Qualifying Examination

Harvard University
Department of Mathematics
Tuesday, January 19, 2016 (Day 1)

Problem 1 (DG)

Let S denote the surface in \mathbb{R}^{3} where the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) obey $\mathrm{x}^{2}+\mathrm{y}^{2}=1+\mathrm{z}^{2}$. This surface can be parametrized by coordinates $t \in \mathbb{R}$ and $\theta \in \mathbb{R} /(2 \pi \mathbb{Z})$ by the map

$$
(\mathrm{t}, \theta) \rightarrow \psi(\mathrm{t}, \theta)=\left(\sqrt{1+\mathrm{t}^{2}} \cos \theta, \sqrt{1+\mathrm{t}^{2}} \sin \theta, \mathrm{t}\right) .
$$

a) Compute the induced inner product on the tangent space to S using these coordinates.
b) Compute the Gaussian curvature of the metric that you computed in Part a).
c) Compute the parallel transport around the circle in S where $\mathrm{z}=0$ for the Levi-Civita connection of the metric that you computed in Part a).

Problem 2 (T)

Let X be path-connected and locally path-connected, and let Y be a finite Cartesian product of circles. Show that if $\pi_{1}(\mathrm{X})$ is finite, then every continuous map from X to Y is null-homotopic. (Hint: recall that there is a fiber bundle $\mathrm{Z} \rightarrow \mathbb{R} \rightarrow \mathrm{S}^{1}$.)

Problem 3 (AN)

Let K be the field $\mathbb{C}(z)$ of rational functions in an indeterminate z , and let $\mathrm{F} \subset \mathrm{K}$ be the subfield $\mathbb{C}(u)$ where $u=\left(z^{6}+1\right) / z^{3}$.
a) Show that the field extension K / F is normal, and determine its Galois group.
b) Find all fields E, other than F and K themselves, such that $F \subset E \subset K$. For each E, determine whether the extensions E / F and K / E are normal.

Problem 4 (AG)
The nodal cubic is the curve in $\mathbb{C P}^{2}$ (denoted by X) given in homogeneous coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) by the locus $\left\{\mathrm{zy}^{2}=\mathrm{x}^{2}(\mathrm{x}+\mathrm{z})\right\}$.
a) Give a definition of a rational map between algebraic varieties.
b) Show that there is a birational map from X to $\mathbb{C P}^{1}$.
c) Explain how to resolve the singularity of X by blowing up a point in $\mathbb{C P}^{2}$.

Problem 5 (RA)

Let \mathbb{B} and \mathbb{L} denote Banach spaces, and let $\|\cdot\|_{\mathbb{B}}$ and $\|\cdot\|_{\mathbb{L}}$ denote their norms.
a) Let $\mathrm{L}: \mathbb{B} \rightarrow \mathbb{L}$ denote a continuous, invertible linear map and let $\mathfrak{m}: \mathbb{B} \otimes \mathbb{B} \rightarrow \mathbb{L}$ denote a linear map such that $\|\mathfrak{m}(\phi \otimes \psi)\|_{\mathbb{L}} \leq\|\phi\|_{\mathbb{B}}\|\psi\|_{\mathbb{B}}$ for all $\phi, \psi \in \mathbb{B}$. Prove the following assertions:

- There exists a number $\kappa>1$ depending only on L such that if $a \in \mathbb{B}$ has norm less than κ^{-2}, then there is a unique solution to the equation $L \phi+\mathfrak{m}(\phi \otimes \phi)=a$ with $\|\phi\|_{\mathbb{B}}<\kappa^{-1}$.
- The norm of the solution from the previous bullet is at most $\kappa\|a\|_{\mathbb{L}}$.
b) Recall that a Banach space is defined to be a complete, normed vector space. Is the assertion of Part a) of the first bullet always true if \mathbb{B} is normed but not complete? If not, explain where the assumption that \mathbb{B} is complete enters your proof of Part a).

Problem 6 (CA)

Fix $\mathrm{a} \in \mathbb{C}$ and an integer $\mathrm{n} \geq 2$. Show that the equation $\mathrm{az}^{\mathrm{n}}+\mathrm{z}+1=0$ for a complex number z necessarily has a solution with $|\mathrm{z}| \leq 2$.

Problem 1 SOLUTION:

Answer to $\underline{\text { a }}$): The vector fields $\frac{\partial}{\partial \mathrm{t}}$ and $\frac{\partial}{\partial \theta}$ along S are

$$
\frac{\partial}{\partial \mathrm{t}}=\frac{\mathrm{t}}{1+\mathrm{t}^{2}}\left(\mathrm{x} \frac{\partial}{\partial \mathrm{x}}+\mathrm{y} \frac{\partial}{\partial \mathrm{y}}\right)+\frac{\partial}{\partial \mathrm{z}} \quad \text { and } \quad \frac{\partial}{\partial \theta}=-\mathrm{y} \frac{\partial}{\partial \mathrm{x}}+\mathrm{x} \frac{\partial}{\partial \mathrm{y}} .
$$

Since their inner product is $\left\langle\frac{\partial}{\partial \mathrm{t}}, \frac{\partial}{\partial \mathrm{t}}\right\rangle=\frac{\mathrm{t}^{2}}{1+\mathrm{t}^{2}}+1\left\langle\frac{\partial}{\partial \mathrm{t}}, \frac{\partial}{\partial \theta}\right\rangle=0$ and $\left\langle\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right\rangle=\left(1+\mathrm{t}^{2}\right)$, it follows that the square of the line element for the induced metric is

$$
\mathrm{ds}^{2}=\frac{1+2 \mathrm{t}^{2}}{1+\mathrm{t}^{2}} \mathrm{dt} \otimes \mathrm{dt}+\left(1+\mathrm{t}^{2}\right) \mathrm{d} \theta \otimes \mathrm{~d} \theta
$$

Answer to \underline{b}): The 1 -forms $\mathrm{e}^{0}=\left(\frac{1+2 \mathrm{t}^{2}}{1+\mathrm{t}^{2}}\right)^{1 / 2} \mathrm{dt}$ and $\mathrm{e}^{1}=\left(1+\mathrm{t}^{2}\right)^{1 / 2} \mathrm{~d} \theta$ are orthonormal. Write The connection matrix of 1-forms is $\mathbb{A}=\left(\begin{array}{cc}0 & \Gamma \\ -\Gamma & 0\end{array}\right)$ with the 1-form Γ obeying

$$
\mathrm{de}^{0}=-\Gamma \wedge \mathrm{e}^{1} \text { and } \mathrm{de}^{1}=\Gamma \wedge \mathrm{e}^{0} .
$$

The unique solution is $\Gamma=-\frac{\mathrm{t}}{\sqrt{1+2 \mathrm{t}^{2}}} \mathrm{~d} \theta$. The Gauss curvature is denoted by κ and it is defined by writing $\mathrm{d} \Gamma$ as $\kappa \mathrm{e}^{0} \wedge \mathrm{e}^{1}$. Thus, $\kappa=-\left(\frac{1}{1+2 \mathrm{t}^{2}}\right)^{2}$.

