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PROBLEM 1 (DG)   

Let S denote the surface in R3 where the coordinates (x, y, z) obey x2 + y2 = 1 + z2.  This 

surface can be parametrized by coordinates t ∈ R and θ  ∈ R/(2πZ) by the map 

      

(t, θ) → ψ(t, θ) = ( 1 +  t
2 cos θ, 1 +  t

2 sin θ, t). 

     

a)  Compute the induced inner product on the tangent space to S using these  coordinates. 

b)  Compute the Gaussian curvature of the metric that you computed in Part a). 

c)  Compute the parallel transport around the circle in S where z = 0 for the Levi-Civita 

      connection of the metric that you computed in Part a). 

 

 

 

PROBLEM 2 (T)  

Let X be path-connected and locally path-connected, and let Y be a finite Cartesian 

product of circles. Show that if π1(X) is finite, then every continuous map from X to Y is 

null-homotopic. (Hint: recall that there is a fiber bundle Z → R → S1.) 

 

 

 

PROBLEM 3 (AN) 

Let K be the field C(z) of rational functions in an indeterminate z, and let F ⊂ K be the 

subfield C(u) where u = (z6 + 1)/z3. 

a)  Show that the field extension K/F is normal, and determine its Galois group.  

b)  Find all fields E, other than F and K themselves, such that F ⊂ E ⊂ K. For each E,  

     determine whether the extensions E/F and K/E are normal. 

 

 



PROBLEM 4 (AG) 

The nodal cubic is the curve in CP
2 (denoted by X) given in homogeneous coordinates 

(x, y, z) by the locus {z y2 =x2 (x + z)}. 

a)  Give a definition of a rational map between algebraic varieties.  

b)  Show that there is a birational map from X to CP
1. 

c)  Explain how to resolve the singularity of X by blowing up a point in CP
2. 

 

 

 

PROBLEM 5 (RA) 

Let B and L denote Banach spaces, and let || · ||B and || · ||L denote their norms.    

a)  Let L: B → L denote a continuous, invertible linear map and let m:  B  ⊗  B → L denote  

a linear map such that || m(φ ⊗ ψ) ||L ≤ || φ  ||B ||ψ ||B for all φ, ψ  ∈ B.  Prove the following  

assertions:   

• There exists a number κ > 1 depending only on L such that if a ∈ B has norm  less 

than κ -2, then there is a unique solution to the equation Lφ +  m(φ ⊗ φ) = a with 

|| φ ||B < κ -1.   

• The norm of the solution from the previous bullet is at most κ || a  ||L. 

b)  Recall that a Banach space is defined to be a complete, normed vector space.  Is the  

 assertion of Part a) of the first bullet always true if B is normed but not complete?  If 

not, explain where the assumption that B is complete enters your proof of Part a).  

 

 

 

PROBLEM 6 (CA) 

Fix a ∈ C and an integer n ≥ 2.  Show that the equation a z
n
 + z  + 1 = 0 for a complex 

number z necessarily has a solution with |z| ≤ 2.  



PROBLEM 1 SOLUTION: 

 

Answer to a):  The vector fields !  

!t
 and !  

!!
  along S are 

 
!  

!t
 = t

1+ t2
(x !   

!x
 +  y !  

!y
) + !  

!z
   and    !  

!!
 = -y !   

!x
 + x !  

!y
 . 

 

Since their inner product is 〈 !  

!t
, !  

!t
〉 = t

2

1+ t2
+  1   〈 !  

!t
, !  

!!
〉 = 0  and 〈 !  

!!
, !  

!!
〉 = (1 + t2), it 

follows that the square of the line element for the induced metric is  

 

ds2  =  1+2t
2

1+ t2
dt ⊗ dt + (1 + t2) dθ ⊗ dθ.  

 

Answer to b):  The 1-forms e0 = ( 1+2t
2

1+ t2
)1/2 dt  and e1 = (1 + t2)1/2dθ are orthonormal.  Write 

The connection matrix of 1-forms is A = 
0 !
-! 0

"

#$
%

&'
 with the 1-form Γ obeying 

  

de0 = -Γ ∧ e1   and   de1 = Γ  ∧  e0.   

 

The unique solution is Γ = - t

1+2t
2

dθ.  The Gauss curvature is denoted by κ and it is 

defined by writing dΓ as κ e0 ∧ e1.  Thus, κ = -( 1

1+2t
2

)2. 

 

Answer to c):  Since Γ = 0 on the z = 0 circle, the parallel transport is given by the 

identity matrix when written using the orthonormal frame  { !  

!t
, !  

!!
} for TS at (1, 0, 0). 

