
Solutions of Qualifying Exams I, 2014 Spring

1. (Algebra) Let k = Fq be a finite field with q elements. Count the
number of monic irreducible polynomials of degree 12 over k.

Solution. Let G := Gal(Fq12/Fq) act naturally on Fq12 . The set of monic
irreducible polynomials of degree 12 are in one-to-one correspondence with
the set of G-orbits of order 12 in Fq12 . An orbit Gα has order 12 exactly
when the subfield Fq(α) coincides with Fq12 , i.e., exactly when

α ∈ Fq12 \
∪

Fq≤K�Fq12

K

The maximal proper subfields of Fq12 are Fq6 and Fq4 . By inclusion-exclusion
principle, the number of the polynomials sought is equal to

q12 − q6 − q4 + q2

12
.

2. (Algebraic Geometry) (a) Show that the set of lines L ⊂ P3
C may be

identified with a quadric hypersurface in P5
C.

(b) Let L0 ⊂ P3
C be a given line. Show that the set of lines not meeting L0

is isomorphic to the affine space A4
C.

Solution. (a) If P3 = PV is the projective space of one-dimensional sub-
spaces of a 4-dimensional vector space V , then we associate to the line L
spanned by two vectors v, w ∈ V the wedge product v ∧ w ∈ P

∧2 V ∼= P5.
Since a 2-form η ∈

∧2 V is decomposable if and only if Q(η) = η ∧ η = 0 ∈∧4 V ∼= C, this identifies the set of lines with the zeroes of the quadratic
form Q.

(b) Choose 2 planes Λ,Λ′ ⊂ P3 containing L0. Any line not meeting L0

is determined by its points of intersection with the two planes, giving an
isomorphism between the set of lines not meeting L0 and

(Λ \ L0)× (Λ′ \ L0) ∼= A2 × A2 ∼= A4.

3. (Complex Analysis) (a) Compute∫
|z|=1

z31

(2z̄ 2 + 3)2 (z̄ 4 + 2)3
dz

Note that the integrand is not a meromorphic function.
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(b) Evaluate the integral ∫ ∞

x=0

(
sin x

x

)3

dx

by using the theory of residues. Justify carefully all the limiting processes in
your computation.

Solution. (a) Since z̄ = 1
z
for |z| = 1, it follows that∫

|z|=1

z31

(2z̄ 2 + 3)2 (z̄ 4 + 2)3
dz

=

∫
|z|=1

z31(
2
(
1
z

)2
+ 3
)2 ((

1
z

)4
+ 2
)3 dz.

Use the change of variables z = 1
w
to transform the integral to

−
∫
|w|=1

1
w31

(2w2 + 3)2 (w4 + 2)3

(
−dw
w2

)
.

The negative sign in front of the integral comes from the change of orientation
when the parametrization z = eiθ for 0 ≤ θ ≤ 2π is transformed to the
parametrization w = e−iθ for 0 ≤ θ ≤ 2π. This new integral can be rewritten
as ∫

|w|=1

dw

w33 (3 + 2w2)2 (2 + w4)3
,

which is equal to 2πi times the residue of the meromorphic function

1

w33 (3 + 2w2)2 (2 + w4)3

at w = 0. We have the power series expansion of the factor

1

(3 + 2w2)2
=

1

9

1(
1 + 2

3
w2
)2

=
1

9

∞∑
k=0

(−2)(−3) · · · (−2− k + 1)

k!

(
2

3
w2

)k
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at w = 0 and the power series expansion of the factor

1

(2 + w4)3
=

1

8

1(
1 + 1

2
w4
)3

=
1

8

∞∑
ℓ=0

(−3)(−4) · · · (−3− ℓ+ 1)

ℓ!

(
1

2
w4

)ℓ

at w = 0. Contributions to the residue in question from the two power series
expansions come from 2k + 4ℓ = 32, which means that k must be divisible
by 2 and there are only 9 choices for ℓ from 0 to 8 inclusively (with the
corresponding value k = 32−4ℓ

2
= 16 − 2ℓ). Hence the residue in question is

equal to the following sum

1

72

8∑
ℓ=0

(−2)(−3) · · · (−2− (16− 2ℓ) + 1)

(16− 2ℓ)!

(
2

3

)16−2ℓ
(−3)(−4) · · · (−3− ℓ+ 1)

ℓ!

(
1

2

)ℓ

of 9 terms. The final answer is that∫
|z|=1

z31

(2z̄ 2 + 3)2 (z̄ 4 + 2)3
dz

is equal to

2πi

72

8∑
ℓ=0

(−2)(−3) · · · (−2− (16− 2ℓ) + 1)

(16− 2ℓ)!

(
2

3

)16−2ℓ
(−3)(−4) · · · (−3− ℓ+ 1)

ℓ!

(
1

2

)ℓ

.

(b) By Euler’s formula we have sin x = eix−e−ix

2i
and

sin3 x =

(
eix − e−ix

2i

)3

=
1

−8i

(
e3ix − 3eix + 3e−ix − e−3ix

)
=

1

4

(
3
eix − e−ix

2i
− e3ix − e−3ix

2i

)
.

Thus sin3 x is the imaginary part of

3

4
eix − 1

4
e3ix.
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The power series expansion of

3

4
eiz − 1

4
e3iz

is
3

4

(
1 + iz +O

(
z2
))

− 1

4

(
1 + 3iz +O

(
z2
))

=
1

2
+O

(
z2
)
.

