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1. (CA) Evaluate ∫ ∞
0

x2 + 1

x4 + 1
dx

Solution. We can consider the integration from −∞ to ∞ instead. For
R > 1, consider the contour that consists of the segment from −R to R and
the arc {Reiθ | θ ∈ [0, π]}. Since z2+1

z4+1
decays as |z|−2 on the complex plane as

|z| → ∞, this contour integral converges to twice of the original integral when
R→∞.

The contour encloses two simple poles eπi/4 and e3πi/4 of the function. At

eπi/4 the residue of the function is (eπi/4)2+1
d
dz

(z4+1)|
z=eπi/4

= 1+i
4e3πi/4

= −i
2
√
2
. Similarly

the residue at e3πi/4 is also 1−i
4e9πi/4

= −i
2
√
2
. The contour goes counter-clockwise,

and thus the integration along the contour is 2πi · −i√
2

=
√

2π, and thus the

original integral is
√
2
2 π.

2. (A) Let k be a field and V be a k-vector space of dimension n. Let A ∈
Endk(V ). Show that the following are equivalent:

(a) The minimal polynomial of A is the same as the characteristic polynomial
of A.

(b) There exists a vector v ∈ V such that v,Av,A2v, ..., An−1v is a basis of
V .

Solution. The theorem on the existence of rational canonical form says that
we have V =

⊕r
i=1 Vi such that each Vi is invariant under T , that T |Vi satisfies

both (a) and (b) above, and that if we denote by pi(x) the characteristic
polynomial, we have pj(x)|pi(x) for any j > i. One sees that the characteristic
polynomial of T is then the product of that of its blocks, namely

∏r
i=1 pi(x),

while the minimal polynomial of T is p1(x). This shows that (a) implies
r = 1, and thus the result of (b). On the other hand, if (b) holds, then the
minimal polynomial has degree equal to dimV and thus must be equal to the
characteristic polynomial.

3. (T) Show that S1×S1 and S1 ∨S1 ∨S2 have isomorphic homology groups in
all dimensions, but their universal covering spaces do not.

Solution. The Kunneth formula shows the homology groups of S1×S1 are Z,
Z2 and Z in dimension 0, 1 and 2, respectively. Note that since the homology



groups of S1 are free, there is no contribution from the torsion part. The
reduced homology groups of S1 ∨ S1 ∨ S2 are the direct sums of that of two
S1 and S2 in corresponding dimension, hence the same result.

The universal covering of S1 × S1 is R2, which is contractible and thus have
trivial reduced homology groups. On the other hand the universal covering
space of S1 ∨ S1 ∨ S2 is the universal covering space of S1 ∨ S1 with each
vertex attached an S2. The second homology group H2 of it is therefore an
infinite direct sum of Z.

4. (RA)

(a) Prove that any countable subset of the interval [0, 1] ⊂ R is Lebesgue
measurable, and has Lebesgue measure 0.

(b) Let Φ ⊂ [0, 1] be the set of real numbers x that, when written as a
decimal x = 0.a1a2a3..., satisfy the rule an+2 6∈ {an, an+1} for all n ≥ 1.
What is the Lebesgue measure of Φ?

Solution.

(a) Suppose the countable subset is {y1, y2, ..., yn, ...}. For each k take the
open interval Uk = (yk − δ

2k
, yk + δ

2k
), where δ > 0 is fixed. Then Uk

has length δ
2k−1 and

⋃
Uk has the sum of lengths δ. As δ → 0, this

shows {y1, y2, ..., yn, ...} has measure zero and in particular is Lebesgue
measurable.

(b) Let Ek be the set of real numbers x = 0.a1a2a3... such that ak+1 6= ak+2.
Let Fk = Ek − Ek ∩ (

⋃
i<k Ei). One easily sees that Fk has measure

1
10 ·
(

9
10

)k−1
and they are disjoint. Thus

⊔
Fk ⊂ [0, 1] has measure 1. As

Φ ⊂ [0, 1]−
⊔
Fk, Φ has measure zero.

