QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Tuesday, March 12 (Day 1)

1. Let X be a compact n-dimensional differentiable manifold, and $Y \subset X$ a closed submanifold of dimension m. Show that the Euler characteristic $\chi(X \backslash Y)$ of the complement of Y in X is given by

$$
\chi(X \backslash Y)=\chi(X)+(-1)^{n-m-1} \chi(Y)
$$

Does the same result hold if we do not assume that X is compact, but only that the Euler characteristics of X and Y are finite?
2. Prove that the infinite sum

$$
\sum_{p \text { prime }} \frac{1}{p}=\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\ldots
$$

diverges.
3. Let $h(x)$ be a \mathcal{C}^{∞} function on the real line \mathbb{R}. Find a \mathcal{C}^{∞} function $u(x, y)$ on an open subset of \mathbb{R}^{2} containing the x-axis such that

$$
\frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=u^{2}
$$

and $u(x, 0)=h(x)$.
4. a) Let K be a field, and let $L=K(\alpha)$ be a finite Galois extension of K. Assume that the Galois group of L over K is cyclic, generated by an automorphism sending α to $\alpha+1$. Prove that K has characteristic $p>0$ and that $\alpha^{p}-\alpha \in K$.
b) Conversely, prove that if K is of characteristic p, then every Galois extension L / K of degree p arises in this way. (Hint: show that there exists $\beta \in L$ with trace 1 , and construct α out of the various conjugates of β.)
5. For small positive α, compute

$$
\int_{0}^{\infty} \frac{x^{\alpha} d x}{x^{2}+x+1}
$$

For what values of $\alpha \in \mathbb{R}$ does the integral actually converge?
6. Let $M \in \mathcal{M}_{n}(\mathbb{C})$ be a complex $n \times n$ matrix such that M is similar to its complex conjugate \bar{M}; i.e., there exists $g \in G L_{n}(\mathbb{C})$ such that $\bar{M}=g M g^{-1}$. Prove that M is similar to a real matrix $M_{0} \in \mathcal{M}_{n}(\mathbb{R})$.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Wednesday, March 13 (Day 2)

1. Prove the Brouwer fixed point theorem: that any continuous map from the closed n-disc $D^{n} \subset \mathbb{R}^{n}$ to itself has a fixed point.
2. Find a harmonic function f on the right half-plane $\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$ satisfying

$$
\lim _{x \rightarrow 0+} f(x+i y)= \begin{cases}1 & \text { if } y>0 \\ -1 & \text { if } y<0\end{cases}
$$

3. Let n be any integer. Show that any odd prime p dividing $n^{2}+1$ is congruent to 1 $(\bmod 4)$.
4. Let V be a vector space of dimension n over a finite field with q elements.
a) Find the number of one-dimensional subspaces of V.
b) For any $k: 1 \leq k \leq n-1$, find the number of k-dimensional subspaces of V.
5. Let K be a field of characteristic 0 . Let \mathbb{P}^{N} be the projective space of homogeneous polynomials $F(X, Y, Z)$ of degree d modulo scalars $(N=d(d+3) / 2)$. Let $W \subset \mathbb{P}^{N}$ be the subset of polynomials F of the form

$$
F(X, Y, Z)=\prod_{i=1}^{d} L_{i}(X, Y, Z)
$$

for some collection of linear forms L_{1}, \ldots, L_{d}.
a. Show that W is a closed subvariety of \mathbb{P}^{N}.
b. What is the dimension of W ?
c. Find the degree of W in case $d=2$ and in case $d=3$.
6. a. Suppose that $M \rightarrow \mathbb{R}^{n+1}$ is an embedding of an n-dimensional Riemannian manifold (i.e., M is a hypersurface). Define the second fundamental form of M.
b. Show that if $M \subset \mathbb{R}^{n+1}$ is a compact hypersurface, its second fundamental form is positive definite (or negative definite, depending on your choice of normal vector) at at least one point of M.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday, March 14 (Day 3)

1. In \mathbb{R}^{3}, let S, L and M be the circle and lines

$$
\begin{aligned}
S & =\left\{(x, y, z): x^{2}+y^{2}=1 ; z=0\right\} \\
L & =\{(x, y, z): x=y=0\} \\
M & =\left\{(x, y, z): x=\frac{1}{2} ; y=0\right\}
\end{aligned}
$$

