QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Tuesday September 1, 2020 (Day 1)

- **1.** (AG) Let X be a smooth projective curve of genus g, and let $p \in X$ be a point. Show that there exists a nonconstant rational function f which is regular everywhere except for a pole of order $\leq g + 1$ at p.
- **2.** (CA) Let $U \subset \mathbb{C}$ be an open set containing the closed unit disc $\overline{\Delta} = \{z \in \mathbb{C} : |z| \leq 1\}$, and suppose that f is a function on U holomorphic except for a simple pole at z_0 with $|z_0| = 1$. Show that if

$$\sum_{n=0}^{\infty} a_n z^n$$

denotes the power series expansion of f in the open unit disk, then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0.$$

- **3.** (RA) Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers that converges to some $A \in \mathbb{R}$. Prove that $(1-x)\sum_{n=0}^{\infty} a_n x^n \to A$ as x approaches 1 from below.
- 4. (A) Prove that every finite group of order $72 = 2^3 \cdot 3^2$ is not a simple group.
- 5. (AT) Let X be a topological space and $A \subset X$ a subset with the induced topology. Recall that a *retraction* of X onto A is a continuous map $f: X \to A$ such that f(a) = a for all $a \in A$.

Let $I = [0, 1] \subset \mathbb{R}$ be the closed unit interval, and

$$M = I \times I/(0, y) \sim (1, 1 - y) \ \forall \ y \in I$$

the closed Möbius strip; by the *boundary* of the Möbius strip we will mean the image of $I \times \{0, 1\}$ in M. Show that there does not exist a retraction of the Möbius strip onto its boundary. **6.** (DG) Let S be a surface of revolution

$$\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)) = (v \cos u, v \sin u, f(v))$$

where $0 < v < \infty$ and $0 \le u \le 2\pi$ and f(v) is a C^{∞} function on $(0, \infty)$. Determine the set of all $0 \le \alpha \le 2\pi$ such that the curve $u = \alpha$ (called a meridian) is a geodesic of S, and determine the set of all $\beta > 0$ such that the curve $v = \beta$ (called a parallel) is a geodesic of S.

Hint: To determine whether a meridian or a parallel is a geodesic, parametrize it by its arc-length and use the arc-length equation besides the two second-order ordinary differential equations for a geodesic. For your convenience the formulas for the Christoffel symbols in terms of the first fundamental form $Edu^2 + 2Fdudv + Gdv^2$ are listed below.

$$\begin{split} \Gamma_{11}^{1} &= \frac{GE_{u} - 2F_{u} + FE_{v}}{2(EG - F^{2})}, \quad \Gamma_{11}^{2} &= \frac{2EF_{u} - EE_{v} - FE_{u}}{2(EG - F^{2})}, \\ \Gamma_{12}^{1} &= \frac{GE_{v} - FG_{u}}{2(EG - F^{2})}, \quad \Gamma_{12}^{2} &= \frac{EG_{u} - FE_{v}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{v} - GG_{u} - FG_{v}}{2(EG - F^{2})}, \quad \Gamma_{22}^{2} &= \frac{EG_{v} - 2FF_{v} + FG_{u}}{2(EG - F^{2})} \end{split}$$

where the subscript u or v for the function E, F, or G means partial differentiation of the function with respect to u or v.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics

Wednesday September 2, 2020 (Day 2)

1. (CA) Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} \mathrm{d}x.$$

You need to prove that the error terms vanish in the residue calculation.

- **2.** (AG) Let $X \subset \mathbb{P}^n$ be an irreducible projective variety of dimension k. Let $\mathbb{G}(\ell, n)$ be the Grassmannian of ℓ -planes in \mathbb{P}^n for some $\ell < n k$, and let $C(X) \subset \mathbb{G}(\ell, n)$ the algebraic variety of ℓ -planes meeting X. Prove that C(X) is irreducible, and find its dimension.
- **3.** (RA) Let $\{f_n\}$ be a sequence of functions on $X = (0,1) \subset \mathbb{R}$, converging almost everywhere to f. Suppose moreover that $\sup_n ||f_n||_{L^2(X)} \leq M$ for some M fixed. Under these conditions, answer the following questions by giving a counterexample or proving your answer.
 - (a) Do we know $||f||_{L^2(X)} < \infty$?
 - (b) Do we know $\lim_{n\to\infty} ||f_n f||_{L^2(X)} = 0$? Do we know that

$$\lim_{n \to \infty} \|f_n - f\|_{L^p(X)} = 0 \quad \text{for} \quad 1$$

(c) If we assume, in addition, that $\lim_{n\to\infty} ||f_n||_{L^2(X)} = ||f||_{L^2(X)} < \infty$, do we know that

$$\lim_{n \to \infty} \|f_n - f\|_{L^2(X)} = 0?$$

- 4. (A) Let R be a commutative ring with 1. Show that if every proper ideal of R is a prime ideal, then R is a field.
- 5. (AT) Let $D = \{z \in \mathbb{C} : |z| \leq 1\}$ be the closed unit disc in the complex plane, and let X be the space obtained from D by identifying points on the boundary differing by multiplication by powers of $e^{2\pi i/5}$; that is, we let \sim be the equivalence relation on D given by

$$z \sim w$$
 if $|z| = |w| = 1$ and $(z/w)^5 = 1$.

