QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, February 25, 1997 (Day 1)

1. Factor the polynomial $x^3 - x + 1$ and find the Galois group of its splitting field if the ground field is:

a) \mathbf{R} , b) \mathbf{Q} , c) $\mathbf{Z}/2\mathbf{Z}$.

2. Let A be the $n \times n$ (real or complex) matrix

1	0	1	0		0 \	
	0	0	1		0	
	÷	÷	÷	·	÷	
	0	0	0		1	
/	1/n	1/n	1/n		1/n	

Prove that as $k \to \infty$, A^k tends to a projection operator P onto a one-dimensional subspace. Find ker P and Image P.

3. a. Show that there are infinitely many primes p congruent to $3 \mod 4$.

b. Show that there are infinitely many primes p congruent to 1 mod 4.

4. a. Let L_1, L_2 and $L_3 \subset \mathbf{P}^3_{\mathbf{C}}$ be three pairwise skew lines. Describe the locus of lines $L \subset \mathbf{P}^3_{\mathbf{C}}$ meeting all three.

b. Now let L_1, L_2, L_3 and $L_4 \subset \mathbf{P}^3_{\mathbf{C}}$ be four pairwise skew lines. Show that if there are three or more lines $L \subset \mathbf{P}^3_{\mathbf{C}}$ meeting all four, then there are infinitely many.

5. a. State the Poincaré duality and Kunneth theorems for homology with coefficients in \mathbf{Z} (partial credit for coefficients in \mathbf{Q}).

b. Find an example of a compact 4-manifold M whose first and third Betti numbers are not equal, that is, such that $H^1(M, \mathbf{Q})$ and $H^3(M, \mathbf{Q})$ do not have the same dimension.

6. Compute

$$\int_0^\infty \frac{\log x}{x^2 + b^2} \, dx$$

for b a positive real number.

QUALIFYING EXAMINATION Harvard University Department of Mathematics Wednesday, February 26, 1997 (Day 2)

1. Define a metric on the unit disc $\{(x, y) \in \mathbf{R}^2 : x^2 + y^2 < 1\}$ by the line element

$$ds^2 = \frac{dr^2 + r^2 d\theta^2}{(1 - r^2)^p}$$

Here (r, θ) are polar coordinates and p is any real number.

- a. For which p is the circle r = 1/2 a geodesic?
- b. Compute the Gaussian curvature of this metric.

2. Let C be the space C[0, 1] of continuous real-valued functions on the closed interval [0, 1], with the sup norm

$$||f||_{\infty} = \max_{t \in [0,1]} f(t).$$

Let \mathcal{C}^1 be the space $\mathcal{C}^1[0,1]$ of \mathcal{C}^1 functions on [0,1] with the norm

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$

Prove that the natural inclusion $\mathcal{C}^1 \subset \mathcal{C}$ is a compact operator.

3. Let M be a compact Riemann surface, and let f and g be two meromorphic functions on M. Show that there exists a polynomial $P \in \mathbf{C}[X, Y]$ such that $P(f(z), g(z)) \equiv 0$.

4. Let $S^3 = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 1\}$. Let p be a prime and m an integer relatively prime to p. Let ζ be a primitive p^{th} root of unity, and let the group G of p^{th} roots of unity act on S^3 by letting $\zeta \in G$ send (z, w) to $(\zeta z, \zeta^m w)$. Let $M = S^3/G$.

- a. compute $\pi_i(M)$ for i = 1, 2 and 3.
- b. compute $H_i(M, \mathbf{Z})$ for i = 1, 2 and 3.
- c. compute $H^i(M, \mathbb{Z})$ for i = 1, 2 and 3.

5. Let d be a square-free integer. Compute the integral closure of \mathbf{Z} in $\mathbf{Q}(\sqrt{d})$. Give an example where this ring is not a principal ideal domain, and give an example of a non-principal ideal.

6. Prove that

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}.$$

QUALIFYING EXAMINATION Harvard University Department of Mathematics Thursday, October 17, 1996 (Day 3)

1. Let $\alpha : (0,1) \to \mathbf{R}^3$ be any regular arc (that is, α is differentiable and α' is nowhere zero). Let $\mathbf{t}(u)$, $\mathbf{n}(u)$ and $\mathbf{b}(u)$ be the unit tangent, normal and binormal vectors to α at $\alpha(u)$. Consider the *normal tube of radius* ϵ around α , that is, the surface given parametrically by

$$\phi(u, v) = \alpha(u) + \epsilon \cos(v)\mathbf{n}(u) + \epsilon \sin(v)\mathbf{b}(u).$$

a. For what values of ϵ is this an immersion?

b. Assuming that α itself has finite length, find the surface area of the normal tube of radius ϵ around α .

The answers to both questions should be expressed in terms of the curvature $\kappa(u)$ and torsion $\tau(u)$ of α .

2. Recall that a fundamental solution of a linear partial differential operator P on \mathbb{R}^n is a distribution E on \mathbb{R}^n such that $PE = \delta$ in the distribution sense, where δ is the unit Dirac measure at the origin. Find a fundamental solution E of the Laplacian on \mathbb{R}^3

$$\Delta = \sum_{i=1}^{3} \frac{\partial^2}{\partial x_i^2}$$

that is a function of r = |x| alone. Prove that your fundamental solution indeed satisfies $\Delta E = \delta$.

<u>Hint</u>: Use the appropriate form of Green's theorem.

3. The group of rotations of the cube in \mathbb{R}^3 is the symmetric group S_4 on four letters. Consider the action of this group on the set of 8 vertices of the cube, and the corresponding permutation representation of S_4 on \mathbb{C}^8 . Describe the decomposition of this representation into irreducible representations. 4. Suppose a_i , i = i, ..., n are positive real numbers with $a_1 + ... + a_n = 1$. Prove that for any nonnegative real numbers $\lambda_1, ..., \lambda_n$,

$$\sum_{i=1}^{n} a_i \lambda_i^2 \geq \left(\sum_{i=1}^{n} a_i \lambda_i\right)^2$$

with equality holding only if $\lambda_1 = \ldots = \lambda_n$.

5. a. For which natural numbers n is it the case that every continuous map from $\mathbf{P}_{\mathbf{C}}^{n}$ to itself has a fixed point?

b. For which n is it the case that every continuous map from $\mathbf{P}^{n}_{\mathbf{R}}$ to itself has a fixed point?

6. Fermat proved that the number $2^{37} - 1 = 137438953471$ was composite by finding a small prime factor p. Suppose you know that 200 . What is <math>p?