QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Tuesday January 20, 2015 (Day 1)

- **1.** (AG) Let $C \subset \mathbb{P}^2$ be a smooth plane curve of degree d.
 - (a) Let K_C be the canonical bundle of C. For what integer n is it the case that $K_C \cong \mathcal{O}_C(n)$?
 - (b) Prove that if $d \ge 4$ then C is not hyperelliptic.
 - (c) Prove that if $d \geq 5$ then C is not trigonal (that is, expressible as a 3-sheeted cover of \mathbb{P}^1).

Solution: By the adjunction formula, the canonical divisor class is $K_C = \mathcal{O}_C(d-3)$, that is, plane curves of degree d-3 cut out canonical divisors on C. It follows that if $d \ge 4$ then any two points $p, q \in C$ impose independent conditions on the canonical series $|K_C|$; that is, $h^0(K_C(-p-q)) = g-2$, so by Riemann-Roch $h^0(\mathcal{O}_C(p+q)) = 1$, i.e., C is not hyperelliptic. Similarly, if $d \ge 5$ then any three points $p, q, r \in C$ impose independent conditions on the canonical series $|K_C|$; by Riemann-Roch it follows that $h^0(\mathcal{O}_C(p+q+r)) = 1$ so C is not trigonal.

2. (A) Let S_4 be the group of automorphisms of a 4-element set. Give the character table for S_4 and explain how you arrived at it.

Solution: To start with, there are five conjugacy classes in S_4 : (1), (12), (123), (1234) and (12)(34). The characters of the trivial and alternating representations Uand U' are clear. The standard representation of S_4 on \mathbb{C}^4 splits as a direct sum of the trivial and a three-dimensional representation V, whose character is simply the character of \mathbb{C}^4 minus one; we see that it's irreducible because the norm of its character is 1. We get another irreducible as $V' = V \otimes U'$; its character is $\chi_{V'} = \chi_V \chi_{U'}$. The final irreducible representation W (and its character) can be found by pulling back the standard representation of S_3 via the quotient map $S_4 \to S_3$ (or by the orthogonality relations). Altogether, we have

conjugacy class	e	(12)	(123)	(1234)	(12)(34)
number of elements	1	6	8	6	3
U	1	1	1	1	1
<i>U</i> ′	1	-1	1	-1	1
V	3	1	0	-1	-1
	3	-1	0	1	-1
W	2	0	1	0	2

3. (DG) Let

$$M = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 - y^2 - z^3 - z = 0 \}.$$

- (a) Prove that M is a smooth surface in \mathbb{R}^3 .
- (b) For what values of $c \in \mathbb{R}$ does the plane z = c intersect M transversely?

Solution: See attached.

4. Define the Banach space \mathcal{L} to be the completion of the space of continuous functions on the interval $[-1,1] \subset \mathbb{R}$ using the norm

$$||f|| = \int_{-1}^{1} |f(t)| dt.$$

Suppose that $f \in \mathcal{L}$ and $t \in [-1, 1]$. For h > 0, let I_h be the set of points in [-1, 1] with distance h or less from t. Prove that

$$\lim_{h \to 0} \int_{t \in I_h} |f(t)| dt = 0$$

Solution: See attached.

- 5. (AT) What are the homology groups of the 5-manifold $\mathbb{RP}^2 \times \mathbb{RP}^3$,
 - (a) with coefficients in \mathbb{Z} ?
 - (b) with coefficients in $\mathbb{Z}/2$?
 - (c) with coefficients in $\mathbb{Z}/3$?