 

 

PROBLEM 2 SOLUTION: 

 

Here are two solutions: 

 

Solution 1:  Let Y denote the space ×n S1.   It is enough to prove that the map from X to Y 

factors as a map 

 
 

To prove this factorization, note that a map ƒ: X → Y lifts through a cover p:  !Y  → Y if 

and only if ƒ*(π1(X)) is a subgroup of p∗(π1( 
!Y )) (they are both subgroups of π1(Y)).  (See, 

for example Proposition 1.33 in Hatcher’s book on algebraic topology.)  Since π1(R
n) = 0 



and ƒ∗ in this case must be the zero homomorphism, this condition is satisfied and so ƒ 

lifts to some 
 
!ƒ .  Because Rn is contractible, this lift is null-homotopic and any null-

homotopy pushes forward to give a null-homotopy of ƒ. 

 

Solution 2:  Recall that S1 (which is K(Z, 1)) classifies integral cohomology classes of 

degree 1.  As a consequence, a map X → Y is (up to homotopy) determined by an n-tupel 

of elements in H1(X; Z).  The universal coefficient short exact sequence in this degree is 

 

 
The two end groups are zero:  The right most group is zero because H1(X; Z) is the 

Abelianization of π1(X) and thus it is a finite group; and finite groups have no non-trivial 

homomorphisms to Z.  The left most group is zero because H0(X: Z) = Z and Ext(Z; Z) is 

trivial since Z is a free group.  Thus H1(X; Z) = 0 and so all maps from X to Y are 

homotopic to the constant map.  

 

 

PROBLEM 3 SOLUTION: 

 

Answer to a)  One has [K: F] = 6 because the extension K/F is generated by the solution z 

of the polynomial equation z6 − uz3 + 1 = 0 which has degree 6.  The Galois group 

contains the automorphisms α : z → 1/z and β : z → ρz, where ρ = e
i2! /3

 = (−1 + √−3)/2.  

Since α and β have orders 2 and 3 respectively, the group G generated by α and β has 

order at least 6.  However, |Gal(K/F)| ≤ [K: F] = 6 with equality iff K/F is normal, so K/F 

must be normal with Galois group G of order 6, which is readily identified with the 

symmetric group the symmetric group S3 (for instance, via its permutation action on  the 

set {1, ρ, ρ2}). 

 

Answer to b)  By the fundamental theorem of Galois theory, the intermediate fields E of 

the Galois extension K/F correspond to subgroups H ⊂ G by E = KH (fixed subfield); K/E 

is always normal with Gal(K/E) = H, while E/F is normal iff H ⊴ G.  Since F and K are 

excluded, one need not consider H = G and H = {1}. The remaining subgroups are 

A3 = 〈β〉, which yields the normal extension C(z3) of F, and three two-element subgroups 

which yield non-normal extensions C(z + 1/z), C(z + ρz), C(z + ρ2z). (The fact that each 

of these is indeed the corresponding KE can be confirmed by computing its degree as in 

Part a).) 

 

PROBLEM 4 SOLUTION: 

 



Answer to a)  A rational map from X to Y is an equivalence class of pairs (U, f ) where 

U ⊂  X is a Zariski dense open subset and f :U → Y is a regular map.  Two pairs (U, f) 

and (V, g) are equivalent if f = g on the intersection U ∩ V. 

 

Answer to b)  The projection from the point (0,0,1) ∈ CP
2 to the line where z=0 restricts 

to a rational map p: X = {z y2 = x2(x + z)} → CP
1.  An inverse is given by the map given 

in homogeneous coordinates by the rule (u, v) → (x = (v2−u2)u, y = (v2−u2)v, z = u3).  

This is an inverse since x3 = (y2 − x2)z on X.  It follows that p is a birational map. 

 

Answer to c)  Away from the line z = 0 the blowup of CP
2 at (0,0,1) is given by the locus 

{xt = ys} ⊂ {((x, y),(s, t))}=C
2 × CP

1.  Consider the chart in CP
1 where s ≠ 0.  The blow 

up of X is defined here by the equations xt = y and y2 = x2(x + 1).  Substituting for y 

gives the equation x2(t2 − x − 1) = 0 which has  one irreducible component being the 

locus x = y = 0 (which is the exceptional curve), and the other being the locus where both 

t2  =  x+1 and xt = y.  This is the blow-up of X.  In the chart where t ≠ 0, the blow up of X 

is defined by the locus where x = ys and 1 = s2(sy + 1).  By the Jacobian criterion the 

curve defined by these equations is nonsingular. 