Answer to c): Since $\Gamma=0$ on the $\mathrm{z}=0$ circle, the parallel transport is given by the identity matrix when written using the orthonormal frame $\left\{\frac{\partial}{\partial \mathrm{t}}, \frac{\partial}{\partial \theta}\right\}$ for TS at $(1,0,0)$.

PROBLEM 2 SOLUTION:

Here are two solutions:

Solution 1: Let Y denote the space $\times_{n} S^{1}$. It is enough to prove that the map from X to Y factors as a map

$$
X \xrightarrow{I} \mathbb{R}^{n} \xrightarrow{(e x p)^{\times n}} Y .
$$

To prove this factorization, note that a map $f: \mathrm{X} \rightarrow \mathrm{Y}$ lifts through a cover $\mathrm{p}: \tilde{\mathrm{Y}} \rightarrow \mathrm{Y}$ if and only if $f_{*}\left(\pi_{1}(\mathrm{X})\right)$ is a subgroup of $\mathrm{p}_{*}\left(\pi_{1}(\tilde{\mathrm{Y}})\right)$ (they are both subgroups of $\pi_{1}(\mathrm{Y})$). (See, for example Proposition 1.33 in Hatcher's book on algebraic topology.) Since $\pi_{1}\left(\mathbb{R}^{n}\right)=0$
and f_{*} in this case must be the zero homomorphism, this condition is satisfied and so f lifts to some \tilde{f}. Because \mathbb{R}^{n} is contractible, this lift is null-homotopic and any nullhomotopy pushes forward to give a null-homotopy of f.

Solution 2: Recall that S^{1} (which is $K(\mathbb{Z}, 1)$) classifies integral cohomology classes of degree 1. As a consequence, a map $\mathrm{X} \rightarrow \mathrm{Y}$ is (up to homotopy) determined by an n-tupel of elements in $H^{1}(X ; \mathbb{Z})$. The universal coefficient short exact sequence in this degree is

$$
0 \rightarrow \operatorname{Ext}\left(H_{0} X, \mathbb{Z}\right) \rightarrow H^{\top}(X ; \mathbb{Z}) \rightarrow \operatorname{Hom}\left(H_{1} X, Z\right) \rightarrow 0
$$

The two end groups are zero: The right most group is zero because $H_{1}(X ; \mathbb{Z})$ is the Abelianization of $\pi_{1}(\mathrm{X})$ and thus it is a finite group; and finite groups have no non-trivial homomorphisms to \mathbb{Z}. The left most group is zero because $H_{0}(X: \mathbb{Z})=\mathbb{Z}$ and $\operatorname{Ext}(\mathbb{Z} ; \mathbb{Z})$ is trivial since \mathbb{Z} is a free group. Thus $\mathrm{H}^{1}(\mathrm{X} ; \mathbb{Z})=0$ and so all maps from X to Y are homotopic to the constant map.

PROBLEM 3 SOLUTION:

Answer to a) One has $[\mathrm{K}: \mathrm{F}]=6$ because the extension K / F is generated by the solution z of the polynomial equation $z^{6}-u z^{3}+1=0$ which has degree 6 . The Galois group contains the automorphisms $\alpha: z \rightarrow 1 / z$ and $\beta: z \rightarrow \varrho z$, where $\varrho=e^{i 2 \pi / 3}=(-1+\sqrt{ }-3) / 2$. Since α and β have orders 2 and 3 respectively, the group G generated by α and β has order at least 6 . However, $|\operatorname{Gal}(\mathrm{K} / \mathrm{F})| \leq[\mathrm{K}: \mathrm{F}]=6$ with equality iff K / F is normal, so K / F must be normal with Galois group G of order 6 , which is readily identified with the symmetric group the symmetric group S_{3} (for instance, via its permutation action on the set $\left\{1, \varrho, \varrho^{2}\right\}$).

Answer to $\underline{\mathrm{b}}$) By the fundamental theorem of Galois theory, the intermediate fields E of the Galois extension K / F correspond to subgroups $\mathrm{H} \subset \mathrm{G}$ by $\mathrm{E}=\mathrm{K}^{\mathrm{H}}$ (fixed subfield); K/E is always normal with $\operatorname{Gal}(\mathrm{K} / \mathrm{E})=\mathrm{H}$, while E / F is normal iff $\mathrm{H} \unlhd \mathrm{G}$. Since F and K are excluded, one need not consider $\mathrm{H}=\mathrm{G}$ and $\mathrm{H}=\{1\}$. The remaining subgroups are $\mathrm{A}_{3}=\langle\beta\rangle$, which yields the normal extension $\mathbb{C}\left(\mathrm{z}^{3}\right)$ of F , and three two-element subgroups which yield non-normal extensions $\mathbb{C}(z+1 / z), \mathbb{C}(z+\varrho z), \mathbb{C}\left(z+\varrho^{2} z\right)$. (The fact that each of these is indeed the corresponding KE can be confirmed by computing its degree as in Part a).)

PROBLEM 4 SOLUTION:

Answer to a) A rational map from X to Y is an equivalence class of pairs (U, f) where $\mathrm{U} \subset \mathrm{X}$ is a Zariski dense open subset and $\mathrm{f}: \mathrm{U} \rightarrow \mathrm{Y}$ is a regular map. Two pairs (U, f) and (V, g) are equivalent if $\mathrm{f}=\mathrm{g}$ on the intersection $\mathrm{U} \cap \mathrm{V}$.

Answer to \underline{b}) The projection from the point $(0,0,1) \in \mathbb{C P}^{2}$ to the line where $\mathrm{z}=0$ restricts to a rational map $\mathfrak{p}: X=\left\{\mathrm{z}^{2}=\mathrm{x}^{2}(\mathrm{x}+\mathrm{z})\right\} \rightarrow \mathbb{C P}^{1}$. An inverse is given by the map given in homogeneous coordinates by the rule $(u, v) \rightarrow\left(x=\left(v^{2}-u^{2}\right) u, y=\left(v^{2}-u^{2}\right) v, z=u^{3}\right)$. This is an inverse since $x^{3}=\left(y^{2}-x^{2}\right) z$ on X. It follows that \mathfrak{p} is a birational map.

