Qualifying Exams I, Jan. 2013

1. (Real Analysis) Suppose $f_{j}, j=1,2, \ldots$ and f are real functions on $[0,1]$. Define $f_{j} \rightarrow f$ in measure if and only if for any $\varepsilon>0$ we have

$$
\lim _{j \rightarrow \infty} \mu\left\{x \in[0,1]:\left|f_{j}(x)-f(x)\right|>\varepsilon\right\}=0
$$

where μ is the Lebesgue measure on $[0,1]$. In this problems, all functions are assumed to be in $L^{1}[0,1]$.
(a) Suppose that $f_{j} \rightarrow f$ in measure. Does it implies that

$$
\lim _{j \rightarrow \infty} \int\left|f_{j}(x)-f(x)\right| \mathrm{dx}=0
$$

Prove it or give a counterexample.
(b) Suppose that $f_{j} \rightarrow f$ in measure. Does this imply that $f_{j}(x) \rightarrow f(x)$ almost everywhere in $[0,1]$? Prove it or give a counter example.
(c) Suppose that $f_{j}(x) \rightarrow f(x)$ almost everywhere in $[0,1]$. Does it implies that $f_{j} \rightarrow f$ in measure? Prove it or give a counter example.
2. (Complex analysis) The following questions are independent.
a) For any $a \in(-1,1)$, compute

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} t}{1+a \cos t}
$$

b) For any $p>1$, compute

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{p}+1}
$$

3. (Differential Geometry) The Heisenberg group is the subgroup of $\operatorname{Sl}(3, \mathbb{R})$ composed of the 3×3, upper triangular matrices with 1 on the diagonal, this being the set of matrices of the form:

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right), \quad \text { with } \quad(x, y, z) \in \mathbb{R}^{3}
$$

This group is observably diffeomorphic to \mathbb{R}^{3}.
(a) Compute the Lie algebra of the Heisenburg group.
(b) Exhibit a left-invariant Riemannian metric on the Heisenberg group.
4. (Algebraic Topology) Let \mathbb{H} be the space of quaternions, and denote by \mathbb{S}^{3} the unit sphere inside \mathbb{H}. The quaternion group $G=\{ \pm 1, \pm i, \pm j, \pm k\}$ acts on \mathbb{H} by left multiplication, and the action preserves the unit sphere \mathbb{S}^{3}. Let X be the quotient space \mathbb{S}^{3} / G. Compute its fundamental group $\pi_{1}(X)$ and its first homology group $H_{1}(X, \mathbb{Z})$.
(\mathbb{H} is spanned by four independent unit vectors $1, i, j, k$ as a real normed vector space. The multiplication is associative and, between two elements of \mathbb{H}, it is bilinear and determined by the rules $i^{2}=j^{2}=k^{2}=i j k=-1$, where 1 is the multiplicative identity.)
5. (Algebra) Let k be a field, and let G be a finite group acting on a vector space V.
a) If $k=\mathbf{C}$, prove that any subrepresentation $U \subseteq V$ has a G-stable complement, that is, subrepresentation $U^{\prime} \subseteq V$ such that $V=U \oplus U^{\prime}$.
b) Now suppose that $k=\mathbf{Z} / p \mathbf{Z}$ for some prime p, and that G acts doubly transitively on a set X of size n (that is, if $x, y, x^{\prime}, y^{\prime} \in X$ with $x \neq y$ and $x^{\prime} \neq y^{\prime}$ then there exists $g \in G$ such that $g(x)=x^{\prime}$ and $\left.g(y)=y^{\prime}\right)$. Let V be the trace-zero subspace of the corresponding permutation representation over k (recall that the permutation representation is the vector space k^{S} with the natural action of G, so that V is the subspace consisting of vectors whose n coordinates sum to 0). Prove that if $n \equiv 0 \bmod p$ then the trivial subrepresentation generated by $(1,1, \ldots, 1)$ has no G-stable complement, except for one choice of (p, n, G), and determine that one choice.
6. (Algebraic Geometry) Prove that the following complex algebraic varieties are pairwise nonisomorphic.
(a) $X_{1}=\operatorname{Spec} \mathbb{C}[x, y] /\left(y^{2}-x^{3}\right), X_{2}=\operatorname{Spec} \mathbb{C}[x, y] /\left(y^{2}-x^{3}-x\right)$ and $X_{3}=\operatorname{Spec} \mathbb{C}[x, y] /\left(y^{2}-x^{3}-x^{2}\right)$.
(b) $X_{1}=\operatorname{Spec} \mathbb{C}[x, y] /\left(x y^{2}+x^{2} y\right)$ and $X_{2}=\operatorname{Spec} \mathbb{C}[x, y, z] /(x y, y z, z x)$.
(c) $X_{1}=\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, X_{2}=\mathbb{P}_{\mathbb{C}}^{2}$ and $X_{3}=$ the blowing up of X_{2} at the point $[0: 0: 1]$.

