
QUALIFYING EXAMINATION

Harvard University

Department of Mathematics

Tuesday January 20, 2015 (Day 1)

1. (AG) Let C ⊂ P2 be a smooth plane curve of degree d.

(a) Let KC be the canonical bundle of C. For what integer n is it the case
that KC

∼= OC(n)?

(b) Prove that if d ≥ 4 then C is not hyperelliptic.

(c) Prove that if d ≥ 5 then C is not trigonal (that is, expressible as a
3-sheeted cover of P1).

Solution: By the adjunction formula, the canonical divisor class is KC =
OC(d− 3), that is, plane curves of degree d− 3 cut out canonical divisors on
C. It follows that if d ≥ 4 then any two points p, q ∈ C impose independent
conditions on the canonical series |KC |; that is, h0(KC(−p − q)) = g − 2, so
by Riemann-Roch h0(OC(p+ q)) = 1, i.e., C is not hyperelliptic. Similarly, if
d ≥ 5 then any three points p, q, r ∈ C impose independent conditions on the
canonical series |KC |; by Riemann-Roch it follows that h0(OC(p+ q+ r)) = 1
so C is not trigonal.

2. (A) Let S4 be the group of automorphisms of a 4-element set. Give the
character table for S4 and explain how you arrived at it.

Solution: To start with, there are five conjugacy classes in S4: (1), (12), (123), (1234)
and (12)(34). The characters of the trivial and alternating representations U
and U ′ are clear. The standard representation of S4 on C4 splits as a direct
sum of the trivial and a three-dimensional representation V , whose character
is simply the character of C4 minus one; we see that it’s irreducible because
the norm of its character is 1. We get another irreducible as V ′ = V ⊗ U ′;
its character is χV ′ = χV χU ′ . The final irreducible representation W (and its
character) can be found by pulling back the standard representation of S3 via
the quotient map S4 → S3 (or by the orthogonality relations). Altogether, we
have



conjugacy class e (12) (123) (1234) (12)(34)

number of elements 1 6 8 6 3

U 1 1 1 1 1

U ′ 1 −1 1 −1 1

V 3 1 0 −1 −1

V ′ 3 −1 0 1 −1

W 2 0 1 0 2

3. (DG) Let
M = {(x, y, z) ∈ R3 | x2 − y2 − z3 − z = 0}.

(a) Prove that M is a smooth surface in R3.

(b) For what values of c ∈ R does the plane z = c intersect M transversely?

Solution: See attached.

4. Define the Banach space L to be the completion of the space of continuous
functions on the interval [−1, 1] ⊂ R using the norm

||f || =
∫ 1

−1
|f(t)|dt.

Suppose that f ∈ L and t ∈ [−1, 1]. For h > 0, let Ih be the set of points in
[−1, 1] with distance h or less from t. Prove that

lim
h→0

∫
t∈Ih
|f(t)|dt = 0

Solution: See attached.

5. (AT) What are the homology groups of the 5-manifold RP2 × RP3,

(a) with coefficients in Z?

(b) with coefficients in Z/2?

(c) with coefficients in Z/3?

Solution: RP2 and RP3 have cell complexes with sequences

0→ Z→ Z→ Z→ 0 and 0→ Z→ Z→ Z→ Z→ 0



where the maps are alternately 0 and multiplication by 2; from this the ho-
mology groups of RP2 and RP3 can be calculated as Z,Z/2, 0 and Z,Z/2, 0,Z
respectively. The rest is just Kunneth; the answers are

(a): Z, (Z/2)2, (Z/2)2, Z, Z/2, 0;

(b): Z/2, (Z/2)2, (Z/2)3, (Z/2)3, (Z/2)2, Z/2,

(c): Z/3, 0, 0, Z/3, 0, 0

6. Let Ω be an open subset of the Euclidean plane R2 A map f : Ω→ R2 is said
to be conformal at p ∈ Ω if its differential dfp preserves the angle between
any two tangent vectors at p. Now view R2 as C and a map f : Ω→ R2 as a
C-valued function on Ω.

(a) Supposing that f is a holomorphic function on Ω, prove that f is con-
formal where its differential is nonzero.

(b) Suppose that f is a nonconstant holomorphic function on Ω, and p ∈ Ω
is a point where dfp = 0. Let L1 and L2 denote distinct lines through p.
Prove that the angle at f(p) between f(L1) and f(L2) is n times that
between L1 and L2, with n being an integer greater than 1.

Solution: See attached.
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1. (AT) Let X ⊂ R3 be the union of the unit sphere S2 = {(x, y, z) | x2+y2+z2 =
1} and the line segment I = {(x, 0, 0) | −1 ≤ x ≤ 1}.