Answer to $\underline{\mathrm{c}}$) Away from the line $\mathrm{z}=0$ the blowup of $\mathbb{C P}^{2}$ at $(0,0,1)$ is given by the locus $\{\mathrm{xt}=\mathrm{ys}\} \subset\{((\mathrm{x}, \mathrm{y}),(\mathrm{s}, \mathrm{t}))\}=\mathbb{C}^{2} \times \mathbb{C P}^{1}$. Consider the chart in $\mathbb{C P}^{1}$ where $\mathrm{s} \neq 0$. The blow up of X is defined here by the equations $\mathrm{xt}=\mathrm{y}$ and $\mathrm{y}^{2}=\mathrm{x}^{2}(\mathrm{x}+1)$. Substituting for y gives the equation $x^{2}\left(t^{2}-x-1\right)=0$ which has one irreducible component being the locus $x=y=0$ (which is the exceptional curve), and the other being the locus where both $t^{2}=x+1$ and $x t=y$. This is the blow-up of X. In the chart where $t \neq 0$, the blow up of X is defined by the locus where $\mathrm{x}=\mathrm{ys}$ and $1=\mathrm{s}^{2}(\mathrm{sy}+1)$. By the Jacobian criterion the curve defined by these equations is nonsingular.

PROBLEM 5 SOLUTION:

Answer to a) Since L is invertible, its inverse defines a bounded linear map from \mathbb{L} to \mathbb{B} to be denoted by L^{-1}. Using L^{-1}, one can define a map $\mathcal{T}: \mathbb{B} \rightarrow \mathbb{B}$ by the rule

$$
\mathcal{T}(\phi)=\mathrm{L}^{-1}(a-\mathfrak{m}(\phi, \phi))
$$

This is relevant because ϕ is a fixed point of \mathcal{T} (it obeys $\mathcal{T}(\phi)=\phi)$ if and only if ϕ obeys the equation $\mathrm{L} \phi+\mathfrak{m}(\phi \otimes \phi)=a$. Let c denote the norm of the operator L^{-1}. Then the following are computations:

- $\|\mathcal{T}(\phi)\|_{\mathbb{B}} \leq c\left(\|a\|_{\mathbb{L}}+\|\phi\|_{\mathbb{B}}{ }^{2}\right)$.
- $\left\|\mathcal{T}(\phi)-\mathcal{T}\left(\phi^{\prime}\right)\right\| \leq 4 c\left(\|\phi\|_{\mathbb{B}}+\left\|\phi^{\prime}\right\|_{\mathbb{B}}\right)\left\|\phi-\phi^{\prime}\right\|_{\mathbb{B}}$.

Given $\delta>0$, let $\mathbb{B}(\delta)$ denote the ball of radius δ about the origin in \mathbb{B}. If $\mathrm{E}>0$ and if $\|a\|_{\mathbb{L}} \leq \mathrm{E}$ then the top bullet implies that \mathcal{T} maps $\mathbb{B}(\delta)$ to $\mathbb{B}\left(c \mathrm{E}+c \delta^{2}\right)$. Thus, if $\delta<(2 c)^{-1}$ and if $\mathrm{E}<(2 c)^{-1} \delta$, then \mathcal{T} maps $\mathbb{B}(\delta)$ to itself. Meanwhile, if $\delta<(8 c)^{-1}$ then the lower bullet implies that $\left\|\mathcal{T}(\phi)-\mathcal{T}\left(\phi^{\prime}\right)\right\| \leq \gamma\left\|\phi-\phi^{\prime}\right\|_{\mathbb{B}}$ for fixed $\gamma<1$ when $\phi, \phi^{\prime} \in \mathbb{B}(\delta)$. This
implies in turn that \mathcal{T} is a contraction mapping of $\mathbb{B}(\delta)$ to itself. The contraction mapping theorem supplies a unique fixed point of \mathcal{T} in $\mathbb{B}(\delta)$ under these circumstances. Noting again that an element $\phi \in \mathbb{B}$ is a fixed point of \mathcal{T} if and only if ϕ obeys $L \phi+\mathfrak{m}(\phi \otimes \phi)=a$, the top bullet follows if $\|a\|_{\mathbb{L}} \leq(16 c)^{-1}$. Take κ to be the maximum of $4 c^{1 / 2}$ and $8 c$ to obtaine the answer to the first bullet of Part a). The second bullet of Part a) follows directly from the fact that $\phi=\mathcal{T}(\phi)$ and $\|\phi\|_{\mathbb{B}}{ }^{2} \leq \frac{1}{2}\|\phi\|_{\mathbb{B}}$ because these and the inequality $\|\mathcal{T}(\phi)\|_{\mathbb{B}} \leq \mathcal{c}\left(\|a\|_{\mathbb{L}}+\|\phi\|_{\mathbb{B}}{ }^{2}\right)$ imply that $\frac{1}{2}\|\phi\|_{\mathbb{B}} \leq c\|a\|_{\mathbb{L}}$.

Answer to b) The completeness of B is required. Here is an example: Take \mathbb{B} and \mathbb{L} to be the span of the polynomials functions on $[-1,1]$ with the norms $\|f\|_{\mathbb{B}}=\|f\|_{\mathbb{L}}=$ $\sup _{\mathrm{t}}|f(\mathrm{t})|$. Take the equation $\phi+\phi^{2}=\delta \mathrm{t}$ with δ being a small, non-zero number. A solution, must be either $\phi=-\frac{1}{2}+\frac{1}{2}\left(1+4 \delta^{2} \mathrm{t}^{2}\right)^{1 / 2}$ or $\phi=-\frac{1}{2}-\frac{1}{2}\left(1+4 \delta^{2} \mathrm{t}^{2}\right)^{1 / 2}$; but neither is in \mathbb{B}. Note that the contraction mapping theorem does not hold if the Banach space in question is not complete because the contraction mapping theorem constructs the desired solution as a limit of a Cauchy sequence in \mathbb{B}.

PRoblem 6 SOLUTION:

There are two cases. First, assume that $|\mathrm{a}|<2^{-\mathrm{n}}$. Let D denote the disk where $|\mathrm{z}| \leq 2$ and let $\partial \mathrm{D}$ denote the circle $|\mathrm{z}|=2$. Let $\mathrm{f}(\mathrm{z})=\mathrm{az}^{\mathrm{n}}+\mathrm{z}+1$ and let $\mathrm{g}(\mathrm{z})=\mathrm{z}+1$. On $\partial \mathrm{D}$, the function g - f obeys the inequality $|g(z)-f(z)|=|a||z|^{n}<1$. Since this is less than $|g(z)|$ for each $\mathrm{z} \in \partial \mathrm{D}$, and since g has no zeros on $\partial \mathrm{D}$, none of the members of the 1-parameter family of functions $\left\{\mathrm{f}_{\tau}=\mathrm{f}+\tau(\mathrm{g}-\mathrm{f})\right\}_{\tau \in[0,1]}$ has a zero on $\partial \mathrm{D}$. Therefore, f (which is $\mathrm{f}_{\tau=0}$) and g (which is $f_{\tau=1}$) have the same number of zeros (counting multiplicity) in D. This number is 1 (This is Rouche's theorem). Now assume that $|a| \geq 2^{-n}$. By the fundamental theorem of algebra, the function $\mathrm{f}(\mathrm{z})=\mathrm{az}^{\mathrm{n}}+\mathrm{z}+1$ factors as

$$
\mathrm{f}(\mathrm{z})=\mathrm{a} \prod_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{z}-\boldsymbol{\alpha}_{\mathrm{k}}\right)
$$

where the $\left\{\alpha_{k}\right\}_{\mathrm{k}=1 \ldots, \mathrm{n}}$ are complex numbers. This implies in particular the identity

$$
(-1)^{\mathrm{n}} \mathrm{a} \prod_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}}=1
$$

hence $\prod_{k=1}^{n}\left|\alpha_{k}\right| \leq 2^{n}$. This can happen only if one or more roots α_{k} are in D.

