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1. Let (X,µ) be a measure space with µ(X) <∞. For q > 0, let Lq = Lq(X,µ)
denote the Banach space completion of the space of bounded functions on X
with the norm

||f ||q =

(∫
X
|f |qµ

) 1
q

.

Now suppose that 0 < p ≤ q. Prove that all functions in Lq are in Lp, and
that the inclusion map Lq ↪→ Lp is continuous.

Solution. By Hölder’s inequality

‖f‖pp =

(∫
X
|f |p · 1dµ

)
≤
(∫

X
(|f |p)

q
pdµ

) p
q
(∫

X
(1)

q
q−pdµ

)1− p
q

so
‖f‖pp ≤ ‖f‖pq · µ(X)

1− p
q

so
‖f‖p ≤ ‖f‖q · µ(X)

1
p
− 1
q .

Hence if f is in Lq, the left-hand side is finite hence so is the right-hand side,
so f is in Lp. Also, the inequality shows that if ‖f‖p is small then ‖f‖q is also
small, hence the inclusion Lq ↪→ Lp is continuous

2. Let X ⊂ Pn be an irreducible projective variety of dimension k, G(`, n) the
Grassmannian of `-planes in Pn for some ` < n− k, and C(X) ⊂ G(`, n) the
variety of `-planes meeting X. Prove that C(X) is irreducible, and find its
dimension.

Solution. We have the diagram

H // G(l, n)× Pn

V

OO

//

pr1
��

pr2

&&

G(l, n)×X

OO

C(X) X

Here H is the universal l-plane {(h, x) : x ∈ Pn, h ∈ G(l, n), x ∈ h}, and
V = H∩(G(l, n)×X) For x ∈ X, the fiber over x is Vx = {h ∈ G(l, n), x ∈ h}.



This can be identified with the subspace of the Grassmannian of (l + 1)-
dimensional subspaces in an (n + 1)- dimensional vector space containing a
fixed line, hence is isomorphic to the Grassmannian of l-dimensional subspaces
of an n-dimensional vector space. It is therefore irreducible of dimension
l(n− l) > 0. But pr2 : V � X is a surjective morphism with irreducible base
and irreducible fibers of constant dimension l(n − l), so V is also irreducible
and has dimension dim V= dim X + l(n− l)= k + l(n− l).
By definition, C(X) = pr1(X) ↪→ G(l, n), and hence is irreducible. If h ∈
C(X), the fiber of V over h is Vh = {(h, x) | x ∈ h ∩X} ' h ∩X. Because
k+ l < n, we can find an (n− k)-plane that meets X at finitely many points.
Then any l-plane h in this (n− k)-plane going through one of the intersection
point will meet X at finitely many points. Hence for such h, Vh will be a finite
set of points, so has dimension 0. By upper-semicontinuity of fiber dimension
for the proper morphism pr1, there is a dense open set where the fiber has
dimension 0, and hence dim C(X)= dim V= k + l(n− l).

3. Let λ be real number greater than 1. Show that the equation zeλ−z = 1 has
exactly one solution z with |z| < 1, and that this solution z is real. (Hint: use
Rouché’s theorem.)

Solution. On |z| = 1 w have

|z · eλ−z| = eλ−Re(z) ≥ eλ−1 > 1

because λ > 1. Hence by Rouché’s theorem 1 − zeλ−z has the same number
of zeroes counted with multiplicity as zeλ−z inside |z| = 1, hence has exactly
one zero. Observe if z is a zero of 1 − zeλ−z then so is z̄ because λ is real,
hence by uniqueness the unique zero must be real.

4. Let k be a finite field, with algebraic closure k.

(a) For each integer n ≥ 1, show that there is a unique subfield kn ⊂ k
containing k and having degree n over k.

(b) Show that kn is a Galois extension of k, with cyclic Galois group.

(c) Show that the norm map k×n → k× (sending a nonzero element of kn to
the product of its Galois conjugates) is a surjective homomorphism.

Solution. Let the cardinality of k be q, a prime power.