Solution: \mathbb{RP}^2 and \mathbb{RP}^3 have cell complexes with sequences

$$0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to 0$$
 and $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to 0$

where the maps are alternately 0 and multiplication by 2; from this the homology groups of \mathbb{RP}^2 and \mathbb{RP}^3 can be calculated as $\mathbb{Z}, \mathbb{Z}/2, 0$ and $\mathbb{Z}, \mathbb{Z}/2, 0, \mathbb{Z}$ respectively. The rest is just Kunneth; the answers are

- (a): \mathbb{Z} , $(\mathbb{Z}/2)^2$, $(\mathbb{Z}/2)^2$, \mathbb{Z} , $\mathbb{Z}/2$, 0;
- (b): $\mathbb{Z}/2$, $(\mathbb{Z}/2)^2$, $(\mathbb{Z}/2)^3$, $(\mathbb{Z}/2)^3$, $(\mathbb{Z}/2)^2$, $\mathbb{Z}/2$,
- (c): $\mathbb{Z}/3, 0, 0, \mathbb{Z}/3, 0, 0$
- 6. Let Ω be an open subset of the Euclidean plane \mathbb{R}^2 A map $f: \Omega \to \mathbb{R}^2$ is said to be *conformal* at $p \in \Omega$ if its differential df_p preserves the angle between any two tangent vectors at p. Now view \mathbb{R}^2 as \mathbb{C} and a map $f: \Omega \to \mathbb{R}^2$ as a \mathbb{C} -valued function on Ω .
 - (a) Supposing that f is a holomorphic function on Ω , prove that f is conformal where its differential is nonzero.
 - (b) Suppose that f is a nonconstant holomorphic function on Ω , and $p \in \Omega$ is a point where $df_p = 0$. Let L_1 and L_2 denote distinct lines through p. Prove that the angle at f(p) between $f(L_1)$ and $f(L_2)$ is n times that between L_1 and L_2 , with n being an integer greater than 1.

Solution: See attached.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday January 21, 2015 (Day 2)

- 1. (AT) Let $X \subset \mathbb{R}^3$ be the union of the unit sphere $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ and the line segment $I = \{(x, 0, 0) \mid -1 \le x \le 1\}$.
 - (a) What are the homology groups of X?
 - (b) What are the homotopy groups $\pi_1(X)$ and $\pi_2(X)$?

Solution: Under the attaching map $I \hookrightarrow X$, the boundary $\varphi(I)$ is homologous to 0, so attaching I simply adds one new, non-torsion generator to H^1 ; thus

$$H_0(X) = H^1(X) = H^2(X) = \mathbb{Z},$$

and all other homology groups are 0. Similarly, $\pi_1(X) = \mathbb{Z}$. For $\pi_2(X)$, note that the universal cover of X is a string of spheres attached in a sequence by line segments; $\pi_2(X)$ is thus the free abelian group on countably many generators.

2. (A) Let

$$f(t) = t^4 + bt^2 + c \in \mathbb{Z}[t].$$

- (a) If E is the splitting field for f over \mathbb{Q} , show that $Gal(E/\mathbb{Q})$ is isomorphic to a subgroup of the dihedral group D_8 .
- (b) Given an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Justify.
- (c) Give an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to $\mathbb{Z}/4\mathbb{Z}$. Justify.
- (d) Give an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to D_8 .

Solution:

(a) Obviously if α is a root of f, so is $-\alpha$. So let $\pm \alpha_1, \pm \alpha_2$ be the four distinct roots of f in E. If ϕ is an element of the Galois group, it must permute the roots of f—moreover, ϕ is determined completely by its action on α_1 and α_2 . Also by definition of automorphism, note that $\phi(\alpha_1)$ cannot be a rational multiple of $\phi(\alpha_2)$, while $\phi(-\alpha_1) = -\phi(\alpha_1)$. Hence any field automorphism must necessarily give rise to a symmetry of the following square:

α_1	α_2
	_
$-\alpha_2$	$-\alpha_1$

This gives the injection of Gal into D_8 .

(b) An obvious strategy is to find a quadratic extension of a quadratic extension, then find an element whose minimal polynomial is degree 4. For instance, the element $\alpha = \sqrt{2} + \sqrt{3}$ in $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ has a degree 4 minimal polynomial which we can construct by repeatedly multiplying by conjugates: Begin with $t - \sqrt{2} - \sqrt{3}$, the multiply by $(t - \sqrt{2}) + \sqrt{3}$, then multiply this by $(t^2 + \sqrt{2})^2 - 3$. For this choice of α , we have $f(t) = t^4 - 10t^2 + 1$.

