Qualifying Examination

Harvard University
Department of Mathematics
Tuesday, January 19, 2016 (Day 1)

Problem 1 (DG)

Let S denote the surface in \mathbb{R}^{3} where the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) obey $\mathrm{x}^{2}+\mathrm{y}^{2}=1+\mathrm{z}^{2}$. This surface can be parametrized by coordinates $t \in \mathbb{R}$ and $\theta \in \mathbb{R} /(2 \pi \mathbb{Z})$ by the map

$$
(\mathrm{t}, \theta) \rightarrow \psi(\mathrm{t}, \theta)=\left(\sqrt{1+\mathrm{t}^{2}} \cos \theta, \sqrt{1+\mathrm{t}^{2}} \sin \theta, \mathrm{t}\right) .
$$

a) Compute the induced inner product on the tangent space to S using these coordinates.
b) Compute the Gaussian curvature of the metric that you computed in Part a).
c) Compute the parallel transport around the circle in S where $\mathrm{z}=0$ for the Levi-Civita connection of the metric that you computed in Part a).

Problem 2 (T)

Let X be path-connected and locally path-connected, and let Y be a finite Cartesian product of circles. Show that if $\pi_{1}(\mathrm{X})$ is finite, then every continuous map from X to Y is null-homotopic. (Hint: recall that there is a fiber bundle $\mathrm{Z} \rightarrow \mathbb{R} \rightarrow \mathrm{S}^{1}$.)

Problem 3 (AN)

Let K be the field $\mathbb{C}(z)$ of rational functions in an indeterminate z , and let $\mathrm{F} \subset \mathrm{K}$ be the subfield $\mathbb{C}(u)$ where $u=\left(z^{6}+1\right) / z^{3}$.
a) Show that the field extension K / F is normal, and determine its Galois group.
b) Find all fields E, other than F and K themselves, such that $F \subset E \subset K$. For each E, determine whether the extensions E / F and K / E are normal.

Problem 4 (AG)
The nodal cubic is the curve in $\mathbb{C P}^{2}$ (denoted by X) given in homogeneous coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) by the locus $\left\{\mathrm{zy}^{2}=\mathrm{x}^{2}(\mathrm{x}+\mathrm{z})\right\}$.
a) Give a definition of a rational map between algebraic varieties.
b) Show that there is a birational map from X to $\mathbb{C P}^{1}$.
c) Explain how to resolve the singularity of X by blowing up a point in $\mathbb{C P}^{2}$.

Problem 5 (RA)

Let \mathbb{B} and \mathbb{L} denote Banach spaces, and let $\|\cdot\|_{\mathbb{B}}$ and $\|\cdot\|_{\mathbb{L}}$ denote their norms.
a) Let $\mathrm{L}: \mathbb{B} \rightarrow \mathbb{L}$ denote a continuous, invertible linear map and let $\mathfrak{m}: \mathbb{B} \otimes \mathbb{B} \rightarrow \mathbb{L}$ denote a linear map such that $\|\mathfrak{m}(\phi \otimes \psi)\|_{\mathbb{L}} \leq\|\phi\|_{\mathbb{B}}\|\psi\|_{\mathbb{B}}$ for all $\phi, \psi \in \mathbb{B}$. Prove the following assertions:

- There exists a number $\kappa>1$ depending only on L such that if $a \in \mathbb{B}$ has norm less than κ^{-2}, then there is a unique solution to the equation $L \phi+\mathfrak{m}(\phi \otimes \phi)=a$ with $\|\phi\|_{\mathbb{B}}<\kappa^{-1}$.
- The norm of the solution from the previous bullet is at most $\kappa\|a\|_{\mathbb{L}}$.
b) Recall that a Banach space is defined to be a complete, normed vector space. Is the assertion of Part a) of the first bullet always true if \mathbb{B} is normed but not complete? If not, explain where the assumption that \mathbb{B} is complete enters your proof of Part a).

Problem 6 (CA)

Fix $\mathrm{a} \in \mathbb{C}$ and an integer $\mathrm{n} \geq 2$. Show that the equation $\mathrm{az}^{\mathrm{n}}+\mathrm{z}+1=0$ for a complex number z necessarily has a solution with $|\mathrm{z}| \leq 2$.

Qualifying Examination

Harvard University
Department of Mathematics
Wednesday, January 20, 2016 (Day 2)

Problem 1 (DG)

Let k denote a positive integer. A non-optimal version of the Whitney embedding theorem states that any k-dimensional manifold can be embedded into $\mathbb{R}^{2 k+1}$. Using this, show that any k-dimensional manifold can be immersed in $\mathbb{R}^{2 k}$. (Hint: Compose the embedding with a projection onto an appropriate subspace.)