The R-linear combination

3

4
eiz − 1

4
e3iz − 1

2

vanishes to order 2 at z = 0 and its imaginary part for z = x real is equal to
sin3 x. Let

f(z) =
−1

4
e3iz + 3

4
eiz − 1

2

z3
.

Its behavior near z = 0 is given by

f(z) =
−1

4
(3iz)2

2
+ 3

4
(iz)2

2
+O (z3)

z3
=

3

4

1

z
+O

(
z3
)

and we have a simple pole for f at z = 0 whose residue Res0f is 3
4
. Integrating

f(z) dz

over the boundary of the set which is equal to the upper half-disk of radius
R > 0 minus the upper half-disk of radius r with 0 < r < R and letting
R → ∞ and r → 0, we get∫ ∞

x=−∞

(
sinx

x

)3

dx = Im (πiRes0f) = Im

(
πi

3

4

)
=

3π

4

and ∫ ∞

x=0

(
sinx

x

)3

dx =
3π

8
.

To justify the limiting process, we have to show that the integral∫
CR

f(z) dz
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over the upper half-circle of radius R centered at the origin 0 approaches 0
as R → ∞. This is a consequence of the fact that both |e3iz| and |eiz| are
≤ 1 for Im z ≥ 0 so that∣∣∣∣∫

CR

f(z) dz

∣∣∣∣ ≤ 1

R3
πR → 0 as R → ∞.

We need also to compute the integral∫
Cr

f(z) dz

over the upper half-circle of radius r centered at the origin 0 in the counter-
clockwise sense as r → 0+. This is done by using

f(z) =
3

4

1

z
+O

(
z3
)

and the parametrization z = reiθ for 0 ≤ θ ≤ π so that

lim
r→0+

∫
Cr

f(z) dz = lim
r→0+

∫
Cr

3

4

1

z
dz

=

∫ π

θ=0

3

4

1

reiθ
ireiθdθ = πi

3

4
.

4. (Algebraic Topology) Suppose that X is a finite connected CW
complex such that π1(X) is finite and nontrivial. Prove that the univer-
sal covering X̃ of X cannot be contractible. (Hint: Lefschetz fixed point
theorem.)

Solution. Since X is a finite CW complex, X̃ is also a finite CW complex.
Suppose X̃ is contractible. Then X̃ has the same homology as a point, i.e.
H0(X̃) = Z and Hi(X̃) = 0 for i ̸= 0. Then by the Lefschetz fixed point
theorem any continuous map f : X̃ → X̃ has a fixed point. On the other
hand, the group of covering transformations of X̃ is isomorphic to π1(X),
hence is nontrivial. Since a non-identity covering transformation does not
have fixed points, we obtain a contradiction. Thus X̃ cannot be contractible.

5. (Differential Geometry) Let P2 = (C3 − {0})/C×, which is called
the complex projective plane.
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1. Show that P2 is a complex manifold by writing down its local coordinate
charts and transitions.

2. Define L ⊂ P2 × C3 to be the subset containing elements of the form
([x], λx), where x ∈ C3 − {0} and λ ∈ C. Show that L is the total
space of a holomorphic line bundle over P2 by writing down its local
trivializations and transitions. It is called the tautological line bundle.

3. Using the standard Hermitian metric on C3 or otherwise, construct a
Hermitian metric on the tautological line bundle. Express the metric
in terms of local trivializations.

Sketched Solution.

1. The charts are ϕ0 : U0 = {[x, y, z] : z ̸= 0} → C2 = V0 by [x, y, z] 7→
(x/z, y/z), and ϕ1, ϕ2 are defined similarly. The transition from V0
to V1 is (X, Y ) 7→ [X, Y, 1] 7→ (1, Y/X, 1/X) for X ̸= 0, and other
transitions are computed in a similar way.

2. The local trivialization over U0 is ([x, y, 1], λ(x, y, 1)) 7→ ([x, y, 1], λ),
and that over U1 and U2 are defined in a similar way. The transition
over U0 ∩ U1 is

([x, y, 1], λ) 7→ ([x, y, 1], λ(x, y, 1)) = ([1, y/x, 1/x], λx(1, y/x, 1/x)) 7→ ([x, y, 1], xλ).

The transition over U12 and U02 are similarly defined.

3. Define a metric by ([x], λx) 7→ ∥λx∥. Over U0, it is given by ([x, y, 1], λ) 7→
∥λ(x, y, 1)∥. It is similar for the other trivializations U1, U2.

6. (Real Analysis) (Schwartz’s Theorem on Perturbation of Surjective
Maps by Compact Maps Between Hilbert Spaces). Let E,F be Hilbert spaces
over C, S : E → F be a compact C-linear map, and T : E → F be a
continuous surjective C-linear map. Prove that the cokernel of S+T : E → F
is finite-dimensional and the image of S + T : E → F is a closed subspace of
F .

Here the compactness of the C-linear map S : E → F means that for
any sequence {xn}∞n=1 in E with ∥xn∥E ≤ 1 for all n ∈ N there exists some
subsequence {xnk

}∞k=1 of {xn}∞n=1 such that S (xnk
) converges in F to some

element of F as k → ∞.
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Hint: Verify first that the conclusion is equivalent to the following equivalent
statement for the adjoints T ∗, S∗ : F → E of T, S. The kernel of T ∗ + S∗

is finite-dimensional and the image of T ∗ + S∗ is closed. Then prove the
equivalent statement.

Solution. We prove first the equivalent statement for the adjoints T ∗, S∗ :
F → E for T, S and then at the end obtain from it the original statement
for T, S : E → F .