5. (DG) Let B ⊂ R4 be the closed ball of radius 2 centered at the origin, with the
metric induced from the euclidean metric on R4. Give an example of a smooth
vector field v on B with the property that for any L there exists an integral
curve of v with both endpoints on the boundary ∂B and length greater than
L.

Solution. Take the vector field (1 − x2 − y2) ∂∂z + y ∂
∂x − x

∂
∂y . The function

x2 + y2 is invariant on any integral curve. When x2 + y2 is close to 1, the
“vertical” part of the vector field is no more than 2(1 − x2 − y2) times the
horizontal part of the vector field. The vertical length such an integral curve
has to travel is 2

√
1− x2 − y2, and thus the total length of the integral curve

is no less than
2
√

1−x2−y2
2(1−x2−y2) =

√
1− x2 − y2−1/2. For x2 + y2 arbitrarily close

to 1 we get arbitrarily long integral curves.

6. (AG) Let C ⊂ P3 be a smooth, irreducible, non-degenerate curve of degree d.



(a) Show that d ≥ 3.

(b) Show that every point p ∈ P3 lies on a secant and tangent line to C.

(c) If d = 3 show that every point of P3\C lies on a unique secant or tangent
line to C.

Solution.

(a) We may assume C is not a line. Take any three point on C which are
not collinear and intersect C with the plane passing through these three
points. As C is non-degenerate, C is not contained in this plane and
thus the intersection number of C and this plane is 3 or more (when they
intersect at more points or intersect at these three points with higher
multiplicity). This says d ≥ 3.

(b) ConsiderX = {(x, y, z) |x, y ∈ C, z is on the secant passing through x, y}.
Here z should be on the tangent line if x = y. Then X is closed in
C × C × P3 and X projects to C × C with fiber P1. Hence X is irre-
ducible with dimension 3. Consider the projection map from C×C×P3

to P3 and denote by S the image of X. S is the so-called secant variety,
and we see that it is an irreducible closed subvariety of P3.

The statement to be proved is then that S is the whole P3. If this is not
the case, then the map from X to S has every fiber at least dimension
1 (by semi-continuity of the dimension of fibers). Take any four non-
planar points x1, ..., x4 on C. All lines through xi to all points on C is
a 2-dimensional closed subvariety of P3, and thus must be S itself. This
says S is a cone over xi; if we write AS the subvariety in A4 whose pro-
jectivization is S, and Vi ⊂ A4 the line through the origin corresponding
to xi, then AS = AS + Vi. But this implies AS = A4 and thus S = P3.

(c) Suppose otherwise x lies on two tangent or secant lines. Consider the
plane that contains x and this two lines. Then this plane intersect C at
least four times as it intersects C twice on each line. This contradicts
with that d = 3.
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1. (T) Find all the connected 2-sheeted and 3-sheeted covering spaces of S1 ∨S1

up to isomorphism of covering spaces without basepoints. Indicate which
covering spaces are normal.

Solution. A connected 2-sheeted covering is given by a homomorphism
π1(S

1 ∨ S1) → S2 such that the image acts transitively on the set of two
elements; this is given by how the path that lifts the loop interchanges differ-
ent fibers. Since π1(S

1 ∨ S1) is freely generated by two generators, this is the
same as giving two elements in S3 so that they generates a subgroup of S2
that acts transitively. We thus have 3 choices: (e, (12)), ((12), (12)), ((12), e).
They are all normal.

For 3-sheeted covering we are giving two elements in S3 so that they gener-
ates a subgroup of S2 that acts transitively, but up to conjugacy of S3. This
is because a renumbering of the underlying set of S3 corresponds to a renum-
bering of fibers, which always give an isomorphism of covering spaces. There
are therefore 7 possibilities: (e, (123)), ((12), (13)), ((12), (123)), ((123), e),
((123), (12)), ((123), (123)) and ((123), (132)).