Problem 2 (T)

Let X be a CW-complex with a single cell in each of the dimensions $0,1,2,3$, and 5 and no other cells.
a) What are the possible values of $H_{*}(\mathrm{X} ; \mathbb{Z})$? (Note: it is not sufficient to consider $H_{n}(X ; \mathbb{Z})$ for each n independently. The value of $H_{1}(X ; \mathbb{Z})$ may constrain the value of $\mathrm{H}_{2}(\mathrm{X} ; \mathbb{Z})$, for instance.)
b) Now suppose in addition that X is its own universal cover. What extra information does this provide about $H_{*}(X ; \mathbb{Z})$?

Problem 3 (AN)
Let k be a finite field of characteristic p , and n a positive integer. Let G be the group of invertible linear transformations of the k -vector space k^{n}. Identify G with the group of invertible $\mathrm{n} \times \mathrm{n}$ matrices with entries in k (acting from the left on column vectors).
a) Prove that the order of G is $\prod_{m=0}^{n-1}\left(q^{n}-q^{m}\right)$ where q is the number of elements of k.
b) Let U be the subgroup of G consisting of upper-triangular matrices with all diagonal entries equal 1. Prove that U is a p-Sylow subgroup of G .
c) Suppose $\mathrm{H} \subset \mathrm{G}$ is a subgroup whose order is a power of p . Prove that there is a basis $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of k^{n} such that for every $h \in H$ and every $m \in\{1,2,3, \ldots, n\}$, the vector $h\left(v_{m}\right)-v_{m}$ is in the span of $\left\{\mathrm{v}_{\mathrm{d}}: \mathrm{d}<\mathrm{m}\right\}$.

Problem 4 (AG)

Let X be a complete intersection of surfaces of degrees a and b in $\mathbb{C P}^{3}$. Compute the Hilbert polynomial of X.

Problem 5 (RA)
Let \mathcal{C}^{0} denote the vector space of continuous functions on the interval $[0,1]$. Define a norm on \mathcal{C}^{0} as follows: If $f \in \mathcal{C}^{0}$, then its norm (denoted by $\|f\|$) is

$$
\|f\|=\sup _{\mathrm{t} \in[0,1]}|f(\mathrm{t})| .
$$

Let \mathcal{C}^{∞} denote the space of smooth functions on $[0,1]$. View \mathcal{C}^{∞} as a normed, linear space with the norm defined as follows: If $f \in \mathcal{C}^{\infty}$, then its norm (denoted by $\|f\|_{*}$) is

$$
\|f\|_{*}=\int_{[0,1]}\left(\left|\frac{\mathrm{d}}{\mathrm{dt}} f\right|+|f|\right) \mathrm{dt} .
$$

a) Prove that \mathcal{C}^{0} is Banach space with respect to the norm $\|\cdot\|$. In particular, prove that it is complete.
b) Let ψ denote the 'forgetful' map from \mathcal{C}^{∞} to \mathcal{C}^{0} that sends f to f. Prove that ψ is a bounded map from \mathcal{C}^{∞} to C^{0}, but not a compact map from \mathcal{C}^{∞} to C^{0}.

Problem 6 (CA)

Let \mathbb{D} denote the closed disk in \mathbb{C} where $|\mathrm{z}| \leq 1$. Fix $\mathrm{R}>0$ and let $\varphi: \mathbb{D} \rightarrow \mathbb{C}$ denote a continuous map with the following properties:
i) φ is holomorphic on the interior of \mathbb{D}.
ii) $\varphi(0)=0$ and its z-derivative, φ^{\prime}, obeys $\varphi^{\prime}(0)=1$.
iii) $|\varphi| \leq R$ for all $\mathrm{z} \in \mathbb{D}$.

Since $\varphi^{\prime}(0)=1$, there exists $\delta>0$ such that φ maps the $|z|<\delta$ disk diffeomorphically onto its image. Prove the following:
a) There is a unique solution in $[0,1]$ to the equation $2 \mathrm{R} \delta=(1-\delta)^{3}$.
b) Let δ_{*} denote the unique solution to this equation. If $0<\delta<\delta_{*}$, then φ maps the $|\mathrm{z}|<\delta$ disk diffeomorphically onto its image.