The adjoint S∗ of the compact operator S is again compact (see e.g., p.189
of Stein and Shakarchi’s Real Analysis). Since T is surjective, by the open
mapping theorem for Banach spaces and in particular for Hilbert spaces, the
map T : E → F is open. It implies that F is the quotient of E by the kernel
of T . Thus T ∗ is the isometry between F and the orthogonal complement of
the kernel of T in E, when a Hilbert space is naturally identified with its dual
by using its inner product according to the Riesz representation theorem (see
e.g., Theorem 5.3 on p.182 of Stein and Shakarchi’s Real Analysis).

Now we verify that the kernel of T ∗+S∗ is finite-dimensional by showing
that its closed unit ball is compact. Take a sequence of points {yn}n∈N in
the kernel of T ∗ + S∗ with ∥yn∥F ≤ 1 for n ∈ N. Then T ∗yn + S∗yn = 0 for
n ∈ N. Since S∗ is compact, there exists a subsequence {ynk

}k∈N of {yn}n∈N
such that S∗ynk

→ z in E for some z ∈ E. From T ∗ynk
→ −z as k → ∞ and

the fact that T ∗ is the isometry between F and the orthogonal complement
of kernel of T in E, it follows that ynk

converges to the unique element ẑ in
F such that T ∗ẑ = −z. Since z = limk→∞ S∗ynk

= S∗ẑ and −z = T ∗ẑ, it
follows that T ∗ẑ+S∗ẑ = 0 and z is in the kernel of T ∗+S∗. Thus the closed
unit ball of the kernel of T ∗ + S∗ is compact. Since every locally compact
Hilbert space is finite dimensional, it follows that the kernel of T ∗ + S∗ is
finite-dimensional.

Now we verify that the image of T ∗ + S∗ is closed. Suppose for some
sequence of points {yn}n∈N in F we have the convergence of T ∗yn + S∗yn in
E to some element z in E. We have to show that z belongs to the image of
T ∗ + S∗. By replacing yn by its projection onto the orthogonal complement
(Ker (T ∗ + S∗))⊥ of the kernel of T ∗ + S∗ in F , we can assume without loss
of generality that each yn belongs to (Ker (T ∗ + S∗))⊥.

We claim that the sequence of points {yn}n∈N in (Ker (T ∗ + S∗))⊥ is
bounded in the norm ∥·∥F of F , otherwise we can define ŷn = yn

∥yn∥F
so
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that T ∗ŷn + S∗ŷn → 0 as n → ∞ with ∥ŷn∥F = 1 for all n ∈ N. Since S∗ is
compact, there is a subsequence {ŷnk

}k∈N of {ŷn}n∈N with S∗ŷnk
converging

to some element u in E. Thus

T ∗ŷnk
= (T ∗ŷnk

+ S∗ŷnk
)− S∗ŷnk

converges to the element−u in E. Since T ∗ is the isometry between F and the
orthogonal complement of kernel of T in E, it follows that ŷnk

converges to the
unique element v in F such that T ∗v = −u. This means that (T ∗ + S∗) (v) =
0 and v ∈ Ker (T ∗ + S∗). On the other hand, v being the limit of the sequence
ŷnk

in (Ker (T ∗ + S∗))⊥ must be in (Ker (T ∗ + S∗))⊥ also. Thus, v = 0,
which contradicts the fact that it is the limit of ŷnk

with ∥ŷnk
∥F = 1 for all

k ∈ N. This finishes the proof of the claim that sequence of points {yn}n∈N
in (Ker (T ∗ + S∗))⊥.

Since the sequence of points {yn}n∈N in (Ker (T ∗ + S∗))⊥ is bounded in
the norm ∥·∥F of F , by the compactness of S∗ we can select a a subsequence
{ynk

}k∈N of {yn}n∈N with S∗ynk
converging to some element w in E. Thus

T ∗ynk
= (T ∗ynk

+ S∗ynk
)− S∗ynk

converges to the element z−w in E. Since T ∗ is the isometry between F and
the orthogonal complement of kernel of T in E, it follows that ynk

converges to
the unique element t in F such that T ∗t = z−w. With w = S∗t = limk→∞ ynk

,
this implies that (T ∗ + S∗) (t) = z. This finishes the proof that the image of
T ∗ + S∗ is closed.

Since we now know that the image of T ∗+S∗ is closed, it follows from the
Riesz representation theorem that the map S+T maps E onto the orthogonal
complement Ker(T ∗+S∗)⊥ of the kernel Ker(T ∗+S∗) of T ∗+S∗ in F . Hence
the image of T + S is closed and the cokernel of T + S is finite-dimensional.
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Solutions of Qualifying Exams II, 2014 Spring

1. (Algebra) Let A be a finite group of order n, and let V1, · · · , Vk be its
irreducible representations.

(a) Show that the dimensions of the vector spaces Vi satisfy the equality∑k
i=1(dimVi)

2 = n.

(b) What are the dimensions of the irreducible representations of the sym-
metric group S6 of six elements.

Solution. (a) Use the character theory and show that Vi appears (dimVi)
times in the regular representation C[A].

(b) Irreducible representations of S6 correspond to conjugacy classes in S6,
and then to partitions of 6, of which there are p(6) = 11. Then use the
“hook-length formula”,

dimVλ =
d!∏

( hook lengths )
.

They are: 16, 10 (twice), 9 (twice), 5 (four times) and 1 (twice).

2. (Algebraic Geometry) Let C ⊂ P2 be a smooth plane curve of degree
≥ 3.

(a) Show that C admits a regular map f : C → P1 of degree d− 1.