Among these possibilities 4 are normal; since a group of order 3 is always
abelian, such coverings are normal iff they are abelian. A covering space
described this way is abelian iff the two elements are abelian. This leaves
(e, (123)), ((123), e), ((123), (123)) and ((123), (132)).

2. (RA) Let g be a differentiable function on R that is non-negative and has
compact support.

(a) Prove that the Fourier transform ĝ of g does not have compact support
unless g = 0.

(b) Prove that there exist constants A and c such that for all k ∈ N the k-th
derivative of ĝ is bounded by cAk.

Solution.

(a) By scaling if necessary we may assume the support of g lies inside [−3, 3].
If the Fourier transform of ĝ also has support in (−N,N), then this
implies in particular that, if we think of g as defined on [−π, π] and
consider its Fourier series, then all terms after the N -th term are zero.
In particular g has a finite Fourier series and therefore must be analytic
on (−π, π). This contradicts with that supp g ⊂ [−3, 3] unless g ≡ 0.



(b) Since g is smooth with compact support, say supp g ⊂ [−A,A], we have

| d
k

dyk

∫
R
eixyf(x)dx| = |

∫
R

(ix)keixyf(x)dx| ≤ Ak · sup
x∈[−A,A]

f(x) · 2A.

3. (DG) Let S2 ⊂ R3 be the sphere of radius 1 centered at the origin, with
the metric induced from the euclidean metric on R3. Introduce spherical
coordinates (θ, φ) ∈ [0, π] × R/(2πZ) on the complement of the north and
south poles, where

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

The metric in these coordinates is given by the section

dθ ⊗ dθ + sin2 θdφ⊗ dφ

of the second symmetric power of the cotangent bundle T ∗S2; it has constant
scalar curvature 1.

Now let u be a smooth function on S2 depending only on the coordinate θ,
and consider the metric given by the section

eu(dθ ⊗ dθ + sin2 θdφ⊗ dφ).

(a) Compute the scalar curvature of this new metric in terms of u and its
derivative.

(b) Prove that the integral over S2 of the function you computed in Part (a)
is equal to 4π.

Solution. For our convenience, we replace u by 2u throughout the solution.

(a) We compute using the method of orthonormal frame. We have eθ =
eudθ and eφ = eu sin θdφ is an orthonormal coframe (orthonormal ba-
sis for cotangent bundle). Write ωkj to be the matrix 1-form so that

∇(ej) = ωkj ek, where ∇ is the Levi-Civita connection and eθ = e−u ∂
∂θ

and eφ = e−u csc θ ∂
∂φ is the dual frame. The torsion-free condition of the

connection gives the Cartan’s structure equation (using Einstein summa-
tion convention)

dek + ωkj ∧ ej = 0.

Also that ∇ is compatible with metric gives ωkj = −ωjk. So ωθθ = ωφφ = 0.

Next we have ωθφ = −ωφθ , deθ = 0 says ωθφ at every point is a multi-

ple of eφ, and deφ = (eu sin θ)′dθ ∧ dφ = (eu sin θ)′

e2u sin θ
eθ ∧ eφ gives ωφθ =

− (eu sin θ)′

e2u sin θ
eφ = −e−u(eu sin θ)′dφ.

The curvature 2-form is dω+ω∧ω. Note that ω∧ω is zero because each
entry of ω has only dφ term. And (dω)φθ = −(e−u(eu sin θ)′)′dθ ∧ dφ =



− (e−u(eu sin θ)′)′

e2u sin θ
eθ ∧ eφ. So the scalar curvature is (or twice of it, in the

convention in Wikipedia for general dimension)

S = ιeφιeθ((dω)φθ )− (e−u(eu sin θ)′)′

e2u sin θ
.

(b) The volume form is e2u sin θdθ ∧ dφ. We thus have to integrate∫ 2π

0

∫ π

0
−(e−u(eu sin θ)′)′dθdφ.

