X), note
that the universal cover of X is a string of spheres attached in a sequence
by line segments; π2(X) is thus the free abelian group on countably many
generators.

Solution: The space X can be realized as a CW complex with one 0-cell, one
1-cell and one 2-cell, with the 1-skeleton the unit circle S1 in C and the 2-cell
attached via the map S1 → S1 given by z 7→ z5. The cellular complex is thus

Z → Z → Z

with the first map multiplication by 5 and the second map 0; the homology
groups with coefficients in Z are thus

H0(X,Z) = Z; H1(X,Z) = Z/5, and H2(X,Z) = 0.



If we use coefficients in Z/5, then both maps are 0 and we have

H0(X,Z) = Z/5; H1(X,Z) = Z/5, and H2(X,Z) = Z/5.

6. (DG) Let X be a Riemannian manifold and σ be an isometry of X. Let Y
be the set of fixed points of σ in the sense that Y is the set of all points y
of X such that σ(y) = y. Prove that Y is regular and is totally geodesic (in
the sense that any geodesic in Y with respect to the metric induced from X
is also a geodesic in X).

Solution. For any geodesic C in X, if some point P of C and the tangent
vector of C at P is fixed by σ, then the entire geodesic C is pointwise fixed
by σ by the uniqueness theorem of ordinary differential equation of second
order. Moreover, in a sufficiently small neighborhood of a given point P of
X, any two points are joined by a unique geodesic and as a consequence the
unique geodesic is pointwise fixed by σ if the two points are fixed by σ. The
exponential map at any point P of X maps an open neighborhood of the
tangent space TX,P of X at P to an open neighborhood of P in X. For P
in Y , by using the exponential map at P we can conclude that some open
neighborhood of P in Y is the diffeomorphic image of some vector subspace
of TY,P under the exponential map.
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1. (AG) Let X ⊂ P3 be a curve that is not contained in any proper linear
subspace of P3. Show that if degX is a prime number, then the homogeneous
ideal I(X) cannot be generated by two elements.

Solution: Assume for a contradiction that we have I(X) = (f, g) for two
homogeneous polynomials f, g ∈ k[x, y, z, w]. Clearly, g does not vanish iden-
tically on any irreducible component of V (f), since otherwise the zero locus
of (f, g) would have codimension 1.

By Bezout’s theorem, degX = deg f · deg g. This implies either deg f or
deg g = 1. However this means one of f or g is linear which contradicts to the
assumption.

2. (RA) Let E be the space of even C∞ functions R/Z → R. Prove that for
every f ∈ E there exists a unique g ∈ E such that

f(x) =

∫ 1

0

∫ 1

0
g(y) g(z) g(x− y − z) dy dz

for all x ∈ R/Z. [Hint: write the integral formula for f as a convolution.]

Solution. The right-hand side of the displayed equation is the value at x of
the convolution f ∗ f ∗ f . We shall use the following standard facts:

• The C∞ functions R/Z→ C are exactly the Fourier series

f(x) =
∑
n∈Z

an(f)e2πinx

whose coefficient sequence {an}∞−∞ is “Schwartz”,1 i.e., such that for every
M > 0 the sequence {|n|Man} is bounded.

• If
∑

n∈Z |an(f)| <∞
∑

n∈Z |an(g)| <∞ then

(f ∗ g)(x) =
∑
n∈Z

an(f) an(g) e2πinx

for all x.
1This may be a neologism. A “Schwartz function” on a real vector space is one that is both

O(‖x‖−M ) (all M) and C∞. For a function on Z only the decay condition makes sense.



• A real-valued C∞ function f on R/Z is even if and only if an ∈ R and
an = a−n for all n.

Thus we are to show that for every even real Schwartz sequence {an} =
{an(f)} there exists a unique even real Schwartz sequence {bn} = {an(g)}
such that an = b3n for all n. This is clear because every real number has a

unique real cube root and {a1/3
n } is even (resp. Schwartz) if and only if {an}

is.

3. (CA) Suppose f(z) is analytic and bounded for |z| < 1. Let ζ = x + iy. If
|z| < 1, prove that

f(z) =
1

π

∫ ∫
|ζ|<1

f(ζ)

(1− zζ̄)2
dxdy

Solution: By Green’s theorem and analyticity of f , for |z| < 1, we have up to
a constant,∫ ∫

|ζ|<1

f(ζ)

(1− zζ̄)2
dxdy =

∫
|ζ|<1

(1

z
∂ζ̄

1

(1− zζ̄)

)
f(ζ)dζdζ̄

=
1

z

∫
|ζ|<1

d
[ f(ζ)

(1− zζ̄)
dζ
]

=
1

z

∫
|ζ|=1

ζf(ζ)

(ζ − z)
dζ = f(z)

4. (AT) Suppose f is an orientation-preserving self-homeomorphism of CPn such
that the graph Γf ⊂ CPn×CPn intersects the diagonal transversely . Compute
all possibilities for the number of its fixed points.