(b) Show that C does not admit a regular map f : C → P1 of degree e with
0 < e < d− 1.

Solution. (a) Solution: Simply project from any point p ∈ C to a comple-
mentary line.

(b) Since the canonical series of C is cut on C by plane curves of degree
d− 3, by Riemann-Roch the general fiber of any map f : C → P1 of degree e
must consist of e points of C that fail to impose independent conditions on
curves of degree d− 3. But any set d− 2 or fewer points in the plane impose
independent conditions on curves of degree d− 3.
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3. (Complex Analysis) Suppose that f is holomorphic in an open set
containing the closed unit disk {|z| ≤ 1} in C, except for a pole at z0 on the
unit circle {|z| = 1}. Show that if

∞∑
n=0

anz
n

denote the power series expansion of f in the open unit disk {|z| < 1} , then

lim
n→∞

an
an+1

= z0.

Solution. Since z0 is the only pole of the meromorphic function f on an
open set containing the closed unit disk in C, we can express f(z) in the form

m∑
k=1

Ak

(z − z0)
k
+ g(z)

with A1, · · · , Am ∈ C, where m ≥ 1 and Am = h (z0) ̸= 0 and g(z) is a power
series

∑∞
n=0 bnz

n with radius of convergence R > 1. For any positive number
r with |z0| < r < R we can find a positive number B such that

|bn| ≤
B

rn

for all nonnegative integer n. By using the binomial expansion of 1

(z−z0)
k (or

differentiating the geometric series 1
z−z0

in z (k − 1)-times) and noting that(
n+k−1
k−1

)
=
(
n+k−1

n

)
, we have

an = bn +
m∑
k=1

(−1)kAk
(n+ k − 1)(n+ k − 2) · · · (n+ 2)(n+ 1)

(k − 1)! (z0)
n+k

.

In the computation of the limit

lim
n→∞

an
an+1

,

since Am = h (z0) ̸= 0 and 1
r
<
∣∣∣ 1z0 ∣∣∣ and |bn| ≤ B

rn
, the dominant term from

an is

(−1)mAm
(n+m− 1)(n+m− 2) · · · (n+ 2)(n+ 1)

(m− 1)! (z0)
n+m
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and we get

lim
n→∞

an
an+1

= lim
n→∞

(−1)mAm
(n+m−1)(n+m−2)···(n+2)(n+1)

(m−1)!(z0)
n+m

(−1)mAm
(n+m)(n+m−1)···(n+3)(n+2)

(m−1)!(z0)
n+1+m

= z0.

The dominant term from an means that an minus the dominant term and
then divided by the dominant term would have limit zero when n→ ∞.

4. (Algebraic Topology) Show that if n > 1, then every map from the
real projective space RPn to the n-torus T n is null-homotopic.

Solution. Recall that π1(RPn) = Z/2Z and

π1(T
n) = π1(S

1 × · · · × S1) = Zn.

Now if f : RPn → T n is any map, then the induced homomorphism

f∗ : π1 (RPn) → π1(T
n)

must be trivial because Zn has no nontrivial elements of finite order. Let
p : Rn → T n be the standard covering map. Then, by the general lifting
lemma, we obtain a continuous map f̃ : RPn → Rn such that f = p◦ f̃ . Since
Rn is contractible, we obtain that f̃ is nullhomotopic, from which it follows
that f is nullhomotopic.

5. (Differential Geometry) Let S2 := {x2 + y2 + z2 = 1} ⊂ R3 be the
unit sphere in the Euclidean space. Let C = {(r cos t, r sin t, h) : t ∈ R} be a
circle in S2, where r, h > 0 are constants with r2 + h2 = 1.

1. Compute the holonomy of the sphere S2 (with the standard induced
metric) around the circle C.

2. By using Gauss-Bonnet theorem or otherwise, compute the total cur-
vature ∫

D

κ dA

where D = S2 ∩ {z ≥ h} is the disc bounded by the circle C, and dA
is the area form of S2.

Sketched Solution.

1. The holonomy is rotation by 2πh.

2. The total curvature is 2π − 2π
√
r2h2 + (1− r2)2.
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6. (Real Analysis) (Commutation of Differentiation and Summation of
Integrals). Let Ω be an open subset of Rd and a < b be real numbers. For
any positive integer n let fn(x, y) be a complex-valued measurable function
on Ω× (a, b). Let a < c < b. Assume that the following three conditions are
satisfied.

(i) For each n and for almost all x ∈ Ω the function fn(x, y) as a function
of y is absolutely continuous in y for y ∈ (a, b).

(ii) The function ∂
∂y
fn(x, y) is measurable on Ω× (a, b) for each n and the

function
∞∑
n=1

∣∣∣∣ ∂∂y fn(x, y)
∣∣∣∣

is integrable on Ω× (a, b).

(iii) The function fn(x, c) is measurable on Ω for each n and the function∑∞
n=1 |fn(x, c)| is integrable on Ω.

Prove that the function

y 7→
∫
x∈Ω

∞∑
n=1

fn(x, y)dx

is a well-defined function for almost all points y of (a, b) and that

d

dy

∫
x∈Ω

∞∑
n=1

fn(x, y)dx =
∞∑
n=1

∫
x∈Ω

(
∂

∂y
fn(x, y)

)
dx

for almost all y ∈ (a, b).

Hint: Use Fubini’s theorem to exchange the order of integration and use
convergence theorems for integrals of sequences of functions to exchange the
order of summation and integration.