Qualifying Exams II, Jan. 2013

(1) (Real Analysis)
(a) For any bounded positive function f define

$$
A(f):=\int_{0}^{1} f(x) \log f(x) \mathrm{d} x, \quad B(f):=\left(\int_{0}^{1} f(x) \mathrm{d} x\right) \log \left(\int_{0}^{1} f(y) \mathrm{d} y\right)
$$

There are three possibilities: (i) $A(f) \geq B(f)$ for all bounded positive functions, (ii) $B(f) \geq$ $A(f)$ for all bounded positive functions, and (iii) $A(f) \geq B(f)$ for some functions while $B(f) \geq$ $A(f)$ for some functions. Decide which possibility is correct and prove your answer. If you use any inequality, state all assumptions of the inequality precisely and clearly.
(b) Let \hat{f} denote the Fourier transform of the function f on \mathbb{R}. Suppose that $f \in C^{\infty}(\mathbb{R})$ and

$$
\|\hat{f}(\xi)\|_{L^{2}(\mathbb{R})} \leq \alpha, \quad\left\||\xi|^{1+\varepsilon} \hat{f}(\xi)\right\|_{L^{2}(\mathbb{R})} \leq \beta
$$

for some $\varepsilon>0$. Find a bound on $\|f\|_{L^{\infty}}(\mathbb{R})$ in terms of α, β and ε.
(2) (Complex analysis) Is there a conformal map between the following domains? If the answer is yes, give such a conformal map. If it is no, prove it.
a) From $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ to $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
b) From the intersection of the open disks $D((0,0), 3)$ and $D((0,3), 2)$ to \mathbb{C}.
c) From $\mathbb{H} \backslash(0, i]$ to \mathbb{H}.
d) From \mathbb{D} to $\mathbb{C} \backslash\left(-\infty,-\frac{1}{4}\right]$.
(3) (Differential Geometry) View $\mathbb{R}^{2} \times \mathbb{C}$ as the product complex line bundle over \mathbb{R}^{2} and let θ_{0} denote the connection on this line bundle whose covariant derivative acts on a given section s as $d s$ with d being the exterior derivative. Let A denote the connection

$$
\theta_{0}+\frac{i}{1+x^{2}+y^{2}}(x d y-y d x)
$$

(a) Compute as a function of $r \in(0, \infty)$ the linear map from \mathbb{C} to \mathbb{C} that is obtained by using A to parallel transport a given non-zero vector in \mathbb{C} in the clockwise direction on the circle where $x^{2}+y^{2}=r^{2}$ from the point $(r, 0)$ to itself.
(b) Give a formula for the curvature 2-form of the connection A.
(4) (Algebra) a) Let K / F be a field extension of degree $2 n+1$ generated by t. Prove that for every $c \in K$ there exists a unique rational function $f \in F[T]$ such that $\operatorname{deg}(f) \leq n$ and $c=f(t)$. [The degree of a rational function f is the smallest d such that $f=P / Q$ for polynomials P, Q each of degree at most d.]
b) Deduce that if $[K: F]=3$ then $\mathrm{PGL}_{2}(F)$ acts simply transitively by fractional linear transformations on $K \backslash F$ (the complement of F in K). If $|F|=q<\infty$, compute $\left|\mathrm{PGL}_{2}(F)\right|$ directly, and verify that it equals $|K|-|F|$.
(5) (Algebraic Topology) Use Z to denote the subset of \mathbb{R}^{2} that is given using standard polar coordinates (r, θ) by the equation $r=\cos ^{2}(2 \theta)$. The set Z is depicted in Figure 1.

Figure 1. The set Z.
(a) Compute the fundamental group of Z.
(b) Let D denote the closed unit disk in \mathbb{R}^{2} centered at the origin. The boundary of D is the unit circle, this denoted here by ∂D. Parametrize ∂D by the angle $\phi \in[0,2 \pi)$ and let f denote the map from the boundary of ∂D to Z that sends the angle ϕ to the point in Z with polar coordinates $\left(r=\cos ^{2}(2 \phi), \theta=\phi\right)$. Let X denote the space that is obtained from the disjoint union of D and Z by identifying $\phi \in \partial D$ with $f(\phi) \in Z$. Give a set of generators and relations for the fundamental group of X.
(6) (Algebraic Geometry) Let f and g be irreducible homogeneous polynomials in $S=\mathbb{C}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ of degrees 2 and 3, respectively. For parts (a) and (b), combinatorial polynomials (such as $\binom{T}{2}=$ $T(T-1) / 2)$ are acceptable in the final answer.
(a) Compute the Hilbert polynomial of $X=\operatorname{Proj}(S /(g))$ embedded in $P=\mathbb{P}_{\mathbb{C}}^{3}=\operatorname{Proj}(S)$.
(b) Compute the Hilbert polynomial of $Y=\operatorname{Proj}(S /(f, g))$ embedded in P.
(c) Assuming in addition that Y is nonsingular, use your answer for part (b) to compute its geometric genus

$$
\operatorname{dim}_{\mathbb{C}} \Gamma\left(Y, \Omega_{Y / \mathbb{C}}^{1}\right)
$$