Qualifying Examination

Harvard University
Department of Mathematics
Wednesday, January 20, 2016 (Day 2)

Problem 1 (DG)

Let k denote a positive integer. A non-optimal version of the Whitney embedding theorem states that any k-dimensional manifold can be embedded into $\mathbb{R}^{2 k+1}$. Using this, show that any k-dimensional manifold can be immersed in $\mathbb{R}^{2 k}$. (Hint: Compose the embedding with a projection onto an appropriate subspace.)

Problem 2 (T)

Let X be a CW-complex with a single cell in each of the dimensions $0,1,2,3$, and 5 and no other cells.
a) What are the possible values of $H_{*}(\mathrm{X} ; \mathbb{Z})$? (Note: it is not sufficient to consider $H_{n}(X ; \mathbb{Z})$ for each n independently. The value of $H_{1}(X ; \mathbb{Z})$ may constrain the value of $\mathrm{H}_{2}(\mathrm{X} ; \mathbb{Z})$, for instance.)
b) Now suppose in addition that X is its own universal cover. What extra information does this provide about $H_{*}(\mathrm{X} ; \mathbb{Z})$?

Problem 3 (AN)
Let k be a finite field of characteristic p , and n a positive integer. Let G be the group of invertible linear transformations of the k -vector space k^{n}. Identify G with the group of invertible $\mathrm{n} \times \mathrm{n}$ matrices with entries in k (acting from the left on column vectors).
a) Prove that the order of G is $\prod_{m=0}^{n-1}\left(q^{n}-q^{m}\right)$ where q is the number of elements of k.
b) Let U be the subgroup of G consisting of upper-triangular matrices with all diagonal entries equal 1. Prove that U is a p-Sylow subgroup of G .
c) Suppose $\mathrm{H} \subset \mathrm{G}$ is a subgroup whose order is a power of p . Prove that there is a basis $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of k^{n} such that for every $h \in H$ and every $m \in\{1,2,3, \ldots, n\}$, the vector $h\left(\mathrm{v}_{\mathrm{m}}\right)-\mathrm{v}_{\mathrm{m}}$ is in the span of $\left\{\mathrm{v}_{\mathrm{d}}: \mathrm{d}<\mathrm{m}\right\}$.

Problem 4 (AG)

Let X be a complete intersection of surfaces of degrees a and b in $\mathbb{C P}^{3}$. Compute the Hilbert polynomial of X.

Problem 5 (RA)
Let \mathcal{C}^{0} denote the vector space of continuous functions on the interval $[0,1]$. Define a norm on \mathcal{C}^{0} as follows: If $f \in \mathcal{C}^{0}$, then its norm (denoted by $\|f\|$) is

$$
\|f\|=\sup _{\mathrm{t} \in[0,1]}|f(\mathrm{t})| .
$$

Let \mathcal{C}^{∞} denote the space of smooth functions on $[0,1]$. View \mathcal{C}^{∞} as a normed, linear space with the norm defined as follows: If $f \in \mathcal{C}^{\infty}$, then its norm (denoted by $\|f\|_{*}$) is

$$
\|f\|_{*}=\int_{[0,1]}\left(\left|\frac{\mathrm{d}}{\mathrm{dt}} f\right|+|f|\right) \mathrm{dt} .
$$

a) Prove that \mathcal{C}^{0} is Banach space with respect to the norm $\|\cdot\|$. In particular, prove that it is complete.
b) Let ψ denote the 'forgetful' map from \mathcal{C}^{∞} to \mathcal{C}^{0} that sends f to f. Prove that ψ is a bounded map from \mathcal{C}^{∞} to C^{0}, but not a compact map from \mathcal{C}^{∞} to C^{0}.

Problem 6 (CA)

Let \mathbb{D} denote the closed disk in \mathbb{C} where $|\mathrm{z}| \leq 1$. Fix $\mathrm{R}>0$ and let $\varphi: \mathbb{D} \rightarrow \mathbb{C}$ denote a continuous map with the following properties:
i) φ is holomorphic on the interior of \mathbb{D}.
ii) $\varphi(0)=0$ and its z-derivative, φ^{\prime}, obeys $\varphi^{\prime}(0)=1$.
iii) $|\varphi| \leq R$ for all $\mathrm{z} \in \mathbb{D}$.

Since $\varphi^{\prime}(0)=1$, there exists $\delta>0$ such that φ maps the $|z|<\delta$ disk diffeomorphically onto its image. Prove the following:
a) There is a unique solution in $[0,1]$ to the equation $2 \mathrm{R} \delta=(1-\delta)^{3}$.
b) Let δ_{*} denote the unique solution to this equation. If If $0<\delta<\delta_{*}$, then φ maps the $|\mathrm{z}|<\delta$ disk diffeomorphically onto its image.

Problem 1 Solution:

The desired immersion will come from a projection onto the orthogonal complement of a suitably chosen, nonzero vector in $\mathbb{R}^{2 k}$. To find this vector, let M denote the manifold in question and let f denote the embedding of M into $\mathbb{R}^{2 k}$. Let g denote the map from TM to $\mathbb{R}^{2 \mathrm{k}+1}$ that is defined as follows: Supposing that $\mathrm{x} \in \mathrm{M}$ and $\left.v \in \mathrm{TM}\right|_{\mathrm{x}} \operatorname{set} \mathrm{g}(\mathrm{x}, v)=\left.f_{*}\right|_{\mathrm{x}} \cdot v$ where f_{*} denotes the differential of f. Sard's theorem can be invoked to see that g is not surjective. Let a denote a point that is not in the image of g . (Note that a is necessarily nonzero.) Use π to denote the projection onto the orthogonal complement of a. To see that $\pi \circ f$ is an immersion, let x denote a point in M and let v denote a nonzero vector in $\left.\mathrm{TM}\right|_{\mathrm{x}}$. Suppose for the sake of argument that $(\pi \circ f)_{*} v$ is zero. If this is so, then the chain rule and the fact that π is linear implies that $\left.f_{*}\right|_{x} \cdot v=t a$ for some nonzero $t \in \mathbb{R}$. This implies in turn that $\left.f_{*}\right|_{x}\left(\mathrm{t}^{-1} v\right)=a$ which is nonsense because a is in the complement of the image of f_{*}.