Solution. The theorem of Fubini which we will use states that if F (x, y) on
Ω1 × Ω2 (with Ωj open in Rdj for j = 1, 2) and if∫

(x,y)∈Ω1×Ω2

|F (x, y)| <∞,
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then ∫
x∈Ω1

(∫
y∈Ω2

F (x, y)dy

)
dx =

∫
y∈Ω2

(∫
x∈Ω1

F (x, y)dx

)
dy.

One consequence of the theorem of dominated convergence which we will use
is the folloing exchange of integration and summation. If Fn(x) is a sequence

of measurable functions on an open subset Ω̃ of Rd̃ such that∫
x∈Ω̃

∞∑
n=1

|Fn(x)| <∞,

then ∫
x∈Ω̃

∞∑
n=1

Fn(x) =
∞∑
n=1

∫
x∈Ω̃

Fn(x).

These two results make it possible for us to both exchange the order of inte-
gration and the order of summation and integration in the following equation
for a < η < b,
(†)∫ η

y=c

(
∞∑
n=1

∫
x∈Ω

(
∂

∂y
fn(x, y)

)
dx

)
dy =

∫
x∈Ω

(
∞∑
n=1

∫ η

y=c

(
∂

∂y
fn(x, y)

)
dy

)
dx,

because the function
∞∑
n=1

∣∣∣∣ ∂∂y fn(x, y)
∣∣∣∣

is integrable on Ω × (a, b). Since for almost all x ∈ Ω the function fn(x, y)
as a function of y is absolutely continuous in y, it follows that∫ η

y=c

(
∂

∂y
fn(x, y)

)
dy = fn(x, η)− fn(x, c)

for almost all x ∈ Ω, which implies that∫
x∈Ω

(
∞∑
n=1

∫ η

y=c

(
∂

∂y
fn(x, y)

)
dy

)
dx =

∫
x∈Ω

(
∞∑
n=1

(fn(x, η)− fn(x, c))

)
dx

=

∫
x∈Ω

(
∞∑
n=1

fn(x, η)

)
dx−

∫
x∈Ω

(
∞∑
n=1

fn(x, c)

)
dx,

13



because
∑∞

n=1 |fn(x, c)| is integrable on Ω. Putting this together with (†)
yields
(‡)∫ η

y=c

(
∞∑
n=1

∫
x∈Ω

(
∂

∂y
fn(x, y)

)
dx

)
dy =

∫
x∈Ω

(
∞∑
n=1

fn(x, η)

)
dx−

∫
x∈Ω

(
∞∑
n=1

fn(x, c)

)
dx.

Differentiating both sides of (‡) with respect to η and applying the funda-
mental theorem of calculus in the theory of Lebesgue and then replacing η
by y, we obtain

∞∑
n=1

∫
x∈Ω

(
∂

∂y
fn(x, y)

)
dx =

∂

∂y

∫
x∈Ω

(
∞∑
n=1

fn(x, y)

)
dx

for almost all y ∈ (a, b).
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Solutions of Qualifying Exams III, 2014 Spring

1. (Algebra) Prove or disprove: There exists a prime number p such that
the principal ideal (p) in the ring of integers OK in K = Q(

√
2,
√
3) is a

prime ideal.

Solution. If there were, the decomposition group and the inertia group at
(p) would be isomorphic to the whole Gal (K/Q) ≃ Z/2 × Z/2 and to the
trivial group, respectively, and the quotient would not be cyclic.

2. (Algebraic Geometry) Let Γ = {p1, · · · , p5} ⊂ P2 be a configuration
of 5 points in the plane.

(a) What is the smallest Hilbert function Γ can have?

(b) What is the largest Hilbert function Γ can have?

(c) Find all the Hilbert functions Γ can have.

Solution. (a) The smallest Hilbert function Γ can have occurs if Γ consists
of 5 collinear points; the Hilbert function in this case is

(hΓ(0), hΓ(1), hΓ(2), . . . ) = (1, 2, 3, 4, 5, 5, . . . ).

(b) The largest Hilbert function Γ can have occurs if Γ consists of 5 general
points; the Hilbert function in this case is (1, 3, 5, 5, . . . ).

(c) The only other Hilbert function Γ can have occurs when Γ consists of four
collinear points and one point not collinear with those; the Hilbert function
in this case is (1, 3, 4, 5, 5, . . . ).

3. (Complex Analysis) (Cauchy’s Integral Formula for Smooth Functions
and Solution of ∂̄ Equation). (a) Let Ω be a bounded domain in C with
smooth boundary ∂Ω. Let f be a C∞ complex-valued function on some open
neighborhood U of the topological closure Ω̄ of Ω in C.
(i) Show that for a ∈ Ω,

f(a) =
1

2πi

∫
z∈∂Ω

f(z)dz

z − a
+

1

2πi

∫
Ω

∂f
∂z̄
dz ∧ dz̄
z − a

,

where
∂f

∂z̄
=

1

2

(
∂f

∂x
+
√
−1

∂f

∂y

)
with z = x+

√
−1 y and x, y real.
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(ii) Show that a ∈ Ω,

f(a) = − 1

2πi

∫
z∈∂Ω

f(z)dz̄

z̄ − ā
+

1

2πi

∫
Ω

∂f
∂z
dz ∧ dz̄
z̄ − ā

,

where
∂f

∂z
=

1

2

(
∂f

∂x
−
√
−1

∂f

∂y

)
.

(iii) For z ∈ Ω define

h(z) =
1

2πi

∫
ζ∈Ω

f(ζ) dζ ∧ dζ̄
ζ − z

.

Show that ∂h
∂z̄
(z) = f(z) on Ω.