Solution: We apply the Lefschetz fixed-point theorem, recalling thatH∗(CPn;C) '
C[u]/(un+1) for u a generator in degree 2. If λ is the eigenvalue by which f
acts on H2, then f acts on H2k with eigenvalue λ2k. But λ ∈ Z, as the action
of f is defined on H2(CPn;Z), and λn = 1, as f acts trivially on the volume
form by virtue of preserving orientation. Hence if n is odd, λ = 1 while if
n is even, λ ∈ {±1}. In either case, the Lefschetz fixed-point theorem tells
us the number of fixed points – or, more generally, the Euler characteristic of
the fixed point locus F – is χ(F ) = 1 + λ + · · · + λn, so if λ = 1, we obtain
χ(F ) = n+ 1 while if λ = −1, we obtain χ(F ) = 1. To show both possibilities
are realized, we may simply take f a ‘general’ rotation for the case of λ = 1.
With more details – we have the action of (C∗)n on CPn, and if we take a
rotation in (S1)n such that all the angles are rationally independent of one
another and of 2π, then the fixed point locus will be n + 1 points. On the



other hand, when n is even, then complex-conjugation composed with a ro-
tation such as above is an orientation-preserving self-homeomorphism which
may be checked to have a unique fixed point.

5. (DG) Let G be an open subset of Rn. For 1 ≤ p ≤ n− 1 denote by ∧pTG the
exterior product of p copies of the tangent bundle TG of G. For 1 ≤ j ≤ m
let ηj be a C∞ section of ∧pTG over G. For a C∞ vector field ξ on an open
subset of G, denote by Lξηj the Lie derivative of ηj with respect to ξ, which
means that if ϕξ,t is the local diffeomorphism defined by ξ so that the tangent
vector d

dtϕξ,t equals the value of ξ at ϕξ,t, then

Lξηj = lim
t→0

1

t
((ϕξ,t)∗ηj − ηj) ,

where (ϕξ,t)∗ηj is the pushforward of ηj under ϕξ,t. Let Φηj : TG → ∧p+1TG be
defined by exterior product with ηj . Assume that the intersection ∩mj=1Ker Φηj

of the kernel Ker Φηj of Φηj for 1 ≤ j ≤ m is a subbundle of TG of rank q over
G. Suppose for any C∞ tangent vector field ζ in any open subset W there
exist C∞ functions gj,k,ζ on W for 1 ≤ j, k ≤ m such that

Lζηj =

m∑
k=1

gj,k,ζηk

on W . Prove that for every point x of G there exist some open neighborhood
Ux of x in G and C∞ functions f1, · · · , fn−q on Ux such that the fiber of
∩mj=1Ker Φηj at y is equal to ∩n−qk=1Ker dfk at y for y ∈ Ux.

Solution. For any C∞ tangent vector fields ξ, ζ on an open subset W of G,
the product formula

Lξ (ηj ∧ ζ) = (Lξηj) ∧ ζ + ηj ∧ Lξζ

for Lie differentiation holds. Moreover, Lξζ is equal to the Lie bracket [ξ, ζ]
of the tangent vector fields ξ, ζ.

If ξ, ζ are C∞ sections of ∩mj=1Ker Φηj over an open subset W of G, then

0 = Lξ (ηj ∧ ζ)

= (Lξηj) ∧ ζ + ηj ∧ Lξζ

=

(
m∑
k=1

gj,k,ξηk

)
∧ ζ + ηj ∧ Lξζ

= ηj ∧ Lξζ



for 1 ≤ j ≤ m, which implies that [ξ, ζ] is a section of ∩mj=1Ker Φηj over W .
The conclusion now follows from applying Frobenius integrability theorem to
the subbundle ∩mj=1Ker Φηj of TG over G.

6. (A) Let π be a finite dimensional representation of a finite group G with the
character χπ. Prove that π is irreducible if and only if

1

|G|
∑
g∈G
|χπ(g)|2 = 1.

Solution: A finite dimensional representation is semi-simple and hence we can
express

χπ =
∑
σ∈Ĝ

nπ(σ)χσ,

where Ĝ denotes the collection of the isomorphism classes of irreducible rep-
resentations of G, and nπ(σ) = dim HomG(π, σ). Then

1

|G|
∑
g∈G
|χπ(g)|2 =

∑
ρ,τ∈Ĝ

nπ(σ)nπ(τ)
1

|G|
∑
g∈G

χσ(g)χτ (g) =
∑
σ∈Ĝ

nπ(σ)2.

Note that nπ(σ) = 1 if and only if nπ(σ) = 1 for some σ ∈ Ĝ and nπ(τ) = 0
for τ 6= σ, τ ∈ Ĝ. This is equivalent of saying that π is isomorphic to the
irreducible representation σ.