PROBLEM 2 SOLUTION:

Answer to a) The cellular chain complex for X must be of the form

Since X is connected, it must have $H_{0}(X ; \mathbb{Z})=\mathbb{Z}$, so the map c must be zero. The only other restriction is that the sequence form a complex, so $b \circ a=0$; but since $b \circ a$ is multiplication by some integer, either $\mathrm{a}=0$ or $\mathrm{b}=0$. In the case $\mathrm{a}=0$ and $\mathrm{b} \neq 0$, the homology groups take the form

In the case $a \neq 0$ and $b=0$, the homology groups take the form

In the remaing $\mathrm{a}=0=\mathrm{b}$ case, they take the form

Answer to b) The assertion that X is its own universal cover is the same as the assertion $\pi_{1}(X)=0$. But, since $H_{1}(X)=\pi_{1}(X)^{\text {ab }}$, this means $H_{1}(X)=0$. The only case where this is possible is when $\mathrm{a}=0$ and $\mathrm{b} \neq 0$. Moreover, since $\mathbb{Z} / \mathrm{b}=0$ in this case, b must be a multiplicative unit: $\mathrm{b}= \pm 1$.

PRoblem 3 SOLUTION:

Answer to a) The elements of G are in bijection with ordered bases $\left(v_{1}, \ldots, v_{n}\right)$ of k^{n} (the map takes each matrix to its columns). For each $j \in\{0,1,2, \ldots, n-1\}$, once v_{i} for all $i \leq j$ has been chosen, then there are $q^{n}-q^{j}$ choices for the index $(j+1)$ basis element because any of the q^{n} elements of k^{n} except the q^{m} linear combinations of v_{1}, \ldots, v_{j} will do.
Hence the number of possible bases is $\prod_{m=0}^{n-1}\left(q^{n}-q^{m}\right)$.

Answer to b) Each factor $q^{n}-q^{j}$ is q^{j} times an integer not divisible by p because it is congruent to -1 modulo q, and q is a multiple of p. Hence the number of elements in G is $q d$ times some integer not divisible by p, where $d=\sum_{j=0}^{n-1} j$. But q^{d} is the order of U because there are d entries above the diagonal, and a power of p. Hence U is a p-Sylow subgroup of G.

Answer to \underline{c}) U consists of the matrices h that satisfy the desired property with respect to the standard basis of unit vectors. Hence the matrices h that satisfy this property for the basis $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$ constitute the subgroup of G obtained by conjugating U by the matrix with columns v_{1}, \ldots, v_{n}. But by Sylow's second theorem H is contained in a conjugate of U.

PRoblem 4 Solution:

Let $S=\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ be the homogeneous coordinate ring of $\mathbb{C P}^{3}$. The coordinate ring of X is of the form $S /(f, g)$ for some irreducible polynomials f and g of degrees a, b respectively. There is a four-term exact sequence of graded modules

$$
0 \rightarrow S(-a-b) \rightarrow S(-a) \otimes S(-b) \rightarrow S \rightarrow S /(f, g) \rightarrow 0
$$

with maps given by multiplication with f and g. Hence the Hilbert polynomial of X is

$$
\begin{aligned}
P_{X}(z) & =\binom{z+3}{3}-\binom{z+3-a}{3}-\binom{z+3-b}{3}+\binom{z+3-a-b}{3} \\
& =a b\left(z+\frac{4-a-b}{2}\right)
\end{aligned}
$$

PROBLEM 5 SOLUTION:

Answer to a) One has to show that a Cauchy sequence $\left\{f_{\mathrm{n}}\right\}_{\mathrm{n}=1,2, \ldots}$ in \mathcal{C}^{0} converges to a continuous function. To do this, note that for each $t \in[0,1]$, the sequence $\left\{f_{\mathrm{n}}(\mathrm{t})\right\}_{\mathrm{n} \in\{1,2, \ldots\}}$ is a Cauchy sequence in \mathbb{R} so it converges. Let $f(\mathrm{t})$ denote the limit. The assignment $\mathrm{t} \rightarrow f(\mathrm{t})$ defines a function on $[0,1]$. The task is to prove that this function is continuous. This means the following: Given $\varepsilon>0$, there exists $\delta>0$ such that $\left|f(\mathrm{t})-f\left(\mathrm{t}^{\prime}\right)\right|<\varepsilon$ when $\left|t-t^{\prime}\right|<\delta$. To find δ, first fix N so that $\left|f_{\mathrm{n}}(\mathrm{t})-f_{\mathrm{m}}(\mathrm{t})\right|<\frac{1}{3} \varepsilon$ for all $\mathrm{t} \in[0,1]$ and all pairs n , $\mathrm{m}>\mathrm{N}$. This implies that $\left|f_{\mathrm{n}}(\mathrm{t})-f(\mathrm{t})\right| \leq \frac{1}{3} \varepsilon$ for all t . Such N exists because $\left\{f_{\mathrm{n}}\right\}_{\mathrm{n} \in\{1,2, \ldots\}}$ is a Cauchy sequence in \mathcal{C}^{0}. To continue, take $\mathrm{n}>\mathrm{N}$ and fix δ so that $\left|f_{\mathrm{n}}(\mathrm{t})-f_{\mathrm{n}}\left(\mathrm{t}^{\prime}\right)\right|<\frac{1}{3} \varepsilon$ when $\left|t^{\prime}-t\right|<\delta$. It then follows by the triangle inequality that

$$
\left|f(\mathrm{t})-f\left(\mathrm{t}^{\prime}\right)\right| \leq\left|f(\mathrm{t})-f_{\mathrm{n}}(\mathrm{t})\right|+\left|f\left(\mathrm{t}^{\prime}\right)-f_{\mathrm{n}}\left(\mathrm{t}^{\prime}\right)\right|+\left|f_{\mathrm{n}}\left(\mathrm{t}^{\prime}\right)-f_{\mathrm{n}}(\mathrm{t})\right|<\varepsilon .
$$

Answer to b) The map ψ is bounded because for all t, one has the identity

$$
f(\mathrm{t})=\int_{0}^{1}\left(\int_{\mathrm{r}}^{\mathrm{t}} \frac{\mathrm{~d}}{\mathrm{ds}} f(\mathrm{~s}) \mathrm{ds}+f(\mathrm{r})\right) \mathrm{dr},
$$

and thus $|f(\mathrm{t})| \leq\|f\|_{*}$ for all t . It is not a compact map. To prove this, fix a smooth function on $[0, \infty)$ that is equal to 1 near $t=0$ and equal to 0 for $t>\frac{1}{2}$. Call this function
f. Define $f_{\mathrm{n}}(\mathrm{t})=f(\mathrm{nt})$. This function is smooth on $[0,1]$. The sequence $\left\{f_{\mathrm{n}}(\mathrm{t})\right\}$ has bounded $\|\cdot\|_{*}$ norm but it has no convergent sequence in \mathcal{C}^{0}.

