QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday August 31, 2021 (Day 1)

1. (A) Let G be a finite group, let V be a representation of G on a finitedimensional vector space over \mathbb{C}, and let $W \subset V$ be a subrepresentation. Show that there is a subrepresentation $W^{\prime} \subset V$ such that

$$
V=W \oplus W^{\prime}
$$

2. (AG) Consider the varieties in the affine plane $\mathbb{A}_{\mathbb{C}}^{2}$ with coordinates (x, y) defined by the following polynomials:
3. $X_{1}=V\left(x^{2}-1\right)$
4. $X_{2}=V\left(x^{2}-y\right)$
5. $X_{3}=V\left(x^{2}-y^{2}\right)$
6. $X_{4}=V\left(x^{2}-y^{3}\right)$
7. $X_{5}=V\left(x^{2}-y^{4}\right)$.

Prove that no two of the varieties X_{i} are isomorphic. (Note: we are not adopting the convention that varieties are assumed irreducible.)
3. (AT) Let D^{n} be a closed disc in \mathbb{R}^{n} and $S^{n-1}=\partial D^{n}$ its boundary. For any topological space X and map $\alpha: S^{n-1} \rightarrow X$, we define the space Y obtained from X by attaching an n-cell via the map α to be the quotient of the disjoint union $D^{n} \sqcup X$ by the equivalence relation generated by $p \sim \alpha(p)$ for all $p \in \partial D^{n}$. Assuming that the Betti numbers of X are finite, show that one of the two following statements holds:

1. the nth Betti number of Y is 1 greater than the nth Betti number of X, and all other Betti numbers are equal; or
2. the $(n-1)$ st Betti number of Y is 1 less than the $(n-1)$ st Betti number of X, and all other Betti numbers are equal.
3. (CA) Evaluate the series

$$
\sum_{n=-\infty}^{\infty} \frac{n^{2}+n+1}{n^{4}+1}
$$

by integrating $R(z)$ cot πz for some appropriate rational function $R(z)$ over the boundary of the square $C_{n} \subset \mathbb{C}$ whose four vertices are $\left(n+\frac{1}{2}\right)(\pm 1 \pm i)$ and then letting $n \rightarrow \infty$.
5. (DG) Let $c>0$. Consider the catenary C defined by

$$
x=c \cosh \left(\frac{z}{c}\right)
$$

in the $x z$-plane. Let S be the catenoid in the $x y z$-space obtained by rotating the catenary C with respect to the z-axis. Use θ, z as coordinates for S, where θ is from the polar coordinates (r, θ) of the $x y$-plane. In terms of (θ, z), write down the first and second fundamental forms of S and the mean curvature and Gaussian curvature of S.
6. (RA) Suppose $f:[-1,1] \rightarrow \mathbf{R}$ is a continuous function such that

$$
\int_{-1}^{1} x^{2 n} f(x) d x=0
$$

for each $n=0,1,2,3, \ldots$. Prove that f is an odd function (i.e., that $f(-x)=$ $-f(x)$ for all $x \in[-1,1])$.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday September 1, 2021 (Day 2)

1. (AT)
(a) Let X and Y be compact, connected, oriented n-manifolds, and $f: X \rightarrow$ Y a continuous map. Define the degree of the map f.
(b) Let S^{n} be the unit sphere in \mathbb{R}^{n+1}, and let $r_{i}: S^{n} \rightarrow S^{n}$ be the reflection in the i th axis; that is, the map

$$
\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(x_{0}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

What is the degree of r_{i} ?
(c) Let S^{n} be the unit sphere in \mathbb{R}^{n+1}, and let $a: S^{n} \rightarrow S^{n}$ be the antipodal map sending x to $-x$. What is the degree of a ?
2. (CA) Suppose that $f:\{z: 0<|z|<1\} \rightarrow \mathbb{C}$ is holomorphic and $|f(z)| \leq$ $A|z|^{-3 / 2}$ for some constant A. Prove that there is a complex constant α such that $g(z):=f(z)-\alpha z^{-1}$ can be extended to a holomorphic function on $\{z:|z|<1\}$.
3. (DG) Which of the following smooth manifolds:

1. S^{2},
2. $\mathbb{R P}^{2}$ and
3. $S^{1} \times S^{1}$
admit a closed, non-exact differential 1-form? In each case, either argue why such form does not exist or give an example.
4. (RA) Let \mathbf{T} be the torus $(\mathbf{R} / \mathbf{Z})^{2}$, and let $a: \mathbf{T} \rightarrow \mathbf{R}$ be any continuous function. Prove that the \mathbf{R}-vector space of solutions of the partial differential equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=a f
$$

in functions $f: \mathbf{T} \rightarrow \mathbf{R}$ is finite dimensional.
5. (A) Consider the polynomial $f(x)=x^{4}+1$.
(a) Prove that the Galois group G of f over \mathbb{Q} has order 4.
(b) Show that G is in fact isomorphic to the group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(c) Is there any prime $p>2$ such that f is irreducible over the finite field of order p ?
6. (AG) Let $C \subset \mathbb{P}^{3}$ be a smooth, irreducible, nondegenerate curve of degree 4 .
(a) If the genus of C is 0 , show that C is contained in a quadric surface.
(b) If the genus of C is 1 , show that C is equal to the intersection of two quadric surfaces.
(c) Show that the genus of C cannot be greater than 1 .

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Thursday September 2, 2021 (Day 3)

1. (DG) Let $a_{i j}$ for $1 \leq i \leq n-1$ and $1 \leq j \leq n$ be real constants. For $1 \leq i \leq n-1$ consider the vector field

$$
X_{i}=(\underbrace{0, \cdots, 0,1,0 \cdots, 0}_{1 \text { in } i^{\mathrm{th}} \text { position }}, \sum_{j=1}^{n} a_{i j} x_{j})
$$

on \mathbb{R}^{n} (with coordinates x_{1}, \cdots, x_{n}). Let Π be the distribution of the tangent subspace of dimension $n-1$ in \mathbb{R}^{n} spanned by X_{1}, \cdots, X_{n-1}. Determine the necessary and sufficient condition for Π to be integrable. Express the condition in terms of symmetry properties of the $(n-1) \times(n-1)$ matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n-1}$ and the relation among the ratios $\frac{a_{i k}}{a_{j k}}$ for $1 \leq i<j \leq n-1$ and $1 \leq \bar{k} \leq n$.
2. (RA) Suppose U and V are two random variables. We say that U and V are uncorrelated if $\operatorname{Cov}(U, V)=\mathbb{E}[U V]-\mathbb{E}[U] \mathbb{E}[V]=0$.
(a) Is it true that if U and V are uncorrelated, then U and V are independent? Prove it or give a counter example.
(b) Suppose X and Y are distributed by the following bivariate normal distribution with density

$$
f(x, y)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} e^{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}}
$$

where $0<\rho<1$ is a parameter. Let $U=X+a Y$ and $V=X+b Y$ with $a, b \neq 0$. Find the condition that $\operatorname{Cov}(U, V)=0$. In this case, prove that U and V are independent (you cannot just cite a theorem).
3. (A) Suppose R is a commutative ring with unit, I an ideal in R, and M a finitely-generated R-module. If $I M=M$, prove that there exists $r \in R$ such that $r-1 \in I$ and $r M=0$.
4. (AG) Let $\mathbb{P}^{n^{2}-1}$ be the variety of nonzero $n \times n$ complex matrices modulo scalars. Consider the set

$$
X:=\left\{[A] \in \mathbb{P}^{n^{2}-1} \mid A \text { is nilpotent }\right\}
$$

(a) Show that X is a closed subvariety of $\mathbb{P}^{n^{2}-1}$.
(b) Show that X is irreducible, and find its dimension.
5. (AT) Let M be a connected closed 4-manifold such that $\pi_{1}(M)$ is perfect; that is, does not have any non-trivial abelian quotients. Determine the possible cohomology groups $H^{*}(M, \mathbb{Z})$.
6. (CA) Let $a<b$ and $f(z)$ be a continuous function on the closed strip $\{a \leq$ $x \leq b\}$ which is holomorphic on its interior $\{a<x<b\}$, where $z=x+i y$, such that $|f(z)|=O\left(e^{\varepsilon|y|}\right)$ on $\{a \leq x \leq b\}$ for every $\varepsilon>0$ as $|y| \rightarrow \infty$. If $|f(z)| \leq M$ on the boundary $\{x=a$ or $x=b\}$ of the strip $\{a \leq x \leq b\}$ and on the interval $[a, b]$ for some positive number M, prove that $|f(z)| \leq M$ on the entire closed strip $\{a \leq x \leq b\}$.

Hint: Consider

$$
g_{\varepsilon}(z)=e^{\varepsilon i z} f(z) \quad \text { and } h_{\varepsilon}(z)=e^{-\varepsilon i z} f(z)
$$