- (a) Find the homology groups of X with coefficients in \mathbb{Z} .
- (b) Find the homology groups of X with coefficients in $\mathbb{Z}/5$.
- 6. (DG) Suppose G is a compact Lie group with Lie algebra \mathfrak{g} . Consider an element $g \in G$, and let $\mathfrak{c} \subset \mathfrak{g}$ be the subalgebra $\mathfrak{c} = \{X | \operatorname{Ad}_g(X) = X\}$. Show there exists some $\epsilon > 0$ such that for all $X \in \mathfrak{g}$ with $|X| < \epsilon$, there exists $Y \in \mathfrak{c}$ such that $g \exp(X)$ is conjugate to $g \exp(Y)$.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Thursday September 3, 2020 (Day 3)

- 1. (AG) Let $C \subset \mathbb{P}^3$ be an algebraic curve (that is, an irreducible, one-dimensional subvariety of \mathbb{P}^3), and suppose that $p_C(m)$ and $h_C(m)$ are its Hilbert polynomial and Hilbert function respectively. Which of the following are possible?
 - 1. $p_C(m) = 3m + 1$ and $h_C(1) = 3$; 2. $p_C(m) = 3m + 1$ and $h_C(1) = 4$.
- **2.** (RA) The weak law of large numbers states that the following is correct: Let X_1, X_2, \ldots, X_n be independent random variables such that $|\mu_j| = |\mathbb{E}X_j| \le 1$ and $\mathbb{E}(X_j \mu_j)^2 = V_j \le 1$. Let $S_n = X_1 + \ldots + X_n$. Then for any $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\Big(|\frac{S_n - \sum_j \mu_j}{n}| > \varepsilon \Big) = 0. \tag{+}$$

Now suppose that we don't know the independence of the sequence X_1, X_2, \ldots, X_n , but we know that there is a function $g : \{0\} \cup \mathbb{N} \to \mathbb{R}$ with $\lim_{k\to\infty} g(k) = 0$ such that for all $j \ge i$

$$\mathbb{E}X_i X_j = g(j-i)$$

In other words, the correlation functions vanishing asymptotically. Do we know whether the conclusion (+) still holds? Give a counterexample or prove your answer.

3. (CA)

- (a) Suppose that both f and g are analytic in a neighborhood of a disk D with boundary circle C. If |f(z)| > |g(z)| for all $z \in C$, prove that f and f + g have the same number of zeros inside C, counting multiplicity.
- (b) How many roots of

$$p(z) = z^7 - 2z^5 + 6z^3 - z + 1 = 0$$

are there in the unit disc in |z| < 1, again counting multiplicity?

4. (AT) Let $S^1 = \mathbb{R}/\mathbb{Z}$ be a circle, and let S^2 be a two-dimensional sphere. Consider involutions on both, with an involution on S^1 defined by $x \mapsto -x$ for $x \in \mathbb{R}$, and with $j: S^2 \to S^2$ defined by reflection about an equator. Let M be the space of maps that respects these involutions, i.e.

$$M = \{ f : S^1 \to S^2 \mid f(-x) = j(f(x)) \}.$$

Show M is connected but not simply-connected.

5. (DG) Let \mathbb{H} denote the upper half-plane; that is, $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$, with the metric $\frac{1}{y^2} dx dy$ for z = x + iy. Suppose Γ is a group of isometries acting on \mathbb{H} such that \mathbb{H}/Γ is a smooth surface S, and you are given that a fundamental domain D for the action of Γ on \mathbb{H} is given as follows:

$$D = \{x + iy \in \mathbb{H} \mid -\frac{3}{2} \le x \le \frac{3}{2}, (x - c)^2 + y^2 \ge \frac{1}{9} \text{ for } c \in \{\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}\}\}.$$

Compute $\chi(S)$ using Gauss-Bonnet. You may use that the (Gaussian) curvature of \mathbb{H} is identically equal to -1.

6. (A) Fix a prime p.

i) Suppose F is a field of characteristic p, and $c \in F$ is not of the form $a^p - a$ for any $a \in F$. Prove that the polynomial $P(X) = X^p - X - c$ is irreducible and that if x is any root of P then F(x) is a normal extension of F with Galois group isomorphic with $\mathbf{Z}/p\mathbf{Z}$.

ii) Suppose $Q \in \mathbf{Z}[X]$ is a monic polynomial of degree p such that $Q \equiv X^p - X - c \mod p$ for some integer $c \neq 0 \mod p$, and that Q has exactly p - 2 real roots. Prove that the Galois group of Q is the full symmetric group S_p .