 

 

PROBLEM 5 SOLUTION: 

 

Answer to a)  Since L is invertible, its inverse defines a bounded linear map from L to B 

to be denoted by L-1.  Using L-1, one can define a map T: B → B by the rule   

 

T(φ) = L-1(a - m(φ, φ)). 

 

This is relevant because φ is a fixed point of T (it obeys T(φ) = φ) if and only if φ obeys 

the equation Lφ + m(φ ⊗ φ) = a.  Let c denote the norm of the operator L-1.  Then the 

following are computations: 

 

• || T(φ) ||B ≤ c (||a ||L + || φ ||B
2
).   

• || T(φ) - T(φ´)|| ≤ 4 c (|| φ ||B + || φ´||B) || φ - φ´||B. 

 

Given δ > 0, let B(δ) denote the ball of radius δ about the origin in B.  If E > 0 and if 

|| a ||L ≤ E then the top bullet implies that T  maps B(δ) to B(cE + c δ2).  Thus, if δ < (2c)-1 

and if E < (2c)-1δ, then T maps B(δ) to itself.  Meanwhile, if δ < (8c)-1 then the lower 

bullet implies that  || T(φ) - T(φ´)|| ≤ γ || φ - φ´||B  for fixed γ < 1 when φ, φ´ ∈ B(δ).  This 



implies in turn that T is a contraction mapping of B(δ) to itself.  The contraction mapping 

theorem supplies a unique fixed point of T in B(δ) under these circumstances.  Noting 

again that an element φ  ∈ B is a fixed point of T if and only if φ obeys Lφ + m(φ ⊗ φ) = a, 

the top bullet follows if || a  ||L ≤ (16 c)-1.  Take κ to be the maximum of 4c1/2 and 8c to 

obtaine the answer to the first bullet of Part a).  The second bullet of Part a) follows 

directly from the fact that φ  = T(φ) and || φ ||B
2 ≤ 1

2
|| φ ||B because these and the inequality 

|| T(φ) ||B ≤ c (||a ||L + || φ ||B
2
) imply that 1

2
|| φ ||B ≤ c ||a ||L.   

 

Answer to b)  The completeness of B is required.  Here is an example:  Take B and L to 

be the span of the polynomials functions on [-1, 1] with the norms || ƒ ||B = || ƒ  ||L = 

supt |ƒ(t)|.   Take the equation φ + φ2 = δ t with δ being a small, non-zero number.  A 

solution, must be either φ =  - 1
2

 + 1
2

(1 + 4δ2 t2)1/2 or φ =  - 1
2

 - 1
2

(1 + 4δ2 t2)1/2; but neither is 

in B.  Note that the contraction mapping theorem does not hold if the Banach space in 

question is not complete because the contraction mapping theorem constructs the desired 

solution as a limit of a Cauchy sequence in B. 

 

 

PROBLEM 6 SOLUTION: 

 

There are two cases.  First, assume that |a| < 2
-n

.  Let D denote the disk where |z| ≤ 2 and 

let ∂D denote the circle |z| = 2.  Let f(z) = azn + z + 1 and let g(z) = z + 1.  On ∂D, the 

function g - f obeys the inequality |g(z) − f(z)| = |a| |z|
n
 < 1.  Since this is less than |g(z)| 

for each z ∈ ∂D, and since g has no zeros on ∂D, none of the members of the 1-parameter 

family of functions {fτ = f + τ (g - f)}τ∈[0,1]  has a zero on ∂D.  Therefore, f (which is fτ=0) 

and g (which is fτ=1)  have the same number of zeros (counting multiplicity) in D.  This 

number is 1  (This is Rouche’s theorem).  Now assume that |a| ≥ 2
-n

.  By the fundamental 

theorem of algebra, the function f(z) = a z
n

 + z + 1 factors as  

 

f(z) = a (z  -  
k
)

k=1

n

"  

 

where the {αk}k=1….,n are complex numbers.  This implies in particular the identity 

 

(-1)
n

 a !
k

k=1

n

" = 1. 

 

hence | !
k

 |
k=1

n

" ≤ 2
n
.  This can happen only if one or more roots αk are in D.  
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PROBLEM 1 (DG) 

Let k denote a positive integer.  A non-optimal version of the Whitney embedding 

theorem states that any k-dimensional manifold can be embedded into R2k+1. Using this, 

show that any k-dimensional manifold can be immersed in R2k.  (Hint: Compose the 

embedding with a projection onto an appropriate subspace.) 

 

 

 

PROBLEM 2 (T) 

Let X be a CW-complex with a single cell in each of the dimensions 0, 1, 2, 3, and 5 and 

no other cells. 

a)  What are the possible values of H∗(X; Z)?  (Note: it is not sufficient to consider  

      Hn(X; Z) for each n independently.  The value of H1(X; Z) may constrain the value of  

        H2(X; Z), for instance.) 

b)  Now suppose in addition that X is its own universal cover. What extra information  

      does this provide about H∗(X; Z)? 