respectively.
a. Compute the homology groups of the complement $\mathbb{R}^{3} \backslash(S \cup L)$.
b. Compute the homology groups of the complement $\mathbb{R}^{3} \backslash(S \cup L \cup M)$.
2. Let $L, M, N \subset \mathbb{P}_{\mathbb{C}}^{3}$ be any three pairwise disjoint lines in complex projective threespace. Show that there is a unique quadric surface $Q \subset \mathbb{P}_{\mathbb{C}}^{3}$ containing all three.
3. Let G be a compact Lie group, and let $\rho: G \rightarrow G L(V)$ be a representation of G on a finite-dimensional \mathbb{R}-vector space V.
a) Define the dual representation $\rho^{*}: G \rightarrow G L\left(V^{*}\right)$ of V.
b) Show that the two representations V and V^{*} of G are isomorphic.
c) Consider the action of $S O(n)$ on the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$, and the corresponding representation of $S O(n)$ on the vector space V of $\mathcal{C}^{\infty} \mathbb{R}$-valued functions on S^{n-1}. Show that each nonzero irreducible $S O(n)$-subrepresentation $W \subset V$ of V has a nonzero vector fixed by $S O(n-1)$, where we view $S O(n-1)$ as the subgroup of $S O(n)$ fixing the vector $(0, \ldots, 0,1)$.
4. Show that if K is a finite extension field of \mathbb{Q}, and A is the integral closure of \mathbb{Z} in K, then A is a free \mathbb{Z}-module of rank $[K: \mathbb{Q}]$ (the degree of the field extension). (Hint: sandwich A between two free \mathbb{Z}-modules of the same rank.)
5. Let n be a nonnegative integer. Show that

$$
\sum_{\substack{0 \leq k \leq l \\
k+l=n}}(-1)^{l}\binom{l}{k}=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 0 & (\bmod 3) \\
-1 & \text { if } n \equiv 1 & (\bmod 3) \\
0 & \text { if } n \equiv 2 & (\bmod 3)
\end{array} .\right.
$$

(Hint: Use a generating function.)
6. Suppose K is integrable on \mathbb{R}^{n} and for $\epsilon>0$ define

$$
K_{\epsilon}(x)=\epsilon^{-n} K\left(\frac{x}{\epsilon}\right) .
$$

Suppose that $\int_{\mathbb{R}^{n}} K=1$.
a. Show that $\int_{\mathbb{R}^{n}} K_{\epsilon}=1$ and that $\int_{|x|>\delta}\left|K_{\epsilon}\right| \rightarrow 0$ as $\epsilon \rightarrow 0$.
b. Suppose $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and for $\epsilon>0$ let $f_{\epsilon} \in L^{p}\left(\mathbb{R}^{n}\right)$ be the convolution

$$
f_{\epsilon}(x)=\int_{y \in \mathbb{R}^{n}} f(y) K_{\epsilon}(x-y) d y
$$

Show that for $1 \leq p<\infty$ we have

$$
\left\|f_{\epsilon}-f\right\|_{p} \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

c. Conclude that for $1 \leq p<\infty$ the space of smooth compactly supported functions on \mathbb{R}^{n} is dense in $L^{p}\left(\mathbb{R}^{n}\right)$.

Extra problems: Let me know if you think these should replace any of the ones above, either for balance or just by preference.

1. Suppose that $M \rightarrow \mathbb{R}^{N}$ is an embedding of an n-dimensional manifold into N dimensional Euclidean space. Endow M with the induced Riemannian metric. Let γ : $(-1,1) \rightarrow M$ be a curve in M and $\bar{\gamma}:(-1,1) \rightarrow \mathbb{R}^{N}$ be given by composition with the embedding. Assume that $\left\|\frac{d \bar{\gamma}}{d t}\right\| \equiv 1$. Prove that γ is a geodesic iff

$$
\frac{d^{2} \bar{\gamma}}{d t^{2}}
$$

is normal to M at $\gamma(t)$ for all t.
2. Let A be a commutative Noetherian ring. Prove the following statements and explain their geometric meaning (even if you do not prove all the statements below, you may use any statement in proving a subsequent one):
a) A has only finitely many minimal prime ideals $\left\{\mathbf{p}_{\mathbf{k}} \mid k=1, \ldots, n\right\}$, and every prime ideal of A contains one of the $\mathbf{p}_{\mathbf{k}}$.
b) $\bigcap_{k=1}^{n} \mathbf{p}_{\mathbf{k}}$ is the set of nilpotent elements of A.
c) If A is reduced (i.e., its only nilpotent element is 0), then $\bigcup_{k=1}^{n} \mathbf{p}_{\mathbf{k}}$ is the set of zero-divisors of A.
4. Let A be the $n \times n$ matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 / n & 1 / n & 1 / n & \ldots & 1 / n
\end{array}\right) .
$$

Prove that as $k \rightarrow \infty, A^{k}$ tends to a projection operator P onto a one-dimensional subspace. Find the kernel and image of P.