PROBLEM 6 SOLUTION:

Answer to a) The function $f(\delta)=2 \mathrm{R} \delta /(1-\delta)^{3}$ has strictly positive derivative and therefore defines a diffeomorphism from $[0,1)$ to $[0, \infty)$. It follows from this that there is a single point where f is equal to 1 .

Answer to $\underline{\text { b }}$) To obtain the asserted lower bound for δ, note that φ maps the disk where $|\mathrm{z}|<\delta$ diffeomorphically to its image if it is $1-1$ on this disk and if $\left|\varphi^{\prime}\right|>0$ on this disk. The Cauchy integral formula is used to see when this happens. Here is Cauchy's formula:

$$
\varphi(\mathrm{z})=\frac{1}{2 \pi \mathrm{i}} \int_{\partial \mathbb{D}} \frac{1}{\mathrm{z}-\mathrm{w}} \varphi(\mathrm{w}) \mathrm{dw} .
$$

Differentiating this, one sees that $\left|\varphi^{\prime \prime}\right|$ on the $|\mathrm{z}|<\delta$ disk is bounded by $2 \mathrm{R}(1-\delta)^{-3}$. This implies that

$$
\left|\varphi^{\prime}-1\right|<2 \mathrm{R} \delta(1-\delta)^{-3} \text { where }|\mathrm{z}|<\delta .
$$

If $\varphi^{\prime}>0$, then φ is a local diffeomorphism. This is the case when $\delta<\delta_{*}$ with δ_{*} being the solution in $(0,1)$ to the equation $2 R \delta_{*}\left(1-\delta_{*}\right)^{-3}=1$. Meanwhile, if $\mathrm{z}, \mathrm{z}^{\prime}$ have norm less than δ, then $\left|\varphi(z)-\varphi\left(z^{\prime}\right)\right| \geq\left(1-2 R \delta(1-\delta)^{-3}\right)\left|z-z^{\prime}\right|$ which is a positive multiple of $\left|z-z^{\prime}\right|$ precisely when $\delta<\delta_{*}$.

Qualifying Examination

Harvard University

Department of Mathematics
Thursday, January 21, 2016 (Day 3)

Problem 1 (DG)

Recall that a symplectic manifold is a pair (M, ω), where M is a smooth manifold and ω is a closed nondegenerate differential 2-form on M . (The 2-form ω is called the symplectic form.)
a) Show that if $\mathrm{H}: \mathrm{M} \rightarrow \mathrm{R}$ is a smooth function, then there exists a unique vector field, to be denoted by X_{H}, satisfying $\mathrm{l}_{\mathrm{x}_{\mathrm{H}}} \omega=\mathrm{dH}$. (Here, t denotes the contraction operation.)
b) Supposing that $\mathrm{t}>0$ is given, suppose in what follows that the flow of X_{H} is defined for time t, and let ϕ_{t} denote the resulting diffeomorphism of M. Show that $\phi_{t} * \omega=\omega$.
c) Denote the Euclidean coordinates on \mathbb{R}^{4} by $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and use these to define the symplectic form $\omega_{0}=d x^{1} \wedge d y^{1}+d x^{2} \wedge d y^{2}$. Find a function $H: \mathbb{R}^{4} \rightarrow \mathbb{R}$ such that the diffeomorphism $\phi_{t=1}$ that is defined by the time $t=1$ flow of X_{H} fixes the half space where $\mathrm{x}_{1} \leq 0$ and moves each point in the half space where $\mathrm{x}_{1} \geq 1$ by 1 in the y_{2} direction.

Problem 2 (T)

Let X denote a finite CW complex and let $f: X \rightarrow X$ be a self-map of X. Recall that the Lefschetz trace of f, denoted by $\tau(f)$, is defined by the rule

$$
\tau(f)=\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \operatorname{tr}\left(f_{\mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathbb{Q}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathbb{Q})\right)
$$

with f_{n} denoting the induced homomorphism. Use $\tau(\cdot)$ to answer the following:
a) Does there exist a continuous map from $\mathbb{R P}^{2}$ to itself with no fixed points? If so, give an example; and if not, give a proof.
b) Does there exist a continuous map from $\mathbb{R P}^{3}$ to itself with no fixed points? If so, give an example; and if not, give a proof.

Problem 3 (AN)

Let A be the ring $\mathbb{Z}[\sqrt[5]{2016}]=\mathbb{Z}[X] /\left(X^{5}-2016\right)$. Given that 2017 is prime in \mathbb{Z}, determine the factorization of $2017 \cdot \mathrm{~A}$ into prime ideals of A .

Problem 4 (AG)

a) State a version of the Riemann-Roch theorem.
b) Apply this theorem to show that if X is a complete nonsingular curve and $P \in X$ is any point, there is a rational function on X which has a pole at P and is regular on $X-\{P\}$.

Problem 5 (RA)

Let \wp denote a probability measure for a real valued random variable with mean 0 .
Denote this random variable by x. Suppose that the random variable $|\mathrm{x}|$ has mean equal to 2 .
a) Given $\mathrm{R}>2$, state a non-trivial upper bound for event that $x \geq \mathrm{R}$. (The trivial upper bound is 1.)
b) Give a non-zero lower bound for the standard deviation of x.
c) A function f on \mathbb{R} is Lipshitz when there exists a number $c \geq 0$ such that

$$
\left|f(\mathrm{p})-f\left(\mathrm{p}^{\prime}\right)\right| \leq c\left|\mathrm{p}-\mathrm{p}^{\prime}\right| \text { for any pair } \mathrm{p}, \mathrm{p}^{\prime} \in \mathbb{R} .
$$

Let $\hat{\wp}$ denote the function on \mathbb{R} whose value at a given $p \in \mathbb{R}$ is the expectation of the random variable $\mathrm{e}^{\mathrm{i} p x}$. (This is the characteristic function of \wp. .) Give a rigorous proof that $\hat{\wp}$ is Lipshitz and give an upper bound for c in this case.
d) Suppose that the standard deviation of x is equal to 4 . Let N denote an integer greater than 1 , and let $\left\{x_{1}, \ldots, x_{N}\right\}$ denote a set of independent random variables each with probabilities given by \wp. Use S_{N} to denote the random variable $\frac{1}{\mathrm{~N}}\left(x_{1}+\cdots+x_{\mathrm{N}}\right)$. The central limit theorem gives an integral that approximates the probability of the event where $S_{\mathrm{N}} \in[-1,1]$ when N is large. Write this integral.