 

 

PROBLEM 3 (AN) 

Let k be a finite field of characteristic p, and n a positive integer.  Let G be the group of 

invertible linear transformations of the k-vector space k
n
.  Identify G with the group of 

invertible n × n matrices with entries in k (acting from the left on column vectors). 

a)  Prove that the order of G is (q
n

  -   q
m
)

m=0

n- 1

!  where q is the number of elements of k.  

b)  Let U be the subgroup of G consisting of upper-triangular matrices with all diagonal  

      entries equal 1.  Prove that U is a p-Sylow subgroup of G.  

c)  Suppose H ⊂ G is a subgroup whose order is a power of p.  Prove that there is a basis  

      (v1, v2,..., vn) of k
n
 such that for every h ∈H and every m ∈{1, 2, 3,..., n}, the vector  

       h(vm) - vm is in the span of {vd: d < m}. 



PROBLEM 4 (AG) 

Let X be a complete intersection of surfaces of degrees a and b in CP3.  Compute the 

Hilbert polynomial of X. 

 

 

 

PROBLEM 5 (RA) 

Let C 0 denote the vector space of continuous functions on the interval [0, 1].  Define a 

norm on C 0 as follows:  If ƒ ∈ C  0, then its norm (denoted by || ƒ ||) is 

 

|| ƒ || = supt∈[0,1] |ƒ(t)|  . 

 

Let C  ∞ denote the space of smooth functions on [0, 1].  View C ∞ as a normed, linear space 

with the norm defined as follows:  If ƒ ∈ C ∞, then its norm (denoted by || ƒ ||∗) is   

 

|| ƒ ||∗ = (| d  
dt

 ƒ |  +  | ƒ |)  dt
[0,1]

!  . 

 

a)  Prove that C  0 is Banach space with respect to the norm || · ||.  In particular, prove that it  

      is complete. 

b)  Let ψ denote the ‘forgetful’ map from C ∞ to C  0 that sends ƒ to ƒ.  Prove that ψ is a   

      bounded map from C ∞ to C  0, but not a compact map from C ∞ to C  0. 

 

 

PROBLEM 6 (CA) 

Let D denote the closed disk in C where |z| ≤ 1.  Fix R > 0 and let ϕ: D  → C denote a 

continuous map with the following properties: 

i)     ϕ is holomorphic on the interior of D. 

ii)   ϕ(0) = 0 and its z-derivative, ϕ´, obeys ϕ´(0) = 1. 

iii)  |ϕ| ≤ R  for all z ∈D.   

Since ϕ´(0) = 1, there exists δ > 0 such that ϕ maps the |z| < δ disk diffeomorphically 

onto its image.  Prove the following:   

a)  There is a unique solution in [0, 1] to the equation 2Rδ  = (1 - δ)3. 

b)  Let δ∗ denote the unique solution to this equation.  If If 0 < δ < δ∗, then ϕ maps  

     the |z| < δ disk diffeomorphically onto its image.    

 



PROBLEM 1 SOLUTION: 

 

The desired immersion will come from a projection onto the orthogonal complement of a 

suitably chosen, nonzero vector in R2k.  To find this vector, let M denote the manifold in 

question and let ƒ denote the embedding of M into R2k.  Let g denote the map from TM to 

R
2k+1 that is defined as follows:  Supposing that x ∈ M and v ∈ TM|x set g(x, v) = ƒ∗|x·v 

where ƒ∗ denotes the differential of ƒ.  Sard’s theorem can be invoked to see that g is not 

surjective.  Let a denote a point that is not in the image of g.  (Note that a is necessarily 

nonzero.)  Use π to denote the projection onto the orthogonal complement of a.  To see 

that π ! ƒ is an immersion, let x denote a point in M and let v denote a nonzero vector in 

TM|x.  Suppose for the sake of argument that (π ! ƒ)∗v is zero.  If this is so, then the chain 

rule and the fact that π is linear implies that ƒ∗|x·v = ta for some nonzero t ∈ R.  This 

implies in turn that ƒ∗|x(t
-1
v) = a which is nonsense because a is in the complement of the 

image of ƒ∗.  

