QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday, January 18, 2011 (Day 1)

1. (CA) Evaluate

$$\int_0^\infty \frac{x^2+1}{x^4+1} \mathrm{d}x$$

- 2. (A) Let k be a field and V be a k-vector space of dimension n. Let $A \in End_k(V)$. Show that the following are equivalent:
 - (a) The minimal polynomial of A is the same as the characteristic polynomial of A.
 - (b) There exists a vector $v \in V$ such that $v, Av, A^2v, ..., A^{n-1}v$ is a basis of V.
- 3. (T) Show that $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have isomorphic homology groups in all dimensions, but their universal covering spaces do not.

4. (RA)

- (a) Prove that any countable subset of the interval $[0,1] \subset \mathbb{R}$ is Lebesgue measurable, and has Lebesgue measure 0.
- (b) Let $\Phi \subset [0,1]$ be the set of real numbers x that, when written as a decimal $x=0.a_1a_2a_3\ldots$, satisfy the rule $a_{n+2}\notin\{a_n,a_{n+1}\}$ for all $n\geq 1$. What is the Lebesgue measure of Φ ?
- 5. (DG) Let $B \subset \mathbb{R}^2$ be the closed ball of radius 2 centered at the origin, with the metric induced from the euclidean metric on \mathbb{R}^2 . Give an example of a smooth vector field v on B with the property that for any L there exists an integral curve of v with both endpoints on the boundary ∂B and length greater than L.
- 6. (AG) Let $C \subset \mathbb{P}^3$ be a smooth, irreducible, non-degenerate curve of degree d.
 - (a) Show that $d \geq 3$.
 - (b) Show that every point $p \in \mathbb{P}^3$ lies on a secant or tangent line to C.
 - (c) If d = 3, show that every point of $\mathbb{P}^3 \setminus C$ lies on a unique secant or tangent line to C.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday, January 19, 2011 (Day 2)

- 1. (T) Find all the connected 2-sheeted and 3-sheeted covering spaces of $S^1 \vee S^1$ up to isomorphism of covering spaces without basepoints. Indicate which covering spaces are normal.
- 2. (RA) Let g be a differentiable function on \mathbb{R} that is non-negative and has compact support.
 - (a) Prove that the Fourier transform \hat{g} of g does not have compact support unless g = 0.
 - (b) Prove that there exist constants A and c such that for all $k \in \mathbb{N}$ the k^{th} derivative of \hat{q} is bounded by cA^k .
- 3. (DG) Let $S^2 \subset \mathbb{R}^3$ be the sphere of radius 1 centered at the origin, with the metric induced from the euclidean metric on \mathbb{R}^3 . Introduce spherical coordinates $(\theta, \phi) \in [0, \pi] \times \mathbb{R}/(2\pi\mathbb{Z})$ on the complement of the north and south poles, where

$$(x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta).$$

The metric in these coordinates is given by the section

$$d\theta \otimes d\theta + \sin^2 \theta d\phi \otimes d\phi$$

of the second symmetric power of the cotangent bundle T^*S^2 ; it has constant scalar curvature 1.

Now let u be a smooth function on S^2 depending only on the coordinate θ , and consider the metric given by the section

$$e^{u}(d\theta \otimes d\theta + \sin^{2}\theta d\phi \otimes d\phi).$$

- (a) Compute the scalar curvature of this new metric in terms of u and its derivatives.
- (b) Prove that the integral over S^2 of the function you computed in Part (a) is equal to 4π .

- 4. (AG) Show that no two of the following rings are isomorphic:
 - 1. $\mathbb{C}[x,y]/(y^2-x)$
 - 2. $\mathbb{C}[x,y]/(y^2-x^2)$
 - 3. $\mathbb{C}[x,y]/(y^2-x^3)$
 - 4. $\mathbb{C}[x,y]/(y^2-x^4)$
 - 5. $\mathbb{C}[x,y]/(y^2-x^5)$
 - 6. $\mathbb{C}[x,y]/(y^3-x^4)$
- 5. (CA) Let $f: \mathbb{C} \to \mathbb{C}$ be a nonconstant holomorphic function. Prove that $f(\mathbb{C})$ is dense in \mathbb{C} .
- 6. (A) Let a be a positive integer, and consider the polynomial

$$f_a(x) = x^6 + 3ax^4 + 3x^3 + 3ax^2 + 1 \in \mathbb{Q}[x].$$

- (a) Show that it is irreducible.
- (b) Show that the Galois group of f_a is solvable.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday, January 20, 2011 (Day 3)