(c) Taking b = 0 and c = 1, we see that the splitting field is isomorphic to the subfield of the complex numbers generated by adjoining to \mathbb{Q} the number $\alpha = e^{\pi i/4}$. This is a degree 4 field over \mathbb{Q} . Since we have a splitting field in characteristic zero, the Galois group has order 4. We see that the field automorphism sending

$$\alpha \mapsto \alpha^3$$

has order 4, hence the Galois group is cyclic.

(d) Take b = 0 and c = 2. Clearly we have roots $\alpha_1 = 2^{1/4}$ and $\alpha_2 = i2^{1/4}$, which together lie in an extension of at least degree 8 over \mathbb{Q} . By part (a), the Galois group must be D_8 itself.

3. (CA) Let $a \in (0, 1)$. By using a contour integral, compute

$$\int_0^{2\pi} \frac{dx}{1 - 2a\cos x + a^2}$$

Solution (HT): By the periodicity of cos, it suffices to compute the integral from $-\pi$ to π . We note that there is a pole for the function

$$f(z) = \frac{1}{1 - 2a\cos z + a^2}$$

at $z_0 = i \cosh^{-1} \frac{1+a^2}{2a}$. Let R_t be the rectangle bordered by the lines $x = \pm \pi$ and y = 0, y = t. As $t \to \infty$, the contribution from the line y = t goes to zero. On the other hand, for all values of t, the contribution to the integral from $x = \pm \pi$ cancel each other out. Thus the integral along the bottom edge of the rectangle (which is what we seek) is equal to $2\pi i$ times the residue of f(z) at z_0 . Near z_0 , we have that

$$1 - 2a\cos z + a^2 = (z - z_0)2ai\sinh iz_0 + \dots$$

so we conclude the integral is given by

$$\frac{2\pi i}{2ai\sinh z_0}$$

This simplifies to

$$\frac{2\pi}{1-a^2}$$

Alternate solution (CH): Write the integral as a contour integral on the unit circle: set $dx = \frac{-idz}{z}$, so that

$$\int_0^{2\pi} \frac{1}{1 - 2a\cos x + a^2} dx = -i \int_{|z| = 1} \frac{1}{z(1 + a^2) - az^2 - a} dz.$$

Factor the denominator to find the poles of the latter integrand; one is inside the unit circle and one outside. Calculate the residue at the former pole and use Cauchy's theorem to evaluate the integral.

- **4.** (AG) Let K be an algebraically closed field of characteristic 0 and let $Q \subset \mathbb{P}^n$ be a smooth quadric hypersurface over K.
 - (a) Show that Q is rational by exhibiting a birational map $\pi: Q \to \mathbb{P}^{n-1}$.
 - (b) How does the map π factor into blow-ups and blow-downs?

Solution: For the first part, we choose any point $p \in Q$ and take π to be the projection from p. Since Q has degree 2, a general line in \mathbb{P}^n through p will meet Q in one other point, so that the map $\pi : Q \to \mathbb{P}^{n-1}$ has degree 1; that is, it is a birational map. This map blows up the point p, and then blows down the union of the lines on Q through p. In the other direction, starting with \mathbb{P}^{n-1} we blow up the intersection $Z = S \cap H$ of a quadric hypersurface $S \subset \mathbb{P}^{n-1}$ and a hyperplane $H \subset \mathbb{P}^{n-1}$, and then blow down the proper transform of H.

5. DG Let

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

be the unit sphere centered at the origin in \mathbb{R}^3 .

(a) Prove that the vector field

$$v = yz\frac{\partial}{\partial x} + zx\frac{\partial}{\partial y} - 2xy\frac{\partial}{\partial z}$$

on \mathbb{R}^3 is tangent to S at all points of S, and thus defines a section of the tangent bundle TS.

(b) Let g be the metric on S induced from the euclidean metric on \mathbb{R}^3 , and let ∇ be the associated, metric compatible, torsion free covariant derivative. The tensor ∇v is a section of $TS \otimes TS^*$. Write ∇v at the point $(0,0,1) \in S$ using the coordinates (x_1, x_2) given by the map $(x_1, x_2) \mapsto$ $(x_1, x_2, \sqrt{1 - x_1^2 - x_2^2})$ from the unit disc $x_1^2 + x_2^2 < 1$ to S.

