1. (AG) Let X be a smooth projective curve of genus g, and let $p \in X$ be a point. Show that there exists a nonconstant rational function f which is regular everywhere except for a pole of order $\leq g + 1$ at p.

2. (CA) Let $U \subset \mathbb{C}$ be an open set containing the closed unit disc $\Delta = \{z \in \mathbb{C} : |z| \leq 1\}$, and suppose that f is a function on U holomorphic except for a simple pole at z_0 with $|z_0| = 1$. Show that if

$$\sum_{n=0}^{\infty} a_n z^n$$

denotes the power series expansion of f in the open unit disk, then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0.$$

3. (RA) Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers that converges to some $A \in \mathbb{R}$. Prove that $(1 - x) \sum_{n=0}^{\infty} a_n x^n \to A$ as x approaches 1 from below.

4. (A) Prove that every finite group of order $72 = 2^3 \cdot 3^2$ is not a simple group.

5. (AT) Let X be a topological space and $A \subset X$ a subset with the induced topology. Recall that a retraction of X onto A is a continuous map $f : X \to A$ such that $f(a) = a$ for all $a \in A$.

Let $I = [0,1] \subset \mathbb{R}$ be the closed unit interval, and

$$M = I \times I/(0,y) \sim (1,1-y) \forall y \in I$$

the closed Möbius strip; by the boundary of the Möbius strip we will mean the image of $I \times \{0,1\}$ in M. Show that there does not exist a retraction of the Möbius strip onto its boundary.
6. (DG) Let S be a surface of revolution

$$\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)) = (v \cos u, v \sin u, f(v))$$

where $0 < v < \infty$ and $0 \leq u \leq 2\pi$ and $f(v)$ is a C^∞ function on $(0, \infty)$. Determine the set of all $0 \leq \alpha \leq 2\pi$ such that the curve $u = \alpha$ (called a meridian) is a geodesic of S, and determine the set of all $\beta > 0$ such that the curve $v = \beta$ (called a parallel) is a geodesic of S.

Hint: To determine whether a meridian or a parallel is a geodesic, parametrize it by its arc-length and use the arc-length equation besides the two second-order ordinary differential equations for a geodesic. For your convenience the formulas for the Christoffel symbols in terms of the first fundamental form $Edu^2 + 2Fdu dv + Gdv^2$ are listed below.

$$
\Gamma^1_{11} = \frac{GE_u - 2F_u + FE_v}{2(EG - F^2)}, \quad \Gamma^2_{11} = \frac{2EF_u - EE_v - FE_u}{2(EG - F^2)},
$$
$$
\Gamma^1_{12} = \frac{GE_v - FG_u}{2(EG - F^2)}, \quad \Gamma^2_{12} = \frac{EG_u - FE_v}{2(EG - F^2)},
$$
$$
\Gamma^1_{22} = \frac{2GF_v - GG_u - FG_v}{2(EG - F^2)}, \quad \Gamma^2_{22} = \frac{EG_v - 2FF_v + FG_u}{2(EG - F^2)}
$$

where the subscript u or v for the function E, F, or G means partial differentiation of the function with respect to u or v.
1. (CA) Evaluate the integral
\[\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} \, dx. \]
You need to prove that the error terms vanish in the residue calculation.

2. (AG) Let \(X \subset \mathbb{P}^n \) be an irreducible projective variety of dimension \(k \). Let \(\mathbb{G}(\ell, n) \) be the Grassmannian of \(\ell \)-planes in \(\mathbb{P}^n \) for some \(\ell < n - k \), and let \(C(X) \subset \mathbb{G}(\ell, n) \) the algebraic variety of \(\ell \)-planes meeting \(X \). Prove that \(C(X) \) is irreducible, and find its dimension.

3. (RA) Let \(\{f_n\} \) be a sequence of functions on \(X = (0, 1) \subset \mathbb{R} \), converging almost everywhere to \(f \). Suppose moreover that \(\sup_n \|f_n\|_{L^2(X)} \leq M \) for some \(M \) fixed. Under these conditions, answer the following questions by giving a counterexample or proving your answer.

 (a) Do we know \(\|f\|_{L^2(X)} < \infty \)?
 (b) Do we know \(\lim_{n \to \infty} \|f_n - f\|_{L^2(X)} = 0 \)? Do we know that \(\lim_{n \to \infty} \|f_n - f\|_{L^p(X)} = 0 \) for \(1 < p < 2 \)?
 (c) If we assume, in addition, that \(\lim_{n \to \infty} \|f_n\|_{L^2(X)} = \|f\|_{L^2(X)} < \infty \), do we know that \(\lim_{n \to \infty} \|f_n - f\|_{L^2(X)} = 0 \)?

4. (A) Let \(R \) be a commutative ring with 1. Show that if every proper ideal of \(R \) is a prime ideal, then \(R \) is a field.