1. (DG) Let (\cdot) be the standard inner product on \mathbb{R}^3 , and let

्रा

$$S^2 = \{ \mathbf{x} = (x_1, x_2, x_3) : (\mathbf{x} \cdot \mathbf{x}) = 1 \}$$

be the sphere of radius 1 centered at the origin; identify the tangent space $T_{\mathbf{x}}S^2$ at a point $\mathbf{x} \in S^2$ with the subspace

$$T_{\mathbf{x}}S^2 = \{ v \in \mathbb{R}^3 : (\mathbf{x} \cdot v) = 0 \} \subset \mathbb{R}^3,$$

where (\cdot) is the standard inner product on \mathbb{R}^3 . Let $e \in \mathbb{R}^3$ be any fixed vector, and let V be the vector field on S^2 given by

$$V(\mathbf{x}) = e - (\mathbf{x} \cdot e)\mathbf{x}.$$

- (a) Compute the Lie derivative by V of the 1-form x_1dx_2 .
- (b) Define a Riemannian metric on S^2 by setting the inner product of tangent vectors $v, v' \in T_{\mathbf{x}}S^2$ equal to $(v \cdot v')$ (that is, take the metric induced on S^2 by the euclidean metric on \mathbb{R}^3). Use the associated Levi-Civita connection to define a covariant derivative on the space of 1-forms on S^2 .
- (c) Compute the covariant derivative of the 1-form x_1dx_2 in the direction of the vector field V.
- 2. (T) Let D^2 be the closed unit disk in \mathbb{R}^2 . Prove the Brouwer fixed point theorem for maps $f:D^2\to D^2$ by applying degree theory to the map $S^2\to S^2$ that sends both the northern and southern hemispheres of S^2 to the southern hemisphere via f.
- 3. (CA) Prove that for every $\lambda > 1$, the equation $ze^{\lambda z} = 1$ has exactly one root in the unit disk \mathbb{D} and that this root is real.
- 4. (A) Let K be an algebraically closed field of characteristic 0, and let $f \in K[x]$ be any cubic polynomial. Show that exactly one of the following two statements is true:

1.
$$f = \alpha(x - \lambda)^3 + \beta(x - \lambda)^2$$
 for some $\alpha, \beta, \lambda \in K$; or

2.
$$f = \alpha(x - \lambda)^3 + \beta(x - \mu)^3$$
 for some $\alpha, \beta \neq 0 \in K$ and $\lambda \neq \mu \in K$.

In the second case, show that λ and μ are unique up to order.

- 5. (AG) Let $Q \subset \mathbb{P}^{2n+1}$ be a smooth quadric hypersurface in an odd-dimensional projective space over \mathbb{C} .
 - (a) What is the largest dimension of a linear subspace of \mathbb{P}^{2n+1} contained in \mathbb{Q} ?
 - (b) What is the dimension of the family of such planes?
- 6. (RA) Let H and L denote a pair of Banach spaces.
 - (a) Prove that a linear map from H to L is continuous if and only if it's bounded.
 - (b) Define what is meant by a compact linear map from H to L.
 - (c) Now let \mathbb{H} and \mathbb{L} be the Banach spaces obtained by completing the space $C_c^{\infty}([0,1])$ of compactly supported C^{∞} functions on [0,1] using the norms with squares

$$||f||_{\mathbb{H}}^2 = \int_{[0,1]} |\frac{df}{ds}|^2 s^2 ds$$
 and $||f||_{\mathbb{L}}^2 = \int_{[0,1]} |f|^2 ds$.

The identity map $C_c^{\infty}([0,1])$ extends to a bounded linear map $\phi: \mathbb{H} \to \mathbb{L}$ (you don't need to prove this). Prove that ϕ is not compact.