(a) If a subfield kn ⊂ k̄ is of degree n over k, it has cardinality qn. The
multiplicative group k×n is a finite subgroup of the multiplicative group
of a field, hence is cyclic. It has order qn − 1. Hence xq

n − x = 0 for
all x ∈ kn. On the other hand xq

n − x = 0 has precisely qn distinct
solution in k̄ (note d

dx(xq
n −x) = −1 has no common zero with xq

n −x),
hence this forces kn to be the set of zeroes of xq

n − x in k̄. Note that in
particular k is the set of zeroes of xq − x. This shows there is at most



one kn. To show it exists, we must check that the zeroes of xq
n − x form

a subfield of k̄. But observe that it is the set of fixed point of the map
x 7→ xq

n
defined on k̄, which is a field endomorphism, so the set of fixed

point is a subfield.

(b) We have [kn : k] = n by definition. Denote by F the map x 7→ xq in
k̄. The characteristic of k̄ divides q so this is an injective field endomor-
phism. The description of kn above shows that it is stable under F , and
F fixes k pointwise. Thus F is an automorphism of kn over k. For any
k < n, xq

k −x = has qk solution in k̄, so the solution set can not contain
all of kn. Hence F k 6= id on kn, but Fn = id on kn. This shows that
F generates a cyclic subgroup of Aut(kn/k). But the latter has size at
most n, hence equality occurs, so kn/k is Galois and has Galois group a
cyclic group of order n, generated by F .

(c) Explicitly the norm map k×n → k× is x 7→ x1+q+..+q
n−1

= x
qn−1
q−1 . Because

k̄ is algebraically closed, for any a ∈ k× there is x ∈ k̄× such that

x
qn−1
q−1 = a. But then for such x we have xq

n−1 = aq−1 = a because
a ∈ k. Thus xq

n
= x and x 6= 0, so x ∈ k×n .

5. Suppose ω is a closed 2-form on a manifold M . For every point p ∈M , let

Rp(ω) = {v ∈ TpM : ωp(v, u) = 0 for all u ∈ TpM}.

Suppose that the dimension of Rp is the same for all p. Show that the assign-
ment p 7→ Rp as p varies in M defines an integrable subbundle of the tangent
bundle TM .

Solution. We have the following identity for vector fields X, Y , Z:

dω(X,Y, Z) = −Xω(Y,Z) + Y ω(X,Z)− Zω(X,Y ) + ω([X,Y ], Z)+

+ω([Y,Z], X)− ω([X,Z], Y ) (∗)

To see this, observe that X acts derivations on C∞(M) and that [f ·X,Y ]g =
f · [X,Y ]g − Y f ·Xg for f, g ∈ C∞(M), hence [f ·X,Y ] = [X,Y ] − Y f ·X.
Hence

Y ω(f ·X,Z) + ω([f ·X,Y ], Z)) = f · Y ω(X,Z) + f · ω([X,Y ], Z)+

+Y f · ω(X,Z)− Y f · ω([X,Y ], Z) = f · (Y ω(X,Z) + ω([X,Y ], Z)).

This and similar identities for Y , Z shows that the right-hand side of (*) is
C∞(M) linear, as is the left-hand side. Also note that both sides have the
same variance under the action of S3 via permuting X, Y , Z, and are both
C-linear in ω. To check the identity is also a local question. This reduces us
to the case X, Y , Z are ∂/∂xi, ∂/∂xj , ∂/∂xk and ω = f · dx1 ∧ dx2 ∧ dx3
for some function f and local coordinates x1, ...xn, which quickly follows by



direct inspection (note in this case all the Lie brackets vanish).
We now show that the distribution defined by Rp ⊂ TpM is integrable (it is
a subbundle of TM since the dimension of the fibers are constant). Indeed
suppose X, Y are two vector fields belonging to it. Pick a point p ∈ M and
let Zp be an arbitrary vector in TpM . We can then find a global vector field
Z which agrees with Zp at p. Looking at the identity (*) at the point p, we
then have (noting dω = 0)

0 = dωp(Xp, Yp, Zp) = −(Xω(Y, Z))p + (Y ω(X,Z))p − (Zω(X,Y ))p+

+ωp([X,Y ]p, Zp) + ωp([Y,Z]p, Xp)− ωp([X,Z]p, Yp).