5. (AT) Let \(D = \{z \in \mathbb{C} : |z| \leq 1\} \) be the closed unit disc in the complex plane, and let \(X \) be the space obtained from \(D \) by identifying points on the boundary differing by multiplication by powers of \(e^{2\pi i/5} \); that is, we let \(\sim \) be the equivalence relation on \(D \) given by
\[z \sim w \text{ if } |z| = |w| = 1 \text{ and } (z/w)^5 = 1. \]
(a) Find the homology groups of X with coefficients in \mathbb{Z}.
(b) Find the homology groups of X with coefficients in $\mathbb{Z}/5$.

6. (DG) Suppose G is a compact Lie group with Lie algebra \mathfrak{g}. Consider an element $g \in G$, and let $\mathfrak{c} \subset \mathfrak{g}$ be the subalgebra $\mathfrak{c} = \{X|\text{Ad}_g(X) = X\}$. Show there exists some $\epsilon > 0$ such that for all $X \in \mathfrak{g}$ with $|X| < \epsilon$, there exists $Y \in \mathfrak{c}$ such that $g \exp(X)$ is conjugate to $g \exp(Y)$.
1. (AG) Let $C \subset \mathbb{P}^3$ be an algebraic curve (that is, an irreducible, one-dimensional subvariety of \mathbb{P}^3), and suppose that $p_C(m)$ and $h_C(m)$ are its Hilbert polynomial and Hilbert function respectively. Which of the following are possible?

1. $p_C(m) = 3m + 1$ and $h_C(1) = 3$;
2. $p_C(m) = 3m + 1$ and $h_C(1) = 4$.

2. (RA) The weak law of large numbers states that the following is correct: Let X_1, X_2, \ldots, X_n be independent random variables such that $|\mu_j| = |E X_j| \leq 1$ and $E(X_j - \mu_j)^2 = V_j \leq 1$. Let $S_n = X_1 + \ldots + X_n$. Then for any $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\left(|\frac{S_n - \sum j \mu_j}{n}| > \varepsilon\right) = 0.$$

Now suppose that we don’t know the independence of the sequence X_1, X_2, \ldots, X_n, but we know that there is a function $g : \{0\} \cup \mathbb{N} \to \mathbb{R}$ with $\lim_{k \to \infty} g(k) = 0$ such that for all $j \geq i$

$$E X_i X_j = g(j - i).$$

In other words, the correlation functions vanishing asymptotically. Do we know whether the conclusion (+) still holds? Give a counterexample or prove your answer.

3. (CA)

(a) Suppose that both f and g are analytic in a neighborhood of a disk D with boundary circle C. If $|f(z)| > |g(z)|$ for all $z \in C$, prove that f and $f + g$ have the same number of zeros inside C, counting multiplicity.

(b) How many roots of

$$p(z) = z^7 - 2z^5 + 6z^3 - z + 1 = 0$$

are there in the unit disc in $|z| < 1$, again counting multiplicity?

4. (AT) Let $S^1 = \mathbb{R}/\mathbb{Z}$ be a circle, and let S^2 be a two-dimensional sphere. Consider involutions on both, with an involution on S^1 defined by $x \mapsto -x$
for $x \in \mathbb{R}$, and with $j : S^2 \to S^2$ defined by reflection about an equator. Let M be the space of maps that respects these involutions, i.e.

$$M = \{ f : S^1 \to S^2 \mid f(-x) = j(f(x)) \}.$$

Show M is connected but not simply-connected.

5. (DG) Let \mathbb{H} denote the upper half-plane; that is, $\mathbb{H} = \{ z \in \mathbb{C} : \text{Im } z > 0 \}$, with the metric $\frac{1}{y^2} dx dy$ for $z = x + iy$. Suppose Γ is a group of isometries acting on \mathbb{H} such that \mathbb{H}/Γ is a smooth surface S, and you are given that a fundamental domain D for the action of Γ on \mathbb{H} is given as follows:

$$D = \{ x + iy \in \mathbb{H} \mid -\frac{3}{2} \leq x \leq \frac{3}{2}, (x-c)^2 + y^2 \geq \frac{1}{9} \text{ for } c \in \{ \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3} \} \}.$$

Compute $\chi(S)$ using Gauss-Bonnet. You may use that the (Gaussian) curvature of \mathbb{H} is identically equal to -1.

6. (A) Fix a prime p.

i) Suppose F is a field of characteristic p, and $c \in F$ is not of the form $a^p - a$ for any $a \in F$. Prove that the polynomial $P(X) = X^p - X - c$ is irreducible and that if x is any root of P then $F(x)$ is a normal extension of F with Galois group isomorphic with $\mathbb{Z}/p\mathbb{Z}$.

ii) Suppose $Q \in \mathbb{Z}[X]$ is a monic polynomial of degree p such that $Q \equiv X^p - X - c \mod p$ for some integer $c \neq 0 \mod p$, and that Q has exactly $p - 2$ real roots. Prove that the Galois group of Q is the full symmetric group S_p.