Qualifying Examination

Harvard University

Department of Mathematics
Thursday, January 21, 2016 (Day 3)

Problem 1 (DG)

Recall that a symplectic manifold is a pair (M, ω), where M is a smooth manifold and ω is a closed nondegenerate differential 2-form on M . (The 2-form ω is called the symplectic form.)
a) Show that if $\mathrm{H}: \mathrm{M} \rightarrow \mathrm{R}$ is a smooth function, then there exists a unique vector field, to be denoted by X_{H}, satisfying $\mathrm{l}_{\mathrm{x}_{\mathrm{H}}} \omega=\mathrm{dH}$. (Here, t denotes the contraction operation.)
b) Supposing that $\mathrm{t}>0$ is given, suppose in what follows that the flow of X_{H} is defined for time t, and let ϕ_{t} denote the resulting diffeomorphism of M. Show that $\phi_{t} * \omega=\omega$.
c) Denote the Euclidean coordinates on \mathbb{R}^{4} by $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and use these to define the symplectic form $\omega_{0}=d x^{1} \wedge d y^{1}+d x^{2} \wedge d y^{2}$. Find a function $H: \mathbb{R}^{4} \rightarrow \mathbb{R}$ such that the diffeomorphism $\phi_{t=1}$ that is defined by the time $t=1$ flow of X_{H} fixes the half space where $\mathrm{x}_{1} \leq 0$ and moves each point in the half space where $\mathrm{x}_{1} \geq 1$ by 1 in the y_{2} direction.

Problem 2 (T)

Let X denote a finite CW complex and let $f: X \rightarrow X$ be a self-map of X. Recall that the Lefschetz trace of f, denoted by $\tau(f)$, is defined by the rule

$$
\tau(f)=\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \operatorname{tr}\left(f_{\mathrm{n}}: \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathbb{Q}) \rightarrow \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \mathbb{Q})\right)
$$

with f_{n} denoting the induced homomorphism. Use $\tau(\cdot)$ to answer the following:
a) Does there exist a continuous map from $\mathbb{R P}^{2}$ to itself with no fixed points? If so, give an example; and if not, give a proof.
b) Does there exist a continuous map from $\mathbb{R P}^{3}$ to itself with no fixed points? If so, give an example; and if not, give a proof.

Problem 3 (AN)

Let A be the ring $\mathbb{Z}[\sqrt[5]{2016}]=\mathbb{Z}[X] /\left(X^{5}-2016\right)$. Given that 2017 is prime in \mathbb{Z}, determine the factorization of $2017 \cdot \mathrm{~A}$ into prime ideals of A .

Problem 4 (AG)

a) State a version of the Riemann-Roch theorem.
b) Apply this theorem to show that if X is a complete nonsingular curve and $P \in X$ is any point, there is a rational function on X which has a pole at P and is regular on $X-\{P\}$.

Problem 5 (RA)

Let \wp denote a probability measure for a real valued random variable with mean 0 .
Denote this random variable by x. Suppose that the random variable $|\mathrm{x}|$ has mean equal to 2 .
a) Given $\mathrm{R}>2$, state a non-trivial upper bound for event that $x \geq \mathrm{R}$. (The trivial upper bound is 1.)
b) Give a non-zero lower bound for the standard deviation of x.
c) A function f on \mathbb{R} is Lipshitz when there exists a number $c \geq 0$ such that

$$
\left|f(\mathrm{p})-f\left(\mathrm{p}^{\prime}\right)\right| \leq c\left|\mathrm{p}-\mathrm{p}^{\prime}\right| \text { for any pair } \mathrm{p}, \mathrm{p}^{\prime} \in \mathbb{R} .
$$

Let $\hat{\wp}$ denote the function on \mathbb{R} whose value at a given $p \in \mathbb{R}$ is the expectation of the random variable $\mathrm{e}^{\mathrm{i} p x}$. (This is the characteristic function of \wp. .) Give a rigorous proof that $\hat{\wp}$ is Lipshitz and give an upper bound for c in this case.
d) Suppose that the standard deviation of x is equal to 4 . Let N denote an integer greater than 1 , and let $\left\{x_{1}, \ldots, x_{N}\right\}$ denote a set of independent random variables each with probabilities given by \wp. Use S_{N} to denote the random variable $\frac{1}{\mathrm{~N}}\left(x_{1}+\cdots+x_{\mathrm{N}}\right)$. The central limit theorem gives an integral that approximates the probability of the event where $S_{\mathrm{N}} \in[-1,1]$ when N is large. Write this integral.

Problem 6 (CA)

Let $\mathrm{H} \subset \mathbb{C}$ denote the open right half plane, thus $\mathrm{H}=\{\mathrm{z}=\mathrm{x}+\mathrm{iy}: \mathrm{x}>0\}$. Suppose that $f: \mathrm{H} \rightarrow \mathbb{C}$ is a bounded, analytic function such that $f(1 / \mathrm{n})=0$ for each positive integer n . Prove that $f(\mathrm{z})=0$ for all z .
(Hint: Consider the behavior of the sequence of functions $\left\{h_{N}(z)=\prod_{n=1}^{N} \frac{z-1 / n}{z+1 / n}\right\}_{N=1.2 \ldots . .}$ on H and, in particular, on the positive real axis.\}

