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. (A) Let k be a field and V be a k-vector space of dimension n. Let A €

Endy (V). Show that the following are equivalent:

(a) The minimal polynomial of A is the same as the characteristic polynomial
of A.

(b) There exists a vector v € V such that v, Av, A%, ..., A" v is a basis of
V.

. (T) Show that $* x S and S! v §1 v §2 have isomorphic homology groups in

all dimensions, but their universal covering spaces do not.

. (RA)

(a) Prove that any countable subset of the interval [0,1) C R is Lebesgue
measurable, and has Lebesgue measure 0.

(b) Let & C [0, 1] be the set of real numbers z that, when written as a decimal
z = 0.a1a2a3 . .., satisfy the rule ani2 € {@n,an4+1} for all n > 1. What
is the Lebesgue measure of $?

. (DG)Let BC ]Ri be the closed ball of radius 2 ﬁntered at the origin, with the

metric induced from the euclidean metric on R*." Give an example of a smooth
vector field v on B with the property that for any L there exists an integral
curve of v with both endpoints on the boundary 8B and length greater than
L.

. (AG) Let C c PP be a smooth, irreducible, non-degenerate curve of degree d.

(a) Show that d > 3.
(b) Show that every point p € P? lies on a secant or tangent line to C.

(¢) If d = 3, show that every point of P3\C lies on a unique secant or tangent
line to C.
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1. (T) Find all the connected 2-sheeted and 3-sheeted covering spaces of S v §!

up to isomorphism of covering spaces without basepoints. Indicate which
covering spaces are normal.

. (RA) Let g be a differentiable function on R that is non-negative and has

compact support.

(a) Prove that the Fourier transform § of g does not have compact support
unless g = 0.

(b) Prove that there exist constants A and c such that for all k € N the ktb
derivative of § is bounded by cA*.

. (DG) Let S%2 C R3 be the sphere of radius 1 centered at the origin, with

the metric induced from the euclidean metric on R3. Introduce spherical
coordinates (8,¢) € [0,7] x R/(2nZ) on the complement of the north and
south poles, where

(z,9,2) = (sinfcos P, sinfsin ¢, cosh).
The metric in these coordinates is given by the section
df ® db + sin® 0d¢ ® do

of the second symmetric power of the cotangent bundle 7*S?; it has constant
scalar curvature 1.

Now let u be a smooth function on S? depending only on the coordinate 9,
and consider the metric given by the section

e (d8 ® df + sin’ 8d¢ ® dg).

(a) Compute the scalar curvature of this new metric in terms of u and its
derivatives.

(b) Prove that the integral over 2 of the function you computed in Part (a)
is equal to 4.



4. (AG) Show that no two of the following rings are isomorphic:

Clz, y/(¥* — )

Clz,41/(y® - z%)
Cle, y)/(y* — %)
Clz,y)/(¥* — =*)
C[a:,y]/(y2 - zS)
Clz,y)/(y® — z%)

5. (CA) Let f : C — C be a nonconstant holomorphic function. Prove that f(C)
is dense in C.

IR o o

6. (A) Let a be a positive integer, and consider the polynomial
fa(z) = 2° + 30z* + 32% + 3az® + 1 € Q[z].

(a) Show that it is irreducible.
(b) Show that the Galois group of f, is solvable.
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1. (DG) Let ( - ) be the standard inner product on R3, and let
§% = {x = (z1,22,73) : (x-x) =1}

be the sphere of radius 1 centered at the origin; identify the tangent space
T,S? at a point x € §? with the subspace

TxS?={veR¥: (x-v) =0} Cc R},

where ( - ) is the standard inner product on R3. Let e € R3 be any fixed
vector, and let V be the vector field on S? given by

Vix)=e—(x-e)x.

(a) Compute the Lie derivative by V of the 1-form z;dz2.

(b) Define a Riemannian metric on S? by setting the inner product of tangent
vectors v,v' € Ty S? equal to (v - v') (that is, take the metric induced
on S§? by the euclidean metric on R3). Use the associated Levi-Civita
connection to define a covariant derivative on the space of 1-forms on S2.

(¢} Compute the covariant derivative of the 1-form z1dz; in the direction of
the vector field V.

2. (T) Let D? be the closed unit disk in R2. Prove the Brouwer fixed point
theorem for maps f : D? — D? by applying degree theory to the map S? — 52
that sends both the northern and southern hemispheres of $? to the southern
hemisphere via f.

3. (CA) Prove that for every A > 1, the equation ze*~% = 1 has exactly one root
in the unit disk D and that this root is real.

4. (A) Let K be an algebraically closed field of characteristic 0, and let f €
K|z] be any cubic polynomial. Show that exactly one of the following two
statements is true:

1. f=a(z— A3+ B(z — A)? for some , 8,1 € K; or
2. f=alz—A3+B(x—-p) forsome o, B#0€ K and A# p € K.

In the second case, show that A and u are unique up to order.



5. (AG) Let @ C P>"*! be a smooth quadric hypersurface in an odd-dimensional
projective space over C.

(a) What is the largest dimension of a linear subspace of P2**! contained in
Q7

(b) What is the dimension of the family of such planes?

6. (RA) Let H and L denote a pair of Banach spaces.

(a) Prove that a linear map from H to L is continuous if and only if it’s
bounded.

(b) Define what is meant by a compact linear map from H to L.

(c) Now let H and L be the Banach spaces obtained by completing the space
Cg°([0,1]) of compactly supported C* functions on [0, 1] using the norms
with squares

191 = [ 1L Psas and Wit = [ Ifias
[0,1] &8 (0]

The identity map C2°([0, 1]) extends to a bounded linear map ¢ : H — L
(you don’t need to prove this). Prove that ¢ is not compact.