(a) What are the homology groups of X?

(b) What are the homotopy groups π1(X) and π2(X)?

Solution: Under the attaching map I ↪→ X, the boundary ϕ(I) is homologous
to 0, so attaching I simply adds one new, non-torsion generator to H1; thus

H0(X) = H1(X) = H2(X) = Z,

and all other homology groups are 0. Similarly, π1(X) = Z. For π2(X), note
that the universal cover of X is a string of spheres attached in a sequence
by line segments; π2(X) is thus the free abelian group on countably many
generators.

2. (A) Let
f(t) = t4 + bt2 + c ∈ Z[t].

(a) If E is the splitting field for f over Q, show that Gal(E/Q) is isomorphic
to a subgroup of the dihedral group D8.

(b) Given an example of b and c for which f is irreducible, and for which the
Galois group is isomorphic to Z/2Z× Z/2Z. Justify.

(c) Give an example of b and c for which f is irreducible, and for which the
Galois group is isomorphic to Z/4Z. Justify.

(d) Give an example of b and c for which f is irreducible, and for which the
Galois group is isomorphic to D8.

Solution:

(a) Obviously if α is a root of f , so is −α. So let ±α1,±α2 be the four distinct
roots of f in E. If φ is an element of the Galois group, it must permute the
roots of f—moreover, φ is determined completely by its action on α1 and
α2. Also by definition of automorphism, note that φ(α1) cannot be a rational
multiple of φ(α2), while φ(−α1) = −φ(α1). Hence any field automorphism
must necessarily give rise to a symmetry of the following square:

α1 α2

−α2 −α1



This gives the injection of Gal into D8.

(b) An obvious strategy is to find a quadratic extension of a quadratic ex-
tension, then find an element whose minimal polynomial is degree 4. For
instance, the element α =

√
2 +
√

3 in E = Q(
√

2,
√

3) has a degree 4 minimal
polynomial which we can construct by repeatedly multiplying by conjugates:
Begin with t−

√
2−
√

3, the multiply by (t−
√

2) +
√

3, then multiply this by
(t2 +

√
2)2 − 3. For this choice of α, we have f(t) = t4 − 10t2 + 1.

(c) Taking b = 0 and c = 1, we see that the splitting field is isomorphic to
the subfield of the complex numbers generated by adjoining to Q the number
α = eπi/4. This is a degree 4 field over Q. Since we have a splitting field
in characteristic zero, the Galois group has order 4. We see that the field
automorphism sending

α 7→ α3

has order 4, hence the Galois group is cyclic.

(d) Take b = 0 and c = 2. Clearly we have roots α1 = 21/4 and α2 = i21/4,
which together lie in an extension of at least degree 8 over Q. By part (a),
the Galois group must be D8 itself.

3. (CA) Let a ∈ (0, 1). By using a contour integral, compute∫ 2π

0

dx

1− 2a cosx+ a2
.

Solution (HT): By the periodicity of cos, it suffices to compute the integral
from −π to π. We note that there is a pole for the function

f(z) =
1

1− 2a cos z + a2

at z0 = i cosh−1 1+a2

2a . Let Rt be the rectangle bordered by the lines x = ±π
and y = 0, y = t. As t → ∞, the contribution from the line y = t goes to
zero. On the other hand, for all values of t, the contribution to the integral
from x = ±π cancel each other out. Thus the integral along the bottom edge
of the rectangle (which is what we seek) is equal to 2πi times the residue of
f(z) at z0. Near z0, we have that

1− 2a cos z + a2 = (z − z0)2ai sinh iz0 + . . .

so we conclude the integral is given by

2πi

2ai sinh z0
.

This simplifies to
2π

1− a2
.



Alternate solution (CH): Write the integral as a contour integral on the unit
circle: set dx = −idz

z , so that∫ 2π

0

1

1− 2a cosx+ a2
dx = −i

∫
|z|=1

1

z(1 + a2)− az2 − a
dz.

Factor the denominator to find the poles of the latter integrand; one is inside
the unit circle and one outside. Calculate the residue at the former pole and
use Cauchy’s theorem to evaluate the integral.

4. (AG) Let K be an algebraically closed field of characteristic 0 and let Q ⊂ Pn
be a smooth quadric hypersurface over K.

(a) Show that Q is rational by exhibiting a birational map π : Q→ Pn−1.
(b) How does the map π factor into blow-ups and blow-downs?