 

 

PROBLEM 2 SOLUTION: 

 

Answer to a)  The cellular chain complex for X must be of the form 

 

 
 

Since X is connected, it must have H0(X; Z) = Z, so the map c must be zero.  The only 

other restriction is that the sequence form a complex, so b ! a = 0; but since b ! a is 

multiplication by some integer, either a = 0 or b = 0.  In the case a = 0 and b ≠ 0, the 

homology groups take the form 

 

 
 

 In the case a ≠ 0 and b = 0, the homology groups take the form 

 



 
 

In the remaing a = 0 = b case, they take the form 

 

 
 

Answer to b)  The assertion that X is its own universal cover is the same as the assertion 

π1(X) = 0. But, since H1(X) = π1(X)ab, this means H1(X) = 0.  The only case where this is 

possible is when a = 0 and b ≠ 0.  Moreover, since Z/b = 0 in this case, b must be a 

multiplicative unit: b = ±1. 

 

 

PROBLEM 3 SOLUTION: 

 

Answer to a)  The elements of G are in bijection with ordered bases (v1,...,vn) of k
n
 (the 

map takes each matrix to its columns).  For each j ∈ {0, 1, 2,..., n−1}, once vi for all i ≤ j 

has been chosen, then there are q
n
 - q

j
 choices for the index (j + 1) basis element because 

any of the q
n  elements of k

n
 except the q

m
 linear combinations of v1, . . . , vj will do. 

Hence the number of possible bases is (q
n

  -   q
m
)

m=0

n- 1

! . 

 

Answer to b)  Each factor q
n
 - q

j
  is q

j
 times an integer not divisible by p because it is 

congruent to -1 modulo q, and q is a multiple of p. Hence the number of elements in G is 

qd times some integer not divisible by p, where d = j
j=0

n-1

! . But q
d
 is the order of U because 

there are d entries above the diagonal, and a power of p.  Hence U is a p-Sylow 

subgroup of G. 

 

Answer to c)  U consists of the matrices h that satisfy the desired property with respect to 

the standard basis of unit vectors.  Hence the matrices h that satisfy this property for the 

basis (v1,...,vn) constitute the subgroup of G obtained by conjugating U by the matrix with 

columns v1, . . . , vn.  But by Sylow’s second theorem H is contained in a conjugate of U. 

 

 

 



PROBLEM 4 SOLUTION:   

 

Let S = C[x0, x1, x2, x3] be the homogeneous coordinate ring of CP3.  The coordinate ring 

of X is of the form S/(f, g) for some irreducible polynomials f and g of degrees a, b 

respectively.  There is a four-term exact sequence of graded modules 

 

 
 

with maps given by multiplication with f and g.  Hence the Hilbert polynomial of X is 

 

 
 

 

PROBLEM 5 SOLUTION: 

 

Answer to a)  One has to show that a Cauchy sequence {ƒn}n=1,2,… in C 0 converges to a 

continuous function.   To do this, note that for each t ∈ [0, 1], the sequence {ƒn(t)}n∈{1,2,…} 

is a Cauchy sequence in R so it converges.  Let ƒ(t) denote the limit.  The assignment 

t  →  ƒ(t) defines a function on [0, 1].  The task is to prove that this function is continuous.  

This means the following:  Given ε  > 0, there exists δ > 0 such that |ƒ(t) - ƒ(t´)| < ε when 

|t - t´| < δ.   To find δ, first fix N so that |ƒn(t) - ƒm(t)| < 1
3
ε for all t ∈ [0, 1] and all pairs n, 

m > N.  This implies that |ƒn(t) - ƒ(t)| ≤ 1
3
ε for all t.  Such N exists because {ƒn}n∈{1,2,…} is 

a Cauchy sequence in C 0.  To continue, take n > N and fix δ so that |ƒn(t) - ƒn(t´)| < 1
3
ε 

when |t´ - t| < δ.  It then follows by the triangle inequality that 

 

|ƒ(t) - ƒ(t´)| ≤ |ƒ(t) - ƒn(t)| + |ƒ(t´) - ƒn(t´)| + |ƒn(t´) - ƒn(t)| < ε. 

 

 

Answer to b)  The map ψ is bounded because for all t, one has the identity 

 

ƒ(t) = ( d
ds
ƒ(s) ds   +   ƒ(r))  dr

r

t

!0

1

!  , 

 

and thus |ƒ(t)| ≤ || ƒ ||∗ for all t.  It is not a compact map.  To prove this, fix a smooth 

function on [0, ∞) that is equal to 1 near t = 0 and equal to 0 for t > 1
2

.  Call this function 



ƒ.  Define ƒn(t) = ƒ(n t).  This function is smooth on [0, 1].  The sequence {ƒn(t)} has 

bounded || · ||∗ norm but it has no convergent sequence in C  0. 