Hint: For (i), apply Stokes’s theorem to d
(
f(z) dz

z−a

)
on Ω minus a closed

disk of radius ε > 0 centered at a and then let ε→ 0.

For the proof of (iii), for any fixed z ∈ Ω, apply Stokes’s theorem to
d
(
f(ζ) log |ζ − z|dζ̄

)
(with variable ζ) on Ω minus a closed disk of radius

ε > 0 centered at z and then let ε→ 0. Then apply ∂
∂z̄

and use (ii).

(b) Let Dr be the open disk of radius r > 0 in C centered at 0. Prove that
for any C∞ complex-valued function g on D1 there exists some C∞ complex-
valued function h on D1 such that ∂h

∂z̄
= g on D1.

Hint: First use (a)(iii) to show that for 0 < r < 1 there exists some C∞

complex-valued function hr on D1 such that ∂hr

∂z̄
= g on Dr. Then use some

approximation and limiting process to construct h.

Solution. (a) Take an arbitrary positive number ε less than the distance
from a to the boundary of Ω. Let Bε be the closed disk of radius ε > 0
centered at a. Application of Stokes’s theorem to

d

(
f(z)

dz

z − a

)
=

∂f
∂z̄
dz̄ ∧ dz
z − a

on Ω−Bε yields∫
Ω−Bε

∂f
∂z̄
dz̄ ∧ dz
z − a

=

∫
∂Ω

f(z)
dz

z − a
−
∫
|z−a|=ε

f(z)
dz

z − a
.
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We use the parametrization z = a+ εeiθ to evaluate the last integral and use
f
(
a+ εeiθ

)
− f(a) → 0 as ε → 0 from the continuous differentiability of f

at 0 to conclude that

lim
ε→0+

∫
|z−a|=ε

f(z)
dz

z − a
= 2πif(a).

Hence

f(a) =
1

2πi

∫
z∈∂Ω

f(z)dz

z − a
+

1

2πi

∫
Ω

∂f
∂z̄
dz ∧ dz̄
z − a

.

This finishes the proof of the formula in (i). For the proof of the formula in
(ii) we apply (i) to f(z) to get

f(a) =
1

2πi

∫
z∈∂Ω

f(z)dz

z − a
+

1

2πi

∫
Ω

∂f
∂z̄
dz ∧ dz̄
z − a

.

and then we take the complex-conjugates of both sides to get

f(a) = − 1

2πi

∫
z∈∂Ω

f(z)dz̄

z̄ − ā
+

1

2πi

∫
Ω

∂f
∂z
dz ∧ dz̄
z̄ − ā

,

which is the formula in (ii).

For the proof of (iii) we apply Stokes’s theorem to

d
(
f(ζ) log |ζ − z|2dζ̄

)
=
∂f

∂ζ
log |ζ − z|2dζ ∧ dζ̄ + f(ζ)dζ ∧ dζ̄

ζ − z

on Ω−Bε yields∫
Ω−Bε

∂f

∂ζ
log |ζ − z|2dζ ∧ dζ̄ +

∫
Ω−Bε

f(ζ)dζ ∧ dζ̄
ζ − z

=

∫
∂Ω

f(ζ) log |ζ − z|2dζ̄ −
∫
|z−a|=ε

f(ζ) log |ζ − z|2dζ̄.

With its evaluation by the parametrization z = a+ εeiθ, the last integral∫
|z−a|=ε

f(ζ) log |ζ − z|2dζ̄
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approaches 0 as ε→ 0+ so that∫
Ω

∂f

∂ζ
log |ζ − z|2dζ ∧ dζ̄ +

∫
Ω

f(ζ)dζ ∧ dζ̄
ζ − z

=

∫
∂Ω

f(ζ) log |ζ − z|2dζ̄.

We apply ∂
∂z̄

to both sides and separately justify the commutation of ∂
∂x

with integration and the commutation of ∂
∂y

with integration, because on the
right-hand sides of the following two formulae both integrals over Ω after
differentiation are absolutely convergent.

∂

∂x

∫
Ω

∂f

∂ζ
log |ζ − z|2dζ ∧ dζ̄ =

∫
Ω

∂f

∂ζ

(
∂

∂x
log |ζ − z|2

)
dζ ∧ dζ̄

and

∂

∂y

∫
Ω

∂f

∂ζ
log |ζ − z|2dζ ∧ dζ̄ =

∫
Ω

∂f

∂ζ

(
∂

∂y
log |ζ − z|2

)
dζ ∧ dζ̄.

We get

−
∫
Ω

∂f
∂ζ
dζ ∧ dζ̄
ζ − z̄

+
∂

∂z

∫
Ω

f(ζ)dζ ∧ dζ̄
ζ − z

= −
∫
∂Ω

f(ζ) dζ̄

ζ − z̄
,

or

∂

∂z

(
1

2πi

∫
Ω

f(ζ)dζ ∧ dζ̄
ζ − z

)
= − 1

2πi

∫
∂Ω

f(ζ) dζ̄

ζ − z̄
+

1

2πi

∫
Ω

∂f
∂ζ
dζ ∧ dζ̄
ζ − z̄

,

which by the formula in (ii) is equal to f(z). This finishes the proof of the
formula in (iii).

For use in (b) we also observe that

∂

∂z̄

(
1

2πi

∫
Ω

f(ζ)dζ ∧ dζ̄
ζ − z

)
= − 1

2πi

∫
∂Ω

f(ζ) dζ̄

ζ − z
+

1

2πi

∫
Ω

∂f
∂ζ
dζ ∧ dζ̄
ζ − z

.