The deduction that this gives 4π is straightforward.

4. (AG) Show that no two of the following rings are isomorphic:

1. C[x, y]/(y2 − x).

2. C[x, y]/(y2 − x2).
3. C[x, y]/(y2 − x3).
4. C[x, y]/(y2 − x4).
5. C[x, y]/(y2 − x5).
6. C[x, y]/(y3 − x4).

Solution. These rings are reduced (no non-trivial nilpotent elements). Two
rings are isomorphic if and only if their corresponding complex analytic space
(variety over C) are isomorphic. The first one is the only one that is non-
singular, and therefore non-isomorphic with any others.

The second and the fourth varieties are reducible, i.e. the rings are not integral
domains. To distinct them from each other, note that they both have two
component, namely two minimal prime ideals, which is (x + y), (x − y) for
the second ring and (x + y2), (x − y2) for the fourth ring. The union of
this two ideals gives the maximal ideal (x, y) for the second ring, but gives
the non-primary ideal (x, y2) for the fourth ring. This reflects that fact that
in one case the two component intersect transversally and in the other case
they intersect twice. This shows the second ring and the fourth ring are not
isomorphic.

It remains to check that the third, fifth and sixth rings are different. They
all have a unique singularity at the origin, which can be resolved (the same
holds for all curves) by taking normalization, i.e. integral closure of the ring.
They have the same integral closure C[t], in which the three rings may be
written as C[t2, t3], C[t2, t5] and C[t3, t4]. Now note that dimCC/C[t2, t3] = 1,
dimCC/C[t2, t5] = 2, dimCC/C[t3, t4] = 3, and thus these rings are non-
isomorphic. This number is called the delta invariant and measure the loss of
geometric genus at this singularity.



5. (CA) Let f : C→ C be a nonconstant holomorphic function. Prove that f(C)
is dense in C.

Solution. Assume z0 is not in the closure of the image of f(C). 1/(f(C)−z0)
would then be bounded, and thus constant, a contradiction.

6. (A) Let a be a positive integer, and consider the polynomial

fa(x) = x6 + 3ax4 + 3x3 + 3ax2 + 1 ∈ Q[x]

(a) Show that it is irreducible.

(b) Show that the Galois group of fa is solvable.

Solution. For (b) it’s the same as to prove that all roots can be written using
successive radicals. Let y = x + 1

x . We observe fa(x) = y3 + (3a − 3)y + 3.
That y3+(3a−3)y+3 is of course solvable, and thus all roots of x are solvable.
This proves (b). For part (a), by Gauss lemma, we know factorization in Q[x]
is the same as that in Z[x]. Note that y3 + (3a − 3)y + 3 is irreducible by
Eisenstein criterion modulo 3. This shows that the size of Galois orbits of the
roots of fa(x) is at least three; if fa(x) is reducible, it can only be factorized
into two cubic polynomials.

However, by reduction modulo 3 for fa(x) again, we see that fa(x) ≡ (x2+1)3

(mod 3). This says fa(x) can only be factorized into even degree polynomials.
Two results combined imply fa(x) is irreducible.
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1. (DG) Let ( · ) be the standard inner product on R3, and let

S2 = {x = (x1, x2, x3) : (x · x) = 1}

be the sphere of radius 1 centered at the origin; identify the tangent space
TxS

2 at a point x ∈ S2 with the subspace

TxS
2 = {v ∈ R3 : (x · v) = 0} ⊂ R3,

where ( · ) is the standard inner product on R3. Let e ∈ R3 be any fixed
vector, and let V be the vector field on S2 given by

V (x) = e− (x · e)x.

(a) Compute the Lie derivative by V of the 1-form x1dx2.

(b) Define a Riemannian metric on S2 by setting the inner product of tangent
vectors v, v′ ∈ TxS

2 equal to (v · v′), (that is, take the metric induced
on S2 by the euclidean metric on R3). Use the associated Levi-Civita
connection to define a covariant derivative on the space of 1-forms on S2.