But ω(X,Z) = ω(Y,Z) = ω(X,Y ) = ω([X,Z], Y ) = ω([Y,Z], X) = 0 by
assumption on X, Y , hence ωp([X,Y ]p, Zp) = 0. Since p and Zp can be
chosen arbitrarily, it follows that [X,Y ] also belongs to the distribution

6. Let X be a topological space. We say that two covering spaces f : Y → X
and g : Z → X are isomorphic if there exists a homeomorphism h : Y → Z
such that g ◦ h = f . If X is a compact oriented surface of genus g (that is, a
g-holed torus), how many connected 2-sheeted covering spaces does X have,
up to isomorphism?

Solution. By covering space theory, there is a bijection between connected
2-sheeted coverings of X up to isomorphism and conjugacy classes of index
2 subgroups of π1(X). As any index 2 subgroup is normal, this set is in
bijection with the set of index 2 subgroups of π1(X), which is the same as
the set of surjective group homomorphisms from π1(X) to Z/2Z. Because
Z/2Z is commutative, all such homomorphisms factor through the abelization
π1(X)ab

Now for X the compact oriented surface of genus g, π1(X) has a presenta-
tion 〈a1, ...ag, b1, ...bg | [a1, b1][a2, b2]...[ag, bg] = 1〉, here the bracket [a, b] =
aba−1b−1 is the commutator. Hence its abelization is the free abelian group on
2g generators Z2g. Thus specifying a surjective homomorphism from π1(X)
to Z/2Z is the same thing as specifying where each generator goes to, such
that not all go to the identity. The number of such homomorphisms is thus
22g − 1.
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1. Let a be an arbitrary real number and b a positive real number. Evaluate the
integral ∫ ∞

0

cos(ax)

cosh(bx)
dx

(Recall that cosh(x) = cos(ix) = 1
2(ex + e−x) is the hyperbolic cosine.)

Solution. We will use the residue theorem for the rectangular contour bounded
by the real axis, the line =z = πi

b , and the lines <z = ±A, where A will be

large, and for the function f(z) = eiax

cosh(bx) . The integrals over the horizontal
edges of the contour are ∫ A

−A

eiax

cosh(bx)
dx

and ∫ A

−A

eiax−
πa
b

cosh(bx)
dx

Hence the contribution of the horizontal edges are

(1 + e−
πa
b )

∫ A

−A

eiax

cosh(bx)
dx

The contribution of the vertical sides are

±i
∫ π

b

0

eia(±A+iy)

cosh(b(±A+ iy))
dy

Now note | cosh(b(±A+ iy))| = |ebA±iy + e−bA∓iy| ≥ ebA − 1, hence each side
integral has norm bounded by C 1

ebA−1 for some constant C that does not
depend on A, and hence tends to 0 when A → ∞. Now the residue theorem
says that the sum of the integral over the sides are the sum of 2πi times the
residues of f(z) inside the contour. For any A, the function f(z) only has a
simple pole at z = π

2b . We have cosh(b(x+ π
2b)) = i(ebx−e−bx) = 2ibx+O(x3),

hence Resz= π
2b
f = e−

πa
2b

2ibx .

Thus letting A→∞ gives

(1 + e−
πa
b )

∫ +∞

−∞

eiax

cosh(bx)
dx = 2πi · Resz= π

2b
f =

πe−
πa
2b

bx



Taking real parts gives∫ +∞

0

cos(ax)

cosh(bx)
dx =

π

2bxcosh(πa2b )
.

2. For any irreducible plane curve C ⊂ P2 of degree d > 1, we define the Gauss
map g : C → P2∗ to be the rational map sending a smooth point p ∈ C to its
tangent line; we define the dual curve C∗ ⊂ P2∗ of C to be the image of g.

(a) Show that the dual of the dual of C is C itself.

(b) Show that two irreducible conic curves C,C ′ ⊂ P2 are tangent if and only
if their duals are.