Qualifying Exams III, Jan. 2013

(1) (Real Analysis) Assume that X_{1}, X_{2}, \ldots are independent random variables uniformly distributed on $[0,1]$. Let $Y^{(n)}=n \inf \left\{X_{i}, 1 \leq i \leq n\right\}$. Prove that $Y^{(n)}$ converges weakly to an exponential random variable, i.e. for any continuous bounded function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left(f\left(Y^{(n)}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}^{+}} f(u) e^{-u} \mathrm{~d} u
$$

(2) (Complex Analysis) The following questions are independent.
a) Describe all harmonic functions on the plane \mathbb{R}^{2} that are bounded from above.
b) Let $h: \mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\} \rightarrow \mathbb{C}$ be holomorphic. Assume that $|h(z)| \leq 1$ for any $z \in \mathbb{H}$ and i is a zero of h of order $m \geq 1$. Prove that, for any $z \in \mathbb{H}$,

$$
|h(z)| \leq\left|\frac{z-i}{z+i}\right|^{m}
$$

(3) (Differential Geometry) Use (t, x, y, z) to denote the Euclidean coordinates for \mathbb{R}^{4}. Let $t \mapsto a(t)$ denote a strictly positive function on \mathbb{R}. A Riemannian metric on \mathbb{R}^{4} is given by the quadratic form:

$$
g=d t \otimes d t+a(t)^{2}(d x \otimes d x+d y \otimes d y+d z \otimes d z)
$$

Compute the components of the Riemann curvature tensor of g using the orthonormal basis $\{d t, a d x, a d y, a d z\}$ for $\mathrm{T}^{\star} \mathbb{R}^{4}$.
(4) (Algebraic Topology) Let $K \subset \mathbb{R}^{3}$ denote a knot, this being a compact, connected, dimension 1 submanifold.
(a) Compute the homology of the complement in \mathbb{R}^{3} of any given knot K.
(b) Figure 1 shows a picture of the trefoil knot.

Figure 1. The trefoil knot.
Sketch on this picture a curve or curves in the complement of K that generate(s) the first homology of $\mathbb{R}^{3}-K$.
(c) A Seifert surface for a knot in \mathbb{R}^{3} is a connected, embedded surface with boundary, with the knot being the boundary (we do not impose orientability here). By way of an example, view the unit circle in the $x y$ plane as a knot in \mathbb{R}^{3}. This is called the unknot. The unit disk in the $x y$ plane is a Seifert surface for the unknot.
(i) Compute the second homology of the complement in \mathbb{R}^{3} of any given Seifert surface for the unknot.
(ii) Sketch a Seifert surface for the unknot whose complement is not simply connected.
(5) (Algebra) Let k be a finite field of cardinality q, and let $L=k(t)$, the field of rational functions over k in an indeterminate t. Set $x=t^{q}-t, K=k(x)$, and $F=k\left(x^{q-1}\right)$.
a) Prove that L / K is a Galois extension with $\operatorname{Gal}(L / K)=(k,+)$ (the additive group of k).
b) Prove that L / F is Galois. What is $\operatorname{Gal}(L / F)$, and how does $\operatorname{Gal}(L / F)$ act on t ?
(6) (Algebraic Geometry) Let X_{0} be the affine plane curve defined by the equation

$$
y^{3}-3 y=x^{5}
$$

over the complex numbers, and let X be the projective smooth model of X_{0}.
(a) Show that X_{0} is nonsingular.
(b) Find all $a \in \mathbb{C}$ for which the polynomial $P_{a}(y)=y^{3}-3 y-a$ has repeated roots. For each such a, factor the polynomial $P_{a}(y)$.
(c) Let $\pi: X \longrightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be the unique extension of the coordinate map $x: X_{0} \longrightarrow \mathbb{A}_{\mathbb{C}}^{1}$. Describe the ramification divisor of π and compute its degree.
(d) Compute the genus of X by applying Hurwitz's theorem to $\pi: X \longrightarrow \mathbb{P}^{1}$.