Solution: See attached

6. (RA) Let L be a positive real number.

- (a) Compute the Fourier expansion of the function x on the interval $[-L, L] \subset \mathbb{R}$.
- (b) Prove that the Fourier transform does not converge to x pointwise on the closed interval [-L, L].

Solution: See attached. One note: the second part follows immediately from the observation that whatever the Fourier expansion converges to at -L must be the same as what it converges to at L.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics Thursday January 22, 2015 (Day 3)

1. (DG) The helicoid is the parametrized surface given by

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3: (u, v) \to (v \cos u, v \sin u, au)$$

where a is a real constant. Compute its induced metric. Solution. Compute $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial v}$ and deduce that the metric is $g = (v^2 + a^2)du \otimes du + dv \otimes dv$.

2. (RA) A real valued function defined on an interval $(a, b) \subset \mathbb{R}$ is said to be *convex* if

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

whenever $x, y \in (a, b)$ and $t \in (0, 1)$.

- (a) Give an example of a non-constant, non-linear convex function.
- (b) Prove that if f is a non-constant convex function on $(a, b) \in \mathbb{R}$, then the set of local minima of f is a connected set where f is constant.

Solution: See attached

- **3.** (AG) Let K be an algebraically closed field of characteristic 0, and let \mathbb{P}^n be the projective space of homogeneous polynomials of degree n in two variables over K. Let $X \subset \mathbb{P}^n$ be the locus of n^{th} powers of linear forms, and let $Y \subset \mathbb{P}^n$ be the locus of polynomials with a multiple root (that is, a repeated factor).
 - (a) Show that X and $Y \subset \mathbb{P}^n$ are closed subvarieties.
 - (b) What is the degree of X?
 - (c) What is the degree of Y?

Solution: First, X is the image of the map $\mathbb{P}^1 \to \mathbb{P}^n$ sending $[a, b] \in \mathbb{P}^1$ to $(ax + by)^n \in \mathbb{P}^n$. This is projectively equivalent (in characteristic 0!) to the degree n Veronese map, whose image is a closed curve of degree n. Second, Y is the zero locus of the discriminant, which is a polynomial of degree 2n - 2 in the coefficients of a polynomial of degree n (this number can be deduced from the Riemann-Hurwitz formula, which says that a degree n map from \mathbb{P}^1 to \mathbb{P}^1 has 2n - 2 branch points; that is, a general line in \mathbb{P}^n meets Y in 2n - 2 points).

4. (AT) Let X be a compact, connected and locally simply connected Hausdorff space, and let $p: \tilde{X} \to X$ be its universal covering space. Prove that \tilde{X} is compact if and only if the fundamental group $\pi_1(X)$ is finite.

Solution: See attached

5. (CA) Prove that if f and g are entire holomorphic functions and $|f| \leq |g|$ everywhere, then $f = \alpha \cdot g$ for some complex number α .

Solution: The conclusion trivially holds in the case g = 0; from now on, assume that g is not the zero function. The identity theorem implies that the zeros of g are isolated, so h := f/g is meromorphic. The function h is bounded by hypothesis, so Riemann's theorem implies that h can be extended to an entire bounded function. Liouville's theorem implies that h is constant, which implies the conclusion.

6. (A) Consider the rings

$$R = \mathbb{Z}[x]/(x^2+1)$$
 and $S = \mathbb{Z}[x]/(x^2+5)$.

- (a) Show that R is a principal ideal domain.
- (b) Show that S is not a principal ideal domain, by exhibiting a non-principal ideal.

Solution: For the first, the fact that R is a principal ideal domain follows from the fact that it's a Euclidean domain, with size function $|z|^2$: for any $a, b \in R$ we can write

$$b = ma + r$$

with |r| < |a|; carrying this out repeatedly shows that the ideal generated by two elements of R can be generated by one. For the second, the ideal $(2, 1 + x) \subset S$ is not principal.