Solution. The ground field is assumed to have characteristic 0, as the result
fails otherwise. We can assume the ground field is C.

(a) Let the plane curve C be given by F = 0, where F is an irreducible poly-
nomial of degree d in X, Y , Z. We will choose coordinates on P2 and its
dual in such a way that the dual pairing is given by X ·U +Y ·V +Z ·W .
Because d > 1, the dual curve C∗ is actually a plane curve, and hence
is given by G = 0 for some homogenous polynomial. The Gauss map is
given by [X : Y : Z] 7→ [ ∂

∂XF (X,Y, Z) : ∂
∂Y F (X,Y, Z) : ∂

∂ZF (X,Y, Z)].

It follows that G( ∂
∂XF,

∂
∂Y F,

∂
∂ZF ) = 0 on F = 0. Because F is irre-

ducible, there exists a polynomial H such that G( ∂
∂XF,

∂
∂Y F,

∂
∂ZF ) =

H · F .
Differentiating both sides with respect to X, Y , Z, we see that

 ∂2

∂X2F
∂2

∂X∂Y F
∂2

∂X∂ZF
∂2

∂X∂Y F
∂2

∂Y 2F
∂2

∂Y ∂ZF
∂2

∂X∂ZF
∂2

∂Z∂Y F
∂2

∂Z2F


 ∂

∂XG
∂
∂Y G
∂
∂ZG

 = H

 ∂
∂XF
∂
∂Y F
∂
∂ZF

+F

 ∂
∂XG
∂
∂Y G
∂
∂ZG

 (∗)

We claim that the determinant of the Hessian of F cannot vanish iden-
tically along F = 0. Suppose this were the case. This means that all
non-singular points of F = 0 are inflection points, that is points whose
tangent to C intersects C with multiplicity ≥ 3. Choose an affine chart of
P2 such that (0, 0) ∈ C is a non-singular point. We can then choose an an-
alytic parameterization of C near (0, 0) given by t 7→ γ(t) = (v(t), w(t)),
for t in a small disk. Then (v(t), w(t)) being an inflection point of C
implies γ̇(t) 6= 0 and γ̈(t) are proportional. Thus γ̇(t) ∧ γ̈(t) = 0. Differ-
entiating with respect to t gives γ̇(t) ∧ γ(3)(t) = 0, so that γ(3)(t) is also
proportional to γ̇(t). Continuing inductively gives γ̇(t) ∧ γ(n)(t) = 0 for
all n > 0. But now γ(t) = γ̇(0)t + 1

2! γ̈(0)t2 + ..., hence γ̇(0) ∧ γ(t) = 0.
But this means C has infinitely many intersections with a line, hence is
a line, contradiction. Thus the Hessian of F is invertible on a dense open



subset of C.
Now if we evaluate (*) at a non-singular non-inflection point in [x : y :
z] ∈ C, we see that [ ∂

∂XG : ∂
∂Y G : ∂

∂ZG] at that point is uniquely deter-
mined by ∂2

∂X2F
∂2

∂X∂Y F
∂2

∂X∂ZF
∂2

∂X∂Y F
∂2

∂Y 2F
∂2

∂Y ∂ZF
∂2

∂X∂ZF
∂2

∂Z∂Y F
∂2

∂Z2F


 ∂

∂XG
∂
∂Y G
∂
∂ZG

 = H(x, y, z)

 ∂
∂XF
∂
∂Y F
∂
∂ZF


But Euler’s formula says that X ∂

∂X + Y ∂
∂Y +Z ∂

∂Z is multiplication by d
on the space of homogenous polynomials of degree d, hence ∂2

∂X2F
∂2

∂X∂Y F
∂2

∂X∂ZF
∂2

∂X∂Y F
∂2

∂Y 2F
∂2

∂Y ∂ZF
∂2

∂X∂ZF
∂2

∂Z∂Y F
∂2

∂Z2F


 X

Y
Z

 = d(d− 1)

 ∂
∂XF
∂
∂Y F
∂
∂ZF


It thus follows that [x : y : z] = [ ∂

∂XG : ∂
∂Y G : ∂

∂ZG], hence the composi-
tion of Gauss maps C → C∗ → C∗∗ is generically the identity, hence C∗∗

is canonically identified with C.