Solution: For the first part, we choose any point p ∈ Q and take π to be the
projection from p. Since Q has degree 2, a general line in Pn through p will
meet Q in one other point, so that the map π : Q→ Pn−1 has degree 1; that
is, it is a birational map. This map blows up the point p, and then blows
down the union of the lines on Q through p. In the other direction, starting
with Pn−1 we blow up the intersection Z = S ∩H of a quadric hypersurface
S ⊂ Pn−1 and a hyperplane H ⊂ Pn−1, and then blow down the proper
transform of H.

5. DG Let
S = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

be the unit sphere centered at the origin in R3.

(a) Prove that the vector field

v = yz
∂

∂x
+ zx

∂

∂y
− 2xy

∂

∂z

on R3 is tangent to S at all points of S, and thus defines a section of the
tangent bundle TS.

(b) Let g be the metric on S induced from the euclidean metric on R3,
and let ∇ be the associated, metric compatible, torsion free covariant
derivative. The tensor∇v is a section of TS⊗TS∗. Write∇v at the point
(0, 0, 1) ∈ S using the coordinates (x1, x2) given by the map (x1, x2) 7→
(x1, x2,

√
1− x21 − x22) from the unit disc x21 + x22 < 1 to S.

Solution: See attached

6. (RA) Let L be a positive real number.



(a) Compute the Fourier expansion of the function x on the interval [−L,L] ⊂
R.

(b) Prove that the Fourier transform does not converge to x pointwise on
the closed interval [−L,L].

Solution: See attached. One note: the second part follows immediately from
the observation that whatever the Fourier expansion converges to at −L must
be the same as what it converges to at L.
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1. (DG) The helicoid is the parametrized surface given by

φ : R2 → R3 : (u, v)→ (v cosu, v sinu, au)

where a is a real constant. Compute its induced metric.

Solution. Compute ∂
∂u and ∂

∂v and deduce that the metric is g = (v2+a2)du⊗
du+ dv ⊗ dv.

2. (RA) A real valued function defined on an interval (a, b) ⊂ R is said to be
convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

whenever x, y ∈ (a, b) and t ∈ (0, 1).

(a) Give an example of a non-constant, non-linear convex function.

(b) Prove that if f is a non-constant convex function on (a, b) ∈ R, then the
set of local minima of f is a connected set where f is constant.

Solution: See attached

3. (AG) Let K be an algebraically closed field of characteristic 0, and let Pn be
the projective space of homogeneous polynomials of degree n in two variables
over K. Let X ⊂ Pn be the locus of nth powers of linear forms, and let Y ⊂ Pn
be the locus of polynomials with a multiple root (that is, a repeated factor).

(a) Show that X and Y ⊂ Pn are closed subvarieties.

(b) What is the degree of X?

(c) What is the degree of Y ?

Solution: First, X is the image of the map P1 → Pn sending [a, b] ∈ P1 to
(ax + by)n ∈ Pn. This is projectively equivalent (in characteristic 0!) to the
degree n Veronese map, whose image is a closed curve of degree n. Second, Y
is the zero locus of the discriminant, which is a polynomial of degree 2n − 2
in the coefficients of a polynomial of degree n (this number can be deduced
from the Riemann-Hurwitz formula, which says that a degree n map from P1

to P1 has 2n− 2 branch points; that is, a general line in Pn meets Y in 2n− 2
points).



4. (AT) Let X be a compact, connected and locally simply connected Hausdorff
space, and let p : X̃ → X be its universal covering space. Prove that X̃ is
compact if and only if the fundamental group π1(X) is finite.

Solution: See attached

5. (CA) Prove that if f and g are entire holomorphic functions and |f | ≤ |g|
everywhere, then f = α · g for some complex number α.

Solution: The conclusion trivially holds in the case g = 0; from now on,
assume that g is not the zero function. The identity theorem implies that
the zeros of g are isolated, so h := f/g is meromorphic. The function h is
bounded by hypothesis, so Riemann’s theorem implies that h can be extended
to an entire bounded function. Liouville’s theorem implies that h is constant,
which implies the conclusion.

6. (A) Consider the rings

R = Z[x]/(x2 + 1) and S = Z[x]/(x2 + 5).

(a) Show that R is a principal ideal domain.

(b) Show that S is not a principal ideal domain, by exhibiting a non-principal
ideal.

Solution: For the first, the fact that R is a principal ideal domain follows from
the fact that it’s a Euclidean domain, with size function |z|2: for any a, b ∈ R
we can write

b = ma+ r

with |r| < |a|; carrying this out repeatedly shows that the ideal generated
by two elements of R can be generated by one. For the second, the ideal
(2, 1 + x) ⊂ S is not principal.