 

 

PROBLEM 6 SOLUTION: 

 

Answer to a)  The function ƒ(δ) = 2Rδ/(1 - δ)3 has strictly positive derivative and 

therefore defines a diffeomorphism from [0, 1) to [0, ∞).   It follows from this that there 

is a single point where ƒ is equal to 1. 

 

Answer to b)  To obtain the asserted lower bound for δ, note that ϕ maps the disk where 

|z| < δ diffeomorphically to its image if it is 1-1 on this disk and if |ϕ´| > 0 on this disk.  

The Cauchy integral formula is used to see when this happens.  Here is Cauchy’s 

formula:  

 

ϕ(z) = 1

2!i

 

1
z -  w    !(w) dw

!D

" . 

 

Differentiating this, one sees that |ϕ´´| on the |z| < δ disk is bounded by 2R(1 - δ)-3. This 

implies that 

 

|ϕ´ - 1| < 2 R δ (1 - δ)-3   where |z| < δ. 

 

If ϕ´ > 0, then ϕ is a local diffeomorphism.  This is the case when δ < δ∗ with δ∗ being the 

solution in (0, 1) to the equation 2Rδ∗(1 - δ∗)
-3 = 1.  Meanwhile, if z, z´ have norm less 

than δ, then |ϕ(z) - ϕ(z´)| ≥ (1 - 2 R δ (1 - δ)-3) |z - z´| which is a positive multiple of |z - z´| 

precisely when δ < δ∗. 
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PROBLEM 1 (DG) 

Recall that a symplectic manifold is a pair (M, ω), where M is a smooth manifold and ω 

is a closed nondegenerate differential 2-form on M.  (The 2-form ω is called the 

symplectic form.) 

a)  Show that if H: M → R is a smooth function, then there exists a unique vector field, to  

       be denoted by XH, satisfying !
X
H

"  = dH.  (Here, ι denotes the contraction operation.)  

b)   Supposing that t > 0 is given, suppose in what follows that the flow of XH is defined  

       for time t, and let φt denote the resulting diffeomorphism of M.  Show that φt*ω = ω. 

c)  Denote the Euclidean coordinates on R4 by (x1, y1, x2, y2) and use these to define the  

 symplectic form ω0 = dx1 ∧  dy1 +  dx2 ∧ dy2. Find a function H: R
4
 → R such that the 

diffeomorphism φt=1 that is defined by the time t = 1 flow of XH fixes the half space 

where x1 ≤ 0 and moves each point in the half space where x1 ≥ 1 by 1 in the y2 

direction. 

 

 

PROBLEM 2 (T) 

Let X denote a finite CW complex and let ƒ: X → X be a self-map of X.  Recall that the 

Lefschetz trace of ƒ, denoted by τ(ƒ), is defined by the rule 

 

τ(ƒ) = 

 

(-1)
n

 tr(ƒ
n

 :  H
n
(X; Q)  ! H

n
(X; Q))

n=0

"

#  

 

with ƒn denoting the induced homomorphism.  Use τ(·) to answer the following: 

a)  Does there exist a continuous map from RP2 to itself with no fixed points?  If so, give  

     an example; and if not, give a proof.  

b)  Does there exist a continuous map from RP3 to itself with no fixed points?  If so, give  

     an example; and if not, give a proof.  

 

 

PROBLEM 3 (AN) 

Let A be the ring Z[ 2016
5 ] = Z[X]/(X5 - 2016).  Given that 2017 is prime in Z, 

determine the factorization of 2017·A into prime ideals of A. 



PROBLEM 4 (AG) 

a)  State a version of the Riemann–Roch theorem.  

b)  Apply this theorem to show that if X is a complete nonsingular curve and P ∈ X is any  

      point, there is a rational function on X which has a pole at P and is regular on X−{P}. 

 

 

 

PROBLEM 5 (RA) 

Let ℘ denote a probability measure for a real valued random variable with mean 0. 

Denote this random variable by x.  Suppose that the random variable |x| has mean equal 

to 2.  

a)  Given R > 2, state a non-trivial upper bound for event that x ≥ R.  (The trivial upper  

     bound is 1.) 

b)  Give a non-zero lower bound for the standard deviation of x. 

c)  A function ƒ on R is Lipshitz when there exists a number c ≥ 0 such that  

 

|ƒ(p) - ƒ(p´)| ≤ c |p - p´|   for any pair p, p´ ∈ R. 

 

Let !̂  denote the function on R whose value at a given p ∈ R is the expectation of the 

random variable  e
i p x

.  (This is the characteristic function of ℘.)  Give a rigorous 

proof that !̂  is Lipshitz and give an upper bound for c in this case. 

d)  Suppose that the standard deviation of x is equal to 4.  Let N denote an integer greater  

            than 1, and let {x1, …, xN} denote a set of independent random variables each with  

probabilities given by ℘.  Use SN to denote the random variable 1
N

(x1 + ···· + xN).   