(b) For an irreducible conic C the Gauss map is a linear isomorphism. Sup-
pose two such conics C, C

′
are tangent at a point p. Then the image of

p under the Gauss map of C, C
′

is a point q. By the previous part, we
know that q will get sent to p under both the Gauss map of C and C

′
.

But this means that C, C
′

are tangent at q.

3. Let Λ1 and Λ2 ⊂ R4 be complementary 2-planes, and let X = R4 \ (Λ1 ∪ Λ2)
be the complement of their union. Find the homology and cohomology groups
of X with integer coefficients.

Solution. Let
U = R4 \ Λ1 ' S1 × R2

V = R4 \ Λ2 ' S1 × R2

U ∩ V = R4 \ (Λ1 ∪ Λ2) = X

U ∪ V = R4 \ pt ' S3.

Then from the Mayer-Vietoris sequene we get

0→ H4(X)→ H4(U)⊕H4(V )→ H4(S
3)→ H3(X)→ H3(U)⊕H3(V )→ H3(S

3)→ H2(X)→ H2(U)⊕H2(V )

→ H2(S
3)→ H1(X)→ H1(U)⊕H1(V )→ H1(S

3)→ H0(X)→ ...

Since X is connected, H0(X) = Z. Plugging in the values of H∗(S
1) and

H∗(S
3) we get

0→ H4(X)→ 0



0→ H3(X)→ 0→ Z→ H2(X)→ 0

0→ H1(X)→ Z2 → 0.

Hence H2(X) = Z, H1(X) = Z2, H0(X) = Z and all other homology groups
vanish. Note that all homology groups are Z-free, hence the cohomology
groups are just their Z-duals. Thus H2(X) = Z, H1(X) = Z2, H0(X) = Z

4. Let X = {(x, y, z) : x2 + y2 = 1} ⊂ R3 be a cylinder. Show that the geodesics
on X are helices, that is, curves such that the angle between their tangent
lines and the vertical is constant.

Solution. We have a parameterization of the cylinder given by (θ, z) 7→
(cos θ, sin θ, z), with z ∈ R, θ ∈ [0.2π]. Thus T(θ,z) is spanned by (− sin θ, cos θ, 0)
and (0, 0, 1).

Suppose t 7→ (θ(t), z(t)) is a geodesic. Put γ(t) = (cos θ(t), sin θ(t), z(t)).
Being a geodesic means γ̈ is orthogonal to T(θ(t),z(t)) (the dot denotes differ-
entiation with respect to t). We have

γ̇ = (− sin θ · θ̇, cos θ · θ̇, ż)

γ̈ = (− cos θ · θ̇ − sin θ · θ̈,− sin θ · θ̇ + cos θ · θ̈, z̈)
Thus the geodesic equations say

sin θ cos θ · θ̇ + sin2 θ · θ̈ + cos2 θ · θ̈ − cos θ sin θ · θ̇ = 0

z̈ = 0

Hence θ̈ = 0, z̈ = 0, so θ(t) = at+ c, z = bt+ d for some constants a, b. But
this is precisely the equation of a helix (the tangent line is (−a sin θ, a cos θ, b),
which makes a constant angle with the vertical).

5. (a) Show that if every closed and bounded subspace of a Hilbert space E is
compact, then E is finite dimensional.

(b) Show that any decreasing sequence of nonempty, closed, convex, and
bounded subsets of a Hilbert space has a nonempty intersection.

(c) Show that any closed, convex, and bounded subset of a Hilbert space is
the intersection of the closed balls that contain it.

(d) Deduce that any closed, convex, and bounded subset of a Hilbert space
is compact in the weak topology.

Solution.

(a) Suppose every closed and bounded subset of E is compact. If E is infinite-
dimensional, we can choose an infinite sequence of orthonormal vectors
e1, e2,... Consider the set {e1, e2, ...} Because ‖ei − ej‖ =

√
2 for i 6= j,

this sequence does not contain any Cauchy subsequence. In particular
it is closed and clearly bounded, and cannot contain a convergent subse-
quence, hence is not compact.