Problem 6 (CA)

Let $\mathrm{H} \subset \mathbb{C}$ denote the open right half plane, thus $\mathrm{H}=\{\mathrm{z}=\mathrm{x}+\mathrm{iy}: \mathrm{x}>0\}$. Suppose that $f: \mathrm{H} \rightarrow \mathbb{C}$ is a bounded, analytic function such that $f(1 / \mathrm{n})=0$ for each positive integer n . Prove that $f(\mathrm{z})=0$ for all z .
(Hint: Consider the behavior of the sequence of functions $\left\{h_{N}(z)=\prod_{n=1}^{N} \frac{z-1 / n}{z+1 / n}\right\}_{N=1.2 \ldots . .}$ on H and, in particular, on the positive real axis.\}

Problem 1 SOLUTION:

Answer to a) To say that ω is non-degenerate is to say that the contraction operation defines a vector bundle isomorphism between TM and T*M.

Answer to \underline{b}) The definition of the Lie derivative is such that $\frac{\partial}{\partial t}\left(\phi_{t}^{*} \omega\right)=\phi_{t}{ }^{*}\left(\mathfrak{L}_{X_{H}} \omega\right)$ with $\mathfrak{L}_{\mathrm{X}_{\mathrm{H}}} \omega$ denoting the Lie derivative of ω along the vector field X_{H}. Cartan's formula for $\mathfrak{L}_{X_{H}} \omega$ is $\mathfrak{L}_{X_{H}} \omega=\mathrm{d}\left(\mathrm{v}_{\mathrm{X}_{H}} \omega\right)+\mathfrak{l}_{X_{H}} d \omega$ and both of these terms are zero. Thus, $\phi_{t}{ }^{*} \omega$ is independent of t and thus equal to its value at $t=0$ which is ω.

Answer to c) Choose a smooth function $f: \mathbb{R} \rightarrow[0,1]$ so that $f(\mathrm{~s})=0$ for $\mathrm{s} \leq 0$ and $f(\mathrm{~s})=1$ for $\mathrm{s} \geq 1$. The function sending $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right) \rightarrow \mathrm{H}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)=-f\left(\mathrm{x}_{1}\right) \mathrm{x}_{2}$ has the desired properties because $X_{H}=0$ for $x_{1} \leq 0$ and $X_{H}=\frac{\partial}{\partial y_{2}}$ for $x_{1} \geq 1$.

PRoblem 2 SOLUTION:

Answer to a) The Lefschetz trace theorem states that if $\tau(\mathrm{f}) \neq 0$, then f must have a fixed point. To see that $\tau(f)$ is never zero, note first that the rational homology of $\mathbb{R} \mathbb{P}^{2}$ is zero except for $\mathrm{H}_{0}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Q}\right)$, which is \mathbb{Q}. Since f_{0} is multiplication by 1 , it $\tau(f)$ is never zero.

Answer to \underline{b}) In this case, the non-zero rational homology is in dimensions 0 and 3, each being isomorphic to \mathbb{Q}. As a consequence, the argument used for $\mathbb{R P}^{2}$ can not be used here. In fact, there is a self-map with no fixed points and it is constructed momentarily. It is instructive to consider first the case of $\mathbb{R}^{1}{ }^{1}$ which is S^{1}, where a rotation by angle π has no fixed points. Now viewing $\mathbb{R P}^{1}$ as $\left(\mathbb{R}^{2}-0\right) / \mathbb{R}^{*}$, then this rotation through angle π is depicted using homogeneous coordinates $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ as the map $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \rightarrow\left[\mathrm{x}_{2},-\mathrm{x}_{1}\right]$ which can't have a fixed point because there is no non-zero real number λ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}-0$ with $\mathrm{x}_{2}=\lambda \mathrm{x}_{1}$ and $\mathrm{x}_{1}=-\lambda \mathrm{x}_{2}$. To mimick this for $\mathbb{R} \mathbb{P}^{3}$, write $\mathbb{R P}^{3}$ as $\left(\mathbb{R}^{4}-0\right) / \mathbb{R}^{*}$ and then define the desired self map using homogeneous coordinates $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right.$] by the rule whereby $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right] \rightarrow\left[\mathrm{x}_{2},-\mathrm{x}_{1}, \mathrm{x}_{4},-\mathrm{x}_{3}\right]$. This has no fixed points because there is no non-zero real number λ and $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \in \mathbb{R}^{4}-0$ such that $\mathrm{x}_{2}=\lambda \mathrm{x}_{1}, \mathrm{x}_{1}=-\lambda \mathrm{x}_{2}, \mathrm{x}_{4}=\lambda \mathrm{x}_{3}$ and $x_{3}=-\lambda x_{4}$.

Problem 3 Solution:

2017A is the product of the prime ideals $(2017, X+1)$ and $\left(2017, X^{4}-X^{3}+X^{2}-X+1\right)$.
In general, if the polynomial $P(X)$ factors modulo a prime p into distinct irreducibles $\left\{\mathrm{P}_{\mathrm{i}}\right\}$ then the ideal $\mathrm{pZ}[\mathrm{X}] /(\mathrm{P}(\mathrm{X}))$ is the product of ideals $\left(\mathrm{p}, \mathrm{P}_{\mathrm{i}}\right)$. In our case, $\mathrm{p}=2017$ and $P=X^{5}-2016 \equiv X^{5}+1 \bmod p$. The roots of $X^{5}+1$ in an algebraic closure of $Z / p Z$ are the set $\left\{-1,-w,-w^{2},-w^{3},-w^{4}\right\}$ where w is a nontrivial 5 th root of unity. The irreducible factors correspond to orbits of the permutation $x \rightarrow x^{p}$ of those roots. Clearly -1 is a fixed point, and since $p \equiv 2 \bmod 5$ the remaining roots fall in to a single orbit

$$
-\mathrm{w} \rightarrow-\mathrm{w}^{2} \rightarrow-\mathrm{w}^{4} \rightarrow-\mathrm{w}^{3} \rightarrow-\mathrm{w} .
$$

Hence the irreducible factors of $\mathrm{X}^{5}+1 \bmod \mathrm{p}$ are $\mathrm{X}+1$ and $\left(\mathrm{X}^{5}+1\right) /(\mathrm{X}+1)$ which is the polynomial $\mathrm{X}^{4}-\mathrm{X}^{3}+\mathrm{X}^{2}-\mathrm{X}+1$.

Problem 4 Solution:
Answer to a) Let X be a complete non-singular curve of genus g . Let K denote the canonical divisor. If D is any divisor on X, let $\ell(D)=\operatorname{dim}\left(H_{0}\left(X, \mathcal{O}_{X}(D)\right)\right)$. The Riemann-Roch theorem asserts that $\ell(\mathrm{D})-\ell(\mathrm{K}-\mathrm{D})=\operatorname{deg}(\mathrm{D})+1-\mathrm{g}$.

