QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics

Tuesday January 20, 2015 (Day 1)

- **1.** (AG) Let $C \subset \mathbb{P}^2$ be a smooth plane curve of degree d.
 - (a) Let K_C be the canonical bundle of C. For what integer n is it the case that $K_C \cong \mathcal{O}_C(n)$?
 - (b) Prove that if $d \ge 4$ then C is not hyperelliptic.
 - (c) Prove that if $d \geq 5$ then C is not trigonal (that is, expressible as a 3-sheeted cover of \mathbb{P}^1).
- **2.** (A) Let S_4 be the group of automorphisms of a 4-element set. Give the character table for S_4 and explain how you arrived at it.
- **3.** (DG) Let

$$M = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 - y^2 - z^3 - z = 0 \}.$$

- (a) Prove that M is a smooth surface in \mathbb{R}^3 .
- (b) For what values of $c \in \mathbb{R}$ does the plane z = c intersect M transversely?
- 4. (RA) Define the Banach space \mathcal{L} to be the completion of the space of continuous functions on the interval $[-1,1] \subset \mathbb{R}$ using the norm

$$||f|| = \int_{-1}^{1} |f(t)| dt.$$

Suppose that $f \in \mathcal{L}$ and $t \in [-1, 1]$. For h > 0, let I_h be the set of points in [-1, 1] with distance h or less from t. Prove that

$$\lim_{h \to 0} \int_{t \in I_h} |f(t)| dt = 0$$

- 5. (AT) What are the homology groups of the 5-manifold $\mathbb{RP}^2 \times \mathbb{RP}^3$,
 - (a) with coefficients in \mathbb{Z} ?
 - (b) with coefficients in $\mathbb{Z}/2$?
 - (c) with coefficients in $\mathbb{Z}/3$?
- 6. (CA) Let Ω be an open subset of the Euclidean plane \mathbb{R}^2 . A map $f : \Omega \to \mathbb{R}^2$ is said to be *conformal* at $p \in \Omega$ if its differential df_p preserves the angle between any two tangent vectors at p. Now view \mathbb{R}^2 as \mathbb{C} and a map $f : \Omega \to \mathbb{R}^2$ as a \mathbb{C} -valued function on Ω .

- (a) Supposing that f is a holomorphic function on Ω , prove that f is conformal where its differential is nonzero.
- (b) Suppose that f is a nonconstant holomorphic function on Ω , and $p \in \Omega$ is a point where $df_p = 0$. Let L_1 and L_2 denote distinct lines through p. Prove that the angle at f(p) between $f(L_1)$ and $f(L_2)$ is n times that between L_1 and L_2 , with n being an integer greater than 1.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday January 21, 2015 (Day 2)

- 1. (AT) Let $X \subset \mathbb{R}^3$ be the union of the unit sphere $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ and the line segment $I = \{(x, 0, 0) \mid -1 \le x \le 1\}$.
 - (a) What are the homology groups of X?
 - (b) What are the homotopy groups $\pi_1(X)$ and $\pi_2(X)$?
- **2.** (A) Let

$$f(t) = t^4 + bt^2 + c \in \mathbb{Z}[t].$$

- (a) If E is the splitting field for f over \mathbb{Q} , show that $Gal(E/\mathbb{Q})$ is isomorphic to a subgroup of the dihedral group D_8 .
- (b) Given an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Justify.
- (c) Give an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to $\mathbb{Z}/4\mathbb{Z}$. Justify.
- (d) Give an example of b and c for which f is irreducible, and for which the Galois group is isomorphic to D_8 .
- **3.** (CA) Let $a \in (0, 1)$. By using a contour integral, compute

$$\int_{0}^{2\pi} \frac{dx}{1 - 2a\cos x + a^2}$$

- **4.** (AG) Let K be an algebraically closed field of characteristic 0 and let $Q \subset \mathbb{P}^n$ be a smooth quadric hypersurface over K.
 - (a) Show that Q is rational by exhibiting a birational map $\pi: Q \to \mathbb{P}^{n-1}$.
 - (b) How does the map π factor into blow-ups and blow-downs?
- **5.** (DG) Let

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

be the unit sphere centered at the origin in \mathbb{R}^3 .

(a) Prove that the vector field

$$v = yz\frac{\partial}{\partial x} + zx\frac{\partial}{\partial y} - 2xy\frac{\partial}{\partial z}$$

on \mathbb{R}^3 is tangent to S at all points of S, and thus defines a section of the tangent bundle TS.

- (b) Let g be the metric on S induced from the euclidean metric on \mathbb{R}^3 , and let ∇ be the associated, metric compatible, torsion free covariant derivative. The tensor ∇v is a section of $TS \otimes TS^*$. Write ∇v at the point $(0,0,1) \in S$ using the coordinates (x_1, x_2) given by the map $(x_1, x_2) \mapsto$ $(x_1, x_2, \sqrt{1 - x_1^2 - x_2^2})$ from the unit disc $x_1^2 + x_2^2 < 1$ to S.
- **6.** (RA) Let L be a positive real number.
 - (a) Compute the Fourier expansion of the function x on the interval $[-L, L] \subset \mathbb{R}$.
 - (b) Prove that the Fourier transform does not converge to x pointwise on the closed interval [-L, L].

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics Thursday January 22, 2015 (Day 3)

1. (DG) The helicoid is the parametrized surface given by

 $\phi: \mathbb{R}^2 \to \mathbb{R}^3: (u, v) \to (v \cos u, v \sin u, au)$

where a is a real constant. Compute its induced metric.

2. (RA) A real valued function defined on an interval $(a, b) \subset \mathbb{R}$ is said to be *convex* if

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

whenever $x, y \in (a, b)$ and $t \in (0, 1)$.

- (a) Give an example of a non-constant, non-linear convex function.
- (b) Prove that if f is a non-constant convex function on $(a, b) \in \mathbb{R}$, then the set of local minima of f is a connected set where f is constant.
- **3.** (AG) Let K be an algebraically closed field of characteristic 0, and let \mathbb{P}^n be the projective space of homogeneous polynomials of degree n in two variables over K. Let $X \subset \mathbb{P}^n$ be the locus of n^{th} powers of linear forms, and let $Y \subset \mathbb{P}^n$ be the locus of polynomials with a multiple root (that is, a repeated factor).
 - (a) Show that X and $Y \subset \mathbb{P}^n$ are closed subvarieties.
 - (b) What is the degree of X?
 - (c) What is the degree of Y?
- 4. (AT) Let X be a compact, connected and locally simply connected Hausdorff space, and let $p: \tilde{X} \to X$ be its universal covering space. Prove that \tilde{X} is compact if and only if the fundamental group $\pi_1(X)$ is finite.
- 5. (CA) Prove that if f and g are entire holomorphic functions and $|f| \leq |g|$ everywhere, then $f = \alpha \cdot g$ for some complex number α .
- **6.** (A) Consider the rings

 $R = \mathbb{Z}[x]/(x^2 + 1)$ and $S = \mathbb{Z}[x]/(x^2 + 5)$.

- (a) Show that R is a principal ideal domain.
- (b) Show that S is not a principal ideal domain, by exhibiting a non-principal ideal.