(b) It follows from (d) that a closed, convex, bounded subset of E is weakly
compact. Since a decreasing sequence of closed, convex, bounded subset
has the finite intersection property, it follows from compactness that the
intersection of the family is non-empty. (The argument below makes no
use of (b)).

(c) Let C be a closed, convex, bounded subset of E. Suppose a /∈ C. Let
c0 ∈ C be the point in C closest to a (such a point exists because C is
closed), and let d = ‖a− c0‖ > 0.
We claim this point is unique: If c1 is another such point, then

2d2 = ‖a− c0‖2 + ‖a− c1‖2 = 2‖a− c0 + c1
2
‖2 + 2‖c0 − c1

2
‖ ≥ 2d2.

Thus equalities occur, and c0 = c1. Now let H be the hyperplane through
c0 orthogonal to the segment [a, c0]. For any c ∈ C, 0 ≤ t ≤ 1, we have
|a−(tc+(1−t)c0)‖2 ≥ ‖a−c0‖2 hence−2t(a−c0, c−c0)+t2(c−c0, c−c0) ≥
0. Letting t→ 0 gives (c0 − a, c0 − c) ≤ 0, hence H separates a and C.
Now let L be the hyperplane going through a+c0

2 and perpendicular to
a − c0. We choose a point u in the line through a and c0 such that
‖u − a+c0

2 ‖ = R, where R is to be determined. For any c ∈ C, let c′ be
the orthogonal projection of c onto L, put h = ‖c − c′|, t = ‖c′ − a+c0

2 ‖
We have ‖u− c‖2 −R2 = (R− h)2 + t2 −R2 = h2 − 2Rh+ t2. The last
expression is ≤ 0 iff R−

√
R2 − t2 ≤ h ≤ R+

√
R2 − t2. Now observe that

as C is bounded, t and h are bounded as c varies in C, and h ≥ d
2 . Hence

if we choose R sufficiently large we can ensure that ‖u − c‖2 − R2 ≤ 0.
Then the closed ball centered at u of radius R will contain C but not a.

(d) In view of (c), it suffices to prove that the closed unit ball B in E is
weakly compact. Consider the map B →

∏
v∈E [−‖v‖, ‖v‖] given by

b 7→ (b, v). The target is compact by Tychonoff’s theorem. The map
is clearly injective and the product topology on the target induces the
weak topology on B by definition. Thus it suffices to check that B is
closed. But this is clear because B is precisely the set of (xv)v such that
xλ·v+µ·w = λ ·v+µ ·w (the condition implies that v 7→ xv is a continuous
functional on E with norm ≤ 1, hence is of form v 7→ (b, v) for a unique
b ∈ B).

6. Let p be a prime, and let G be the group Z/p2Z⊕ Z/p2Z.

(a) How many subgroups of order p does G have?

(b) How many subgroups of order p2 does G have? How many of these are
cyclic?

Solution.



(a) A subgroup of order p of G is a one-dimensional Fp-subspace of the p-
torsion G[p] ' F2

p. There are p2− 1 non-zero vectors in G[p], and each of
them generate a one-dimensional Fp-subspace. Each such line contains
exactly p− 1 non-zero vectors, hence the number of order p subgroup is
p2−1
p−1 = p+ 1.

(b) Since G is abelian, any subgroup of order p2 of G must be isomorphic to
Z/p⊕Z/p or Z2. The first possibility happens precisely for the p-torsion
subgroup G[p], hence there is only one such subgroup.
To count the number of cyclic subgroups of G of order p2, we count the
number of elements not of order p (note G is killed by p2). G has precisely
p2 elements of order dividing p, hence p4− p2 elements of order p2. Each
such element generate a cyclic subgroup of order p2. Each such subgroup

contains p2−p elements of exact order p2. Hence G has p4−p2
p2−p = p(p+ 1)

cyclic subgroup of order p2.
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1. Consider the ring

A = Z[x]/(f) where f = x4 − x3 + x2 − 2x+ 4.