Answer to $\underline{\mathrm{b})}$ Fix a point $\mathrm{Q} \neq \mathrm{P}$ and let D denote the divisor $2 \mathrm{P}-\mathrm{Q}$. Choose a positive integer n such that $n>\max \{2 g-2,0\}$. Noting that $n=\operatorname{deg}(n D)$ and that $\operatorname{deg}(K)=2 g-2$, it follows that $\operatorname{deg}(\mathrm{K}-\mathrm{nD})<0$. This implies that $\ell(\mathrm{K}-\mathrm{D})=0$. Therefore, the RiemannRoch theorem applied to nD implies that $\ell(\mathrm{nD})=\mathrm{n}+1-\mathrm{g}$ which is greater than 1 . This means that there is an effective divisor (to be denoted by D^{\prime}) and a rational function on X (to be denoted by f) such that $\mathrm{nD}+(f)=\mathrm{D}^{\prime}$. Rewriting this gives $(f)=\mathrm{D}^{\prime}-2 \mathrm{nP}+\mathrm{n} \mathrm{Q}$ so f has poles only at P .

PROBLEM 5 SOLUTION:

Answer to a) The event in question is $\int_{x \geq R} \wp$. This is no smaller than $\frac{1}{R} \int_{x \geq R}|x| \wp$ which in turn is no greater than $\frac{2}{\mathrm{R}}$.

Answer to $\underline{b)}$ The square of the standard deviation is the square root of the expectation of the random variable x^{2}. Since

$$
\begin{equation*}
\int_{\mathbb{R}}|x| \wp \leq\left(\int_{\mathbb{R}} \wp\right)^{1 / 2}\left(\int_{\mathbb{R}} x^{2} \wp\right)^{1 / 2} \tag{*}
\end{equation*}
$$

(which is proved momentarily), and since $\int_{\mathbb{R}} \wp=1$, it follows that $\left(\int_{\mathbb{R}} x^{2} \wp\right)^{1 / 2} \geq 2$. To prove $(*)$, note that for any $t \in(0, \infty)$, the expectation of $\left(t-t^{-1} x\right)^{2}$ is the sum

$$
t^{2} \int_{\mathbb{R}} \wp-2 \int_{\mathbb{R}}|x| \wp+t^{-2} \int_{\mathbb{R}} x^{2} \wp
$$

This is non-negative for any $t \in(0,1)$ since it is the expectation of a positive random variable. The assertion that it is non-negative for the case $t=\left(\int_{\mathbb{R}} x^{2} \wp\right)^{1 / 4}\left(\int_{\mathbb{R}} \wp\right)^{-1 / 4}$ is $(*)$.

Answer to c) Supposing that $\mathrm{p}, \mathrm{p}^{\prime} \in \mathbb{R}$, then

$$
\begin{equation*}
\hat{\wp}(p)-\hat{\wp}\left(p^{\prime}\right)=\int_{\mathbb{R}}\left(\mathrm{e}^{\mathrm{ixp}}-\mathrm{e}^{\mathrm{ixp} p^{\prime}}\right) \wp . \tag{**}
\end{equation*}
$$

Noting that $e^{i x p}-e^{i x p^{\prime}}=i x \int_{p}^{p^{\prime}} e^{i x q} d q$ by the fundamental theorem of calculus, it follows that $\left|e^{i x p}-e^{i x p^{\prime}}\right| \leq|x|\left|p-p^{\prime}\right|$. This understood, then $(* *)$ leads to the bound

$$
\left|\hat{\wp}(p)-\hat{\wp}\left(p^{\prime}\right)\right| \leq\left(\int_{\mathbb{R}}|x| \wp\right)\left|p-p^{\prime}\right|=2\left|p-p^{\prime}\right| .
$$

Answer to d) The random variable S_{N} has mean 0 and standard deviation equal to $\mathrm{N}^{-1 / 2}$ times the standard deviation of x, thus $4 \mathrm{~N}^{-1 / 2}$. (The expecation of $S_{\mathrm{N}}{ }^{2}$ is the that of N^{-} ${ }^{2} \sum_{\mathrm{i}, \mathrm{k}=1, \ldots, \mathrm{~N}} x_{\mathrm{i}} x_{\mathrm{k}}$. Only the $\mathrm{i}=\mathrm{k}$ terms are non-zero (because x has mean zero), there are N of them and each is the expectation of x^{2} which is 16.) Denote this standard deviation of S_{N} by σ_{N} for the moment. The central limit theorem approximates the probability in question by $\int_{-1}^{1} \frac{1}{\sqrt{2 \pi} \sigma_{N}} e^{-\mathrm{x}^{2} / 2 \sigma_{\mathrm{N}}^{2}} \mathrm{dx}$ where σ_{N} again denotes $4 \mathrm{~N}^{-1 / 2}$.

Problem 6 SOLUTION

This is a form of Jensen's inequality. To elaborate, fix B so that $|f(\mathrm{z})| \leq \mathrm{B}$ for all $\mathrm{z} \in \mathrm{H}$. For each integer N, define

$$
\mathrm{F}_{\mathrm{N}}(\mathrm{z})=f(\mathrm{z}) / \mathrm{h}_{\mathrm{N}}(\mathrm{z})=f(\mathrm{z}) \prod_{\mathrm{n}=1}^{\mathrm{N}} \frac{\mathrm{z}+1 / \mathrm{n}}{\mathrm{z}-1 / \mathrm{n}} .
$$

This function is analytic on H because the poles at $\mathrm{z}=1,2,3, \ldots, \mathrm{~N}$ are matched by zeros of f. Moreover, the absolute value of each of the factors $(z+1 / n) /(z-1 / n)$ approaches 1 as $\operatorname{Re}(\mathrm{z}) \rightarrow 0$ (uniformly in $\operatorname{Im}(\mathrm{z})$), and also approaches 1 as $|\mathrm{z}| \rightarrow \infty$. Hence $\left|\mathrm{F}_{\mathrm{n}}(\mathrm{z})\right| \leq \mathrm{B}$ for all $\mathrm{z} \in \mathrm{H}$ by virtue of the maximum modulus principle (the norm of an analytic function can not take on a local maximum). With the preceding understood, note that for any fixed, positive real z, the factor $\prod_{n=1}^{N} \frac{z+1 / n}{z-1 / n}$ becomes unbounded as $N \rightarrow \infty$. Hence its product with $f(\mathrm{z})$ cannot remain bounded unless $f(\mathrm{z})=0$ on the real axis. But a holomorphic function on any domain has discrete zeros, so $f(z)$ must be everywhere 0 .