This implies that
∂

∂z̄

(
1

2πi

∫
Ω

f(ζ)dζ ∧ dζ̄
ζ − z

)
is uniformly bounded on compact subsets of Ω. By induction on k and by
applying the argument to ∂f

∂ζ
on a neighborhood of Ω̄ in U in going from the
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k-th step to the (k+1)-st step in the induction process, we conclude that all
the k-th partial derivatives of ∫

Ω

f(ζ)dζ ∧ dζ̄
ζ − z

with respect to x and y (i.e., with respect to z and z̄) are uniformly bounded
on compact subsets of Ω. Hence∫

Ω

f(ζ)dζ ∧ dζ̄
ζ − z

is C∞ on Ω as a function of z.

(b) Choose rn = 1− 1
2n
. We can set

hrn(z) =
1

2πi

∫
ζ∈Drn+1

g(ζ)dζ ∧ dζ̄
ζ − z

on Drn to get ∂z̄hrn = g on Drn from (a)(iii). As observed above, hrn(z) is an
infinitely differentiable function on Drn .

We now look at the approximation and limiting process to construct h
on all of D1 such that ∂z̄h = g on D1.

For n ≥ 3 the function hrn − hrn−1 is holomorphic on Drn−1 . By using
the Taylor polynomial Pn of hrn − hrn−1 centered at 0 of degree Nn for Nn

sufficiently large, we have∣∣(hrn − hrn−1

)
− Pn

∣∣ ≤ 1

2n

on Drn−2 . Let ĥrn = hrn −
∑n

k=3 Pn on Drn . Then for any n > k ≥ 3 from

ĥrn − ĥrk =
n∑

ℓ=k+1

(
ĥrℓ − ĥrℓ−1

)
=

n∑
ℓ=k+1

(
hrℓ − hrℓ−1

− Pℓ

)
it follows that∣∣∣ĥrn − ĥrk

∣∣∣ ≤ n∑
ℓ=k+1

∣∣hrℓ − hrℓ−1
− Pℓ

∣∣ ≤ n∑
ℓ=k+1

1

2ℓ
≤ 1

2k
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on Drk−1
. Thus, for any fixed k ≥ 3 the sequence {hrn − hrk}

∞
n=k+1 is a

Cauchy sequence of holomorphic functions on Drk−1
and we can define h =

limn→∞ ĥrn on D with ∂h
∂z̄

= g on D, because h− hrk is holomorphic on Drk−1

and
∂hrk−1

∂z̄
= g on Drk−1

. Since ĥrn is infinitely differentiable on Drk−1
, it

follows that h is infinitely differentiable on each Drk−1
and hence is infinitely

differentiable on all of D1.

4. (Algebraic Topology) Suppose that X is contractible and that some
point a of X has a neighborhood homeomorphic to Rk. Prove that Hn(X \
{a}) ≃ Hn(S

k−1) for all n.

Solution. We have the following piece of the long exact homology sequence:

Hk(X) → Hk(X,X \ {a}) → Hk−1(X \ {a}) → Hk−1(X).

Now for k > 1, the outer two groups are 0, hence

Hk(X,X \ {a}) ≃ Hk−1(X \ {a}).

Let U be a neighborhood of a homeomorphic to Rm and let C = X \U. Then
C ⊂ X \ {a}, which is open. Hence, by excision,

Hk(X,X \ {a}) ≃ Hk(U,U \ {a}) ≃ Hk(Rm,Rm \ {a}).

On the other hand, we have the same piece of exact sequence of (Rm,Rm \
{a}) : ψ(x, y) = (x, y) when y < 0, and

Hk(Rm) → Hk(Rm,Rm \ {a}) → Hk−1(Rm \ {a}) → Hk−1(Rm),

and the outer two groups are 0 for k > 1. Since Rm \ {a} deformation
retracts onto Sm−1, putting everything together we obtain that for k > 1,
Hk(S

m−1) ≃ Hk(X \ {a}).

5. (Differential Geometry) Let U+ = R2 − (R≤0 × {0}), U− = R2 −
(R≥0 ×{0}), and U0 = R2 − (R×{0}). Let B be obtained by gluing U+ and
U− over U0 by the map ψ : U0 → U0 defined by

ψ(x, y) = (x, y)

when y < 0, and
ψ(x, y) = (x+ y, y)

when y > 0.
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1. Show that B is a manifold.

2. Show that the trivial connections on the tangent bundles of U+ and U−
glue together and give a global connection on the tangent bundle TB.
Compute the curvature of this connection.

3. Compute the holonomy of the above connection around the loop γ :
[0, 2π] → B determined by γ|U+(θ) = (cos θ, sin θ) for θ ∈ (0, 2π).

Sketched Solution.

1. U+ and U− already serve as charts of B, and the transition between
them is affine.

2. Since the transition is affine, the differential d is preserved by the tran-
sition. The curvature is just zero.

3. The holonomy is given by the matrix(
1 1
0 1

)
.

6. (Real Analysis) (Bernstein’s Theorem on Approximation of Continu-
ous Functions by Polynomials). Use the probabilistic argument outlined in
the two steps below to prove the following theorem of Bernstein. Let f be a
real-valued continuous function on [0, 1]. For any positive integer n let

Bn(f ; x) =
n∑

j=0

f

(
j

n

)(
n

j

)
xj(1− x)n−j

be the Bernstein polynomial. Then Bn(f ;x) converges to f uniformly on
[0, 1] as n→ ∞.