(c) Compute the covariant derivative of the 1-form x1dx2 in the direction of
the vector field V .

Solution.

(a) We’ll write x = (x, y, z), e = (a, b, c) and x1dx2 = xdy. We have V (x) =
(a−Sx, b−Sy, c−Sz), where S = ax+ by+ cz. Using Cartan’s formula,
the Lie derivative

LV (xdy) = ιV (dx∧dy)+d(ιV xdy) = (a−Sx)dy−(b−Sy)dx+d((b−Sy)x)

= −axydx+ (a− 2Sx− bxy)dy − cxydz.

(b) The covariant derivative on 1-forms can be given as follows: For 1-form
α ∈ Ω1(S2), we compute the dual vector field Vα V ∈ C∞(TS2). Then
∇α is defined to be the dual of ∇Vα, which is the projection of the
derivative of Vα in C∞(TR3). This can be seen as follows: For any
vector field u, v ∈ C∞(TS2), we have

(∇uα)(v) = α(∇uv)− u.(α(v)) = (Vα · ∇uv)− u.(Vα · v) = (∇uTα · v).



(c) Using part (b), we shall first compute the dual of xdy on S2. On R3 its
dual is x ∂

∂y . We then project this vector to the tangent space of S2. Note

that x ∂
∂x+y ∂

∂y+z ∂
∂z is the unit normal of S2, and (x ∂

∂y ·x
∂
∂x+y ∂

∂y+z ∂
∂z ) =

xy. Hence the dual of xdy is x ∂
∂y − xy(x ∂

∂x + y ∂
∂y + z ∂

∂z ). One then
computes the derivative of this vector field, project it to the tangent
plane of S2, then take the dual 1-form.

2. (T) Let D2 be the closed unit disk in R2. Prove the Brouwer fixed point
theorem for maps f : D2 → D2 by applying degree theory to the S2 → S2

that sends both the northern and southern hemisphere of S2 to the southern
hemisphere via f .

Solution. We have to prove that such an f has a fixed point. Denote by
g : S2 → S2 the map constructed in the statement of the problem. Since the
image of f is in the southern hemisphere, g is homotopic to the map that
sends all points on S2 to the southern pole, and thus g has degree 0. On the
other hand, if f has no fixed point, then g has no fixed point as well, and g is
homotopic to the antipodal map that sends every point to the opposite point
on S2. This is an orientation-reversing homeomorphism and has degree −1
instead, a contradiction.

3. (CA) Prove that for every λ > 1, the equation zeλ−z = 1 has exactly one root
in the unit disk D and that this root is real.

Solution. On |z| = 1 w have

|z · eλ−z| = eλ−Re(z) ≥ eλ−1 > 1

because λ > 1. Hence by Rouché’s theorem 1 − zeλ−z has the same number
of zeroes counted with multiplicity as zeλ−z inside |z| = 1, hence has exactly
one zero.

Observe if z is a zero of 1 − zeλ−z then so is z̄ because λ is real, hence by
uniqueness the unique zero must be real.

4. (A) Let K be an algebraically closed field of characteristic 0, and let f ∈ K[x]
be any cubic polynomial. Show that exactly one of the following two statement
is true:

1. f = α(x− λ)3 + β(x− λ)2 for some α, β, λ ∈ K; or

2. f = α(x− λ)3 + β(x− µ)3 for some α, β 6= 0 ∈ K and λ 6= µ ∈ K.

In the second case, show that λ and µ are unique up to order.

Solution. The statement in this problem is incorrect. Take f = x3−1. f has
no repeated root therefore the first case doesn’t happen. Suppose x3 − 1 =
α(x − λ)3 + β(x − µ)3. Looking at the x and x2 terms gives αλ + βµ =
αλ2 + βµ2 = 0. This is impossible when λ 6= µ and α, β 6= 0.