The central limit theorem gives an integral that approximates the probability of the  

       event where SN ∈ [-1, 1] when N is large.  Write this integral. 

 

 

 

PROBLEM 6 (CA) 

Let H ⊂ C denote the open right half plane, thus H = {z = x + iy: x > 0}.  Suppose that 

ƒ:  H → C is a bounded, analytic function such that ƒ(1/n) = 0 for each positive integer n.  

Prove that ƒ(z) = 0 for all z.  

(Hint:  Consider the behavior of the sequence of functions {hN(z) = z   -   1/n

z  +   1/n
n=1

N

! }N=1.2… on H 

and, in particular, on the positive real axis.} 



PROBLEM 1 SOLUTION: 

 

Answer to a)  To say that ω is non-degenerate is to say that the contraction operation 

defines a vector bundle isomorphism between TM and T*M. 

 

Answer to b)  The definition of the Lie derivative is such that !  

!t
(φt*ω) = φt*(

 
L
X
H

! ) with 

 
L
X
H

!  denoting the Lie derivative of ω along the vector field XH.  Cartan’s formula for 

 
L
X
H

!  is 
 
L
X
H

!  = d( !
X
H

" ) + !
XH
d"  and both of these terms are zero.  Thus, φt*ω is 

independent of t and thus equal to its value at t = 0 which is ω. 

 

Answer to c)  Choose a smooth function ƒ: R → [0, 1] so that ƒ(s) = 0 for s ≤ 0 and 

ƒ(s)  =  1 for s ≥ 1.  The function sending (x1, y1, x2, y2) → H(x1, y1, x2, y2) = -ƒ(x1) x2 has 

the desired properties because XH = 0 for x1 ≤ 0 and XH = !    

!y2
 for x1 ≥ 1. 

 

 

PROBLEM 2 SOLUTION: 

 

Answer to a)  The Lefschetz trace theorem states that if τ(f) ≠ 0, then f must have a fixed 

point.  To see that τ(ƒ) is never zero, note first that the rational homology of RP2 is zero 

except for H0(RP
2; Q), which is Q.  Since ƒ0  is multiplication by 1, it τ(ƒ) is never zero. 

 

Answer to b)  In this case, the non-zero rational homology is in dimensions 0 and 3, each 

being isomorphic to Q.  As a consequence, the argument used for RP2 can not be used 

here.  In fact, there is a self-map with no fixed points and it is constructed momentarily.  

It is instructive to consider first the case of RP1 which is S1, where a rotation by angle π 

has no fixed points.  Now viewing RP1 as (R2−0)/R∗, then this rotation through angle π is 

depicted using homogeneous coordinates [x1, x2] as the map [x1, x2] → [x2, -x1] which 

can’t have a fixed point because there is no non-zero real number λ and (x1, x2) ∈ R2−0 

with x2 = λx1 and x1 = -λx2.  To mimick this for RP3, write RP3 as (R4−0)/R* and then 

define the desired self map using homogeneous coordinates [x1, x2, x3, x4] by the rule 

whereby [x1, x2, x3, x4] → [x2, -x1, x4, -x3].  This has no fixed points because there is no 

non-zero real number λ and (x1, x2, x3, x4) ∈ R4−0 such that x2 = λx1, x1 = -λx2, x4 = λx3 

and x3 = -λx4. 

 

 

PROBLEM 3 SOLUTION: 

 



2017A is the product of the prime ideals (2017, X + 1) and (2017, X4 - X3 + X2 - X + 1). 

In general, if the polynomial P(X) factors modulo a prime p into distinct irreducibles {Pi} 

then the ideal pZ[X]/(P(X)) is the product of ideals (p, Pi). In our case, p = 2017 and 

P  =  X5 − 2016 ! X5 + 1 mod p.  The roots of X5 + 1 in an algebraic closure of Z/pZ are 

the set {-1, -w, -w2, -w3, -w4} where w is a nontrivial 5th root of unity. The irreducible 

factors correspond to orbits of the permutation x → x
p
 of those roots.  Clearly −1 is a 

fixed point, and since p !  2 mod 5 the remaining roots fall in to a single orbit  

 

-w → -w2 → -w4 → -w3 → -w.  

 

Hence the irreducible factors of X5 +1 mod p are X + 1 and (X5 +1)/(X +1) which is the 

polynomial X4 −X3 +X2 −X +1. 