Step One. For 0 < x < 1 consider the binomial distribution

b(n, x, j) =

(
n

j

)
xj(1− x)n−j

for 0 ≤ j ≤ n, which is the probability of getting j heads and n− j tails in
tossing a coin n times if the probability of getting a head is x. Verify that
the mean µ of this probability distribution is nx and its standard deviation
σ is

√
nx(1− x).
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Step Two. Let X be the random variable which assumes the value j
with probability b(n, x, j) for 0 ≤ j ≤ n. Consider the random variable
Y =

∣∣f(x)− f
(
X
n

)∣∣ which assumes the value
∣∣f(x)− f

(
j
n

)∣∣ with probability
b(n, x, j) for 0 ≤ j ≤ n. Prove Bernstein’s theorem by bounding, for an
arbitrary positive number ε, the sum which defines the expected value E(Y )
of the random variable Y , after breaking the sum up into two parts defined
respectively by |j − µ| ≥ ησ and |j − µ| < ησ for some appropriate positive
number η depending on ε and the uniform bound of f .

Solution. Step One. From

j

(
n

j

)
= n

(n− 1)(n− 2) · · · (n− j + 1)

(j − 1)!
= n

(
n− 1

j − 1

)
it follows that

µ =
n∑

j=0

j b(n, x, j)

=
n∑

j=0

j

(
n

j

)
xj(1− x)n−j

=
n∑

j=1

n

(
n− 1

j − 1

)
xxj−1(1− x)n−j

= nx (x+ (1− x))n−1

= nx.

From

j(j − 1)

(
n

j

)
= n(j − 1)

(
n− 1

j − 1

)
= n(n− 1)

(
n− 2

j − 2

)
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and

E(X(X − 1)) =
n∑

j=0

j (j − 1) b(n, x, j) =
n∑

j=0

j (j − 1)

(
n

j

)
xj(1− x)n−j

=
n∑

j=2

n(n− 1)x2
(
n− 2

j − 2

)
xj−2(1− x)n−j

= n(n− 1)x2
n−2∑
j=0

(
n− 2

j

)
xj(1− x)n−2−j

= n(n− 1)x2 (1 + (1− x))n−2

= n(n− 1)x2

it follows that
σ2 = E

(
(X − µ)2

)
= E(X2)− 2µE(X) + µ2

= E(X2)− µ2

= n(n− 1)x2 + nx− (nx)2

= nx ((n− 1)x+ 1− nx)

= nx(1− x).

and σ =
√
nx(1− x).

Step Two. Given any ε > 0. By the uniform continuity of f on [0, 1] there
exists some δ > 0 such that |f(x1)− f(x2)| < ε for |x1 − x2| < δ. Choose a
positive number η sufficiently large so that

1

η2
2 sup

[0,1]

|f | < ε

2

and then choose a positive N with

η√
N
< δ.

We are going to prove that |f −Bn(f ; x)| < ε on [0, 1] for n ≥ N by bounding
the sum which defines the expected value E(Y ) of the random variable Y ,
after breaking the sum up into two parts defined respectively by |j−µ| ≥ ησ
and |j − µ| < ησ.
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First of all, for any fixed x ∈ [0, 1],

|f(x)−Bn(f ;x)| =

∣∣∣∣∣
n∑

j=0

(
f(x)− f

(
j

n

))(
n

j

)
xj(1− x)n−j

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=0

(
f(x)− f

(
j

n

))
b(n, x, j)

∣∣∣∣∣
≤

n∑
j=0

∣∣∣∣f(x)− f

(
j

n

)∣∣∣∣ b(n, x, j),
which is the expected value E(Y ) of the random variable Y , because

n∑
j=0

f(x)

(
n

j

)
xj(1− x)n−j = f(x)

n∑
j=0

(
n

j

)
xj(1− x)n−j

= f(x) (x+ (1− x))n = f(x).

For the estimation of the part∑
|j−nx|<ησ

∣∣∣∣f(x)− f

(
j

n

)∣∣∣∣ b(n, x, j)
of the sum

E(Y ) =
n∑

j=0

∣∣∣∣f(x)− f

(
j

n

)∣∣∣∣ b(n, x, j)
we have ∣∣∣∣x− j

n

∣∣∣∣ < ησ

n
=
η
√
nx(1− x)

n
≤ η√

n
≤ η√

N
< δ,

which implies that
∣∣f(x)− f

(
j
n

)∣∣ < ε
2
so that

∑
|j−nx|<ησ

∣∣∣∣f(x)− f

(
j

n

)∣∣∣∣ b(n, x, j) < ε

2
b(n, x, j) ≤ ε

2
.

For the estimation of the part∑
|j−nx|≥ησ

∣∣∣∣f(x)− f

(
j

n

)∣∣∣∣ b(n, x, j)
24



of the sum

E(Y ) =
n∑

j=0

∣∣∣∣f(x)− f

(
j

n

)∣∣∣∣ b(n, x, j)
we use Chebyshev’s inequality that in any probability distribution no more
than 1

η2
of the distribution’s values can be no less than η standard deviations

away from the mean, which, when applied to our random variable X with
mean µ = nx, means that ∑

|j−nx|≥ησ

b(n, x, j) ≤ 1

η2
.

Thus,

∑
|j−nx|≥ησ

∣∣∣∣f(x)− f

(
j

n

)∣∣∣∣ b(n, x, j) ≤
(
2 sup

[0,1]

|f |

)
1

η2
<
ε

2
.

This finishes the verification that

|f(x)−Bn(f ; x)| < ε

for n ≥ N and thus the proof of Bernstein’s theorem.
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