QUALIFYING EXAMINATION<br>Harvard University<br>Department of Mathematics<br>Tuesday, February 25, 1997 (Day 1)

1. Factor the polynomial $x^{3}-x+1$ and find the Galois group of its splitting field if the ground field is:
a) $\mathbf{R}$,
b) $\mathbf{Q}$,
c) $\mathbf{Z} / 2 \mathbf{Z}$.
2. Let $A$ be the $n \times n$ (real or complex) matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 / n & 1 / n & 1 / n & \ldots & 1 / n
\end{array}\right)
$$

Prove that as $k \rightarrow \infty, A^{k}$ tends to a projection operator $P$ onto a one-dimensional subspace. Find ker $P$ and Image $P$.
3. a. Show that there are infinitely many primes $p$ congruent to $3 \bmod 4$.
b. Show that there are infinitely many primes $p$ congruent to $1 \bmod 4$.
4. a. Let $L_{1}, L_{2}$ and $L_{3} \subset \mathbf{P}_{\mathbf{C}}^{3}$ be three pairwise skew lines. Describe the locus of lines $L \subset \mathbf{P}_{\mathrm{C}}^{3}$ meeting all three.
b. Now let $L_{1}, L_{2}, L_{3}$ and $L_{4} \subset \mathbf{P}_{\mathbf{C}}^{3}$ be four pairwise skew lines. Show that if there are three or more lines $L \subset \mathbf{P}_{\mathbf{C}}^{3}$ meeting all four, then there are infinitely many.
5. a. State the Poincaré duality and Kunneth theorems for homology with coefficients in $\mathbf{Z}$ (partial credit for coefficients in $\mathbf{Q}$ ).
b. Find an example of a compact 4-manifold $M$ whose first and third Betti numbers are not equal, that is, such that $H^{1}(M, \mathbf{Q})$ and $H^{3}(M, \mathbf{Q})$ do not have the same dimension.
6. Compute

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+b^{2}} d x
$$

for $b$ a positive real number.

# QUALIFYING EXAMINATION 

Harvard University
Department of Mathematics
Wednesday, February 26, 1997 (Day 2)

1. Define a metric on the unit disc $\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}<1\right\}$ by the line element

$$
d s^{2}=\frac{d r^{2}+r^{2} d \theta^{2}}{\left(1-r^{2}\right)^{p}}
$$

Here $(r, \theta)$ are polar coordinates and $p$ is any real number.
a. For which $p$ is the circle $r=1 / 2$ a geodesic?
b. Compute the Gaussian curvature of this metric.
2. Let $\mathcal{C}$ be the space $\mathcal{C}[0,1]$ of continuous real-valued functions on the closed interval $[0,1]$, with the sup norm

$$
\|f\|_{\infty}=\max _{t \in[0,1]} f(t)
$$

Let $\mathcal{C}^{1}$ be the space $\mathcal{C}^{1}[0,1]$ of $\mathcal{C}^{1}$ functions on $[0,1]$ with the norm

$$
\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}
$$

Prove that the natural inclusion $\mathcal{C}^{1} \subset \mathcal{C}$ is a compact operator.
3. Let $M$ be a compact Riemann surface, and let $f$ and $g$ be two meromorphic functions on $M$. Show that there exists a polynomial $P \in \mathbf{C}[X, Y]$ such that $P(f(z), g(z)) \equiv 0$.
4. Let $S^{3}=\left\{(z, w) \in \mathbf{C}^{2}:|z|^{2}+|w|^{2}=1\right\}$. Let $p$ be a prime and $m$ an integer relatively prime to $p$. Let $\zeta$ be a primitive $p^{\text {th }}$ root of unity, and let the group $G$ of $p^{\text {th }}$ roots of unity act on $S^{3}$ by letting $\zeta \in G$ send $(z, w)$ to $\left(\zeta z, \zeta^{m} w\right)$. Let $M=S^{3} / G$.
a. compute $\pi_{i}(M)$ for $i=1,2$ and 3 .
b. compute $H_{i}(M, \mathbf{Z})$ for $i=1,2$ and 3 .
c. compute $H^{i}(M, \mathbf{Z})$ for $i=1,2$ and 3 .
5. Let $d$ be a square-free integer. Compute the integral closure of $\mathbf{Z}$ in $\mathbf{Q}(\sqrt{d})$. Give an example where this ring is not a principal ideal domain, and give an example of a non-principal ideal.
6. Prove that

$$
\frac{\pi^{2}}{\sin ^{2} \pi z}=\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^{2}}
$$

QUALIFYING EXAMINATION<br>Harvard University<br>Department of Mathematics<br>Thursday, October 17, 1996 (Day 3)

1. Let $\alpha:(0,1) \rightarrow \mathbf{R}^{3}$ be any regular arc (that is, $\alpha$ is differentiable and $\alpha^{\prime}$ is nowhere zero). Let $\mathbf{t}(u), \mathbf{n}(u)$ and $\mathbf{b}(u)$ be the unit tangent, normal and binormal vectors to $\alpha$ at $\alpha(u)$. Consider the normal tube of radius $\epsilon$ around $\alpha$, that is, the surface given parametrically by

$$
\phi(u, v)=\alpha(u)+\epsilon \cos (v) \mathbf{n}(u)+\epsilon \sin (v) \mathbf{b}(u) .
$$

a. For what values of $\epsilon$ is this an immersion?
b. Assuming that $\alpha$ itself has finite length, find the surface area of the normal tube of radius $\epsilon$ around $\alpha$.

The answers to both questions should be expressed in terms of the curvature $\kappa(u)$ and torsion $\tau(u)$ of $\alpha$.
2. Recall that a fundamental solution of a linear partial differential operator $P$ on $\mathbf{R}^{n}$ is a distribution $E$ on $\mathbf{R}^{n}$ such that $P E=\delta$ in the distribution sense, where $\delta$ is the unit Dirac measure at the origin. Find a fundamental solution $E$ of the Laplacian on $\mathbf{R}^{3}$

$$
\Delta=\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

that is a function of $r=|x|$ alone. Prove that your fundamental solution indeed satisfies $\Delta E=\delta$.

Hint: Use the appropriate form of Green's theorem.
3. The group of rotations of the cube in $\mathbf{R}^{3}$ is the symmetric group $S_{4}$ on four letters. Consider the action of this group on the set of 8 vertices of the cube, and the corresponding permutation representation of $S_{4}$ on $\mathbf{C}^{8}$. Describe the decomposition of this representation into irreducible representations.
4. Suppose $a_{i}, i=i, \ldots, n$ are positive real numbers with $a_{1}+\ldots+a_{n}=1$. Prove that for any nonnegative real numbers $\lambda_{1}, \ldots, \lambda_{n}$,

$$
\sum_{i=1}^{n} a_{i} \lambda_{i}^{2} \geq\left(\sum_{i=1}^{n} a_{i} \lambda_{i}\right)^{2}
$$

with equality holding only if $\lambda_{1}=\ldots=\lambda_{n}$.
5. a. For which natural numbers $n$ is it the case that every continuous map from $\mathbf{P}_{\mathrm{C}}^{n}$ to itself has a fixed point?
b. For which $n$ is it the case that every continuous map from $\mathbf{P}_{\mathbf{R}}^{n}$ to itself has a fixed point?
6. Fermat proved that the number $2^{37}-1=137438953471$ was composite by finding a small prime factor $p$. Suppose you know that $200<p<300$. What is $p$ ?