 

 

PROBLEM 4 SOLUTION: 

 

Answer to a)  Let X be a complete non-singular curve of genus g.  Let K denote the 

canonical divisor.  If D is any divisor on X, let 
 
!(D)  = dim(H0(X, OX(D))).  The 

Riemann-Roch theorem asserts that 
 
!(D) - 

 
!(K -  D)  = deg(D) + 1 - g. 

 

Answer to b)  Fix a point Q ≠ P and let D denote the divisor 2P - Q.  Choose a positive 

integer n such that n > max{2g − 2, 0}.  Noting that n = deg(nD) and that deg(K) = 2g - 2, 

it follows that deg(K - nD) < 0.  This implies that 
 
!(K -  D) = 0.  Therefore, the Riemann–

Roch theorem applied to nD implies that 
 
!(nD)  = n + 1 - g which is greater than 1.  This 

means that there is an effective divisor (to be denoted by D´) and a rational function on X 

(to be denoted by ƒ) such that n D + (ƒ) = D´.  Rewriting this gives (ƒ) = D´ - 2n P + n Q so 

ƒ has poles only at P. 

 

 

PROBLEM 5 SOLUTION: 

 

Answer to a)  The event in question is !
x ! R

" .   This is no smaller than 1
R

| x |  !
x ! R

"  which 

in turn is no greater than 2
R

. 

 

Answer to b)  The square of the standard deviation is the square root of the expectation of 

the random variable x2.  Since  

 



 

| x |  !
!

"  ≤ (

 

!
!

" )1/2(

 

x
2

  !
!

" )1/2    (∗)    

 

(which is proved momentarily), and since 

 

!
!

"  = 1, it follows that (

 

x
2

  !
!

" )1/2 ≥ 2.  To 

prove (∗), note that for any t ∈ (0, ∞), the expectation of (t -  t  -1 x)2 is the sum  

 

t
 2

 

!
!

"  - 2 

 

| x |  !
!

"  + t  -2

 

x
2

  !
!

" .   

 

This is non-negative for any t  ∈ (0, 1) since it is the expectation of a positive random 

variable.  The assertion that it is non-negative for the case t = (

 

x
2

  !
!

" )1/4 (

 

!
!

" )-1/4 is (∗).  

 

Answer to c)  Supposing that p, p´ ∈ R, then  

 

!̂(p) - !̂(p´) = 

 

(ei x p
  -   ei x p´ ) !

!

" .     (∗∗) 

 

Noting that  e
ixp

 - e
ixp´

 = i x eixq  dq
p

p´

!  by the fundamental theorem of calculus, it follows 

that |e
ixp

 - e
ixp´

| ≤ |x| |p - p´|.  This understood, then (∗∗)  leads to the bound 

 

|!̂(p) - !̂(p´)| ≤ (

 

| x |  !
!

" )  |p - p´|  = 2  |p - p´| . 

 

Answer to d)  The random variable SN has mean 0 and standard deviation equal to N-1/2 

times the standard deviation of x, thus 4 N-1/2.  (The expecation of SN
2 is the that of N-

2 ∑i,k=1,…,N xixk.  Only the i = k terms are non-zero (because x has mean zero), there are N 

of them and each is the expectation of x2 which is 16.)  Denote this standard deviation of 

SN by σN for the moment.  The central limit theorem approximates the probability in 

question by 1

2!    "N
  e
-x2 /2"N

2

  dx

-1

1

#  where σN again denotes 4 N-1/2 . 

 

 

PROBLEM 6 SOLUTION 

 



This is a form of Jensen’s inequality.  To elaborate, fix B so that |ƒ(z)| ≤ B for all z ∈ H.  

For each integer N, define 

 

FN(z) = ƒ(z)/hN(z) = ƒ(z) z   +   1/n

z   -   1/n
n=1

N

!  . 

 

This function is analytic on H because the poles at z = 1, 2, 3,..., N are matched by zeros 

of ƒ.  Moreover, the absolute value of each of the factors (z + 1/n)/(z − 1/n) approaches 1 

as Re(z) → 0 (uniformly in Im(z)), and also approaches 1 as |z| → ∞.  Hence |Fn(z)| ≤ B 

for all z ∈ H by virtue of the maximum modulus principle (the norm of an analytic 

function can not take on a local maximum). With the preceding understood, note that for 

any fixed, positive real z, the factor z   +   1/n

z   -   1/n
n=1

N

!  becomes unbounded as N → ∞.  Hence its 

product with ƒ(z) cannot remain bounded unless ƒ(z) = 0 on the real axis.  But a 

holomorphic function on any domain has discrete zeros, so ƒ(z) must be everywhere 0.   

 

 