5. (AG) Let Q ⊂ P2n+1 be a smooth quadric hypersurface in an odd-dimensional
projective space over C.

(a) What is the largest dimension of a linear subspace of P2n+1 contained in
Q.

(b) What is the dimension of the family of such planes?

Solution. The quadric corresponds to a quadratic form q(v) with 2(v, w) =
q(v + w) − q(v) − q(w) on C2n+2. If q has non-trivial kernel, i.e. there is
v 6= 0 ∈ C2n+2 s.t. (v, w) = 0 ∀w ∈ C2n+2. Then (∂wq)|v = (w, v) = 0 ∀w
and v is a singular point on Q, contradicts to that Q is non-singular. So we’ll
begin with a non-degenerate quadratic form q.

(a) q cannot have a isotropic subspace of dimension n + 2 because such
a space will have a dimension n orthogonal complement. Therefore Q
cannot contains a n + 1-dimensional linear subspace. We’ll construct a
n-dimensional linear subspace in Q in (b). So n is the largest dimension
for linear subspaces in Q.

(b) Consider Pk = {l ∈ G(k − 1, 2n+ 1) | l lies in Q} of (k − 1)-dimensional
(projective) subspaces that lie in Q. Also we take P0 to be a point. Con-
sider the incidence correspondenceQk = {l1 ∈ Pk, l2 ∈ Pk+1 | l1 lies in l2}.
The fiber of the projection map from Qk to Pk at l1 ∈ Pk can be given
as follows: let V1 be the affine subspace of C2n+2 that corresponds to
l1. Then to get l2 one has to find a line in V ⊥1 /V1 that is isotropic
with respect to the induced non-degenerate quadratic form on V ⊥1 /V1,
namely a choice of a point on a quadric in P2n+1−2k. Therefore the fiber
is non-empty and has constant dimension 2n− 2k.

Each fiber of the projection map from Qk to Pk+1 is isomorphic to Pk.
Thus dimPk+1 = dimPk+(2n−2k)−k. One then computes dimPn+1 =
2n+ (2n− 3) + ...+ (−n) = n(n+ 1)/2.

6. (RA) Let H and L denote a pair of Banach spaces.

(a) Prove that a linear map from H to L is continuous if and only if it’s
bounded

(b) Define what is meant by a compact linear map from H to L.

(c) Now let H and L be the Banach spaces obtained by completing the space
C∞c ([0, 1]) of compactly supported C∞ functions on [0, 1] using the norms
with squares

||f ||2H =

∫
[0,1]
|df
ds
|2s2ds and ||f ||2L =

∫
[0,1]
|f |2ds.

The identity map C∞c ([0, 1]) extends to a bounded linear map φ : H→ L
(you don’t need to prove this). Prove that φ is not compact.



Solution.

(a) If φ : H → L is bounded with ||φ|| = A, then the preimage of the open
ball of radius r centered at φ(x) contains the ball of radius r/A centered
at x. This shows φ is continuous at x. On the other hand, if it is
continuous, then the preimage of the open ball of radius 1 centered at
0 ∈ L contains an open ball of radius B centered at 0 ∈ H. This says
||x|| < B implies ||φ(x)|| < 1 and by linearity ||x|| < r ⇒ ||φ(x)|| < r/B,
i.e. ||φ|| ≤ 1/B.

(b) A continuous linear map φ : H → L is compact if for any sequence
of vectors {xn} in a bounded subset of H, {φ(xn)} has a convergent
subsequence.

(c) Take f to be any non-zero smooth function with support in [1/2, 1].
For any α > 1, consider scaling fα(x) := αf(α2x) (with the convention
f(x) = 0 for x > 1). We observe that ||f ||2H = ||fα||2H and ||f ||2L = ||fα||2L.
Take αi = 2, 4, 8, ... so that each fα have disjoint support. So {fαi} is
bounded but {φ(fαi)} has no convergent subsequence.