Find all prime ideals of A that contain the ideal (3).

Solution. Prime ideals of A that contains (3) are in bijection with prime
ideals of

A/3A ∼= F3[x]/(f) = F3[x]/(x− 1)(x+ 1)(x2 − x− 1).

Note x2 − x − 1 is irreducible in F3[x] because it has no zeroes in F3. Hence
A/3A has precisely 3 prime ideals, namely those generated by x − 1, x + 1
and x2− x− 1. Hence the primes of A containing (3) are (3, x− 1), (3, x+ 1)
and (3, x2 − x− 1).

2. Let f be a holomorphic function on a domain containing the closed disc {z :
|z| ≤ 3}, and suppose that

f(1) = f(i) = f(−1) = f(−i) = 0.

Show that

|f(0)| ≤ 1

80
max
|z|=3

|f(z)|

and find all such functions for which equality holds in this inequality.

Solution. The assumption on f implies f(z) = (z4 − 1)g(z) for an analytic
function g(z) with the same domain as f . We have |f(0)| = |g(0)|. By the
maximum modulus principle, |g(0)| ≤ max|z|=3 |g(z)|. On |z| = 3, |f(z)| =

|(z4 − 1)g(z)| ≥ (34 − 1)|g(z)|. Hence |f(0)| ≤ 1
80 max|z|=3 |f(z)|. For equality

to appear, we must have |g(0)| = max|z|=3 |g(z)|, hence g is constant. But then
f(z) = c(z4− 1) does not make the equality hold, because max|z|=3 |z4− 1| =
82.

3. Let f : R→ R+ be a differentiable, positive real function. Find the Gaussian
curvature and mean curvature of the surface of revolution

S = {(x, y, z) : y2 + z2 = f(x)}.



Solution. The surface S has a parameterization (x, θ) 7→ Φ(x, θ) = (x,
√
f(x) cos θ,

√
f(x) sin θ)

for x ∈ R, θ ∈ [0, 2π). Hence (the lower index signifies the variable with re-
spect to which we differentiate)

Φx = (1,
f ′

2
√
f

cos θ,
f ′

2
√
f

sin θ)

Φθ = (0,−
√
f sin θ,

√
f cos θ)

Φx ∧ Φθ = (
f ′

2
,−
√
f cos θ,−

√
f sin θ)

|Φx ∧ Φθ| =
√
f +

f ′2

4

Φxx = (0,
2ff ′′ − f ′2

4f
√
f

cos θ,
2ff ′′ − f ′2

4f
√
f

sin θ)

Φxθ = (0,− f ′

2
√
f

sin θ,
f ′

2
√
f

cos θ)

Φθθ = (0,−
√
f cos θ,−

√
f sin θ)

The second fundamental form is Ldx2 + 2Mdxdθ +Ndθ2, where

L =
Φx ∧ Φθ

|Φx ∧ Φθ|
· Φxx = − 2ff ′′ − f ′2

4f
√
f + f ′2

4

M =
Φx ∧ Φθ

|Φx ∧ Φθ|
· Φxθ = 0

N =
Φx ∧ Φθ

|Φx ∧ Φθ|
· Φθθ =

f√
f + f ′2

4

The Gaussian curvature is

K = L ·N −M2 = −2ff ′′ − f ′2

4f + f ′2

The mean curvature is

H = L+N =
4f2 − 2ff ′′ + f ′2

4f
√
f + f ′2

4

4. Show that for any given natural number n, there exists a finite Borel measure
on the interval [0, 1] ⊂ R such that for any real polynomial of degree at most
n, we have ∫ 1

0
p dµ = p′(0).



Show, on the other hand, that there does not exist a finite Borel measure on
the interval [0, 1] ⊂ R such that for any real polynomial we have∫ 1

0
p dµ = p′(0).

Solution. Note that Pk(x) = (k + 1)xk with k ≤ n form basis for the space
of polynomials of degree at most n. We will construct the desired measure µ
as follows: on [ i

n+1 ,
i+1
n+1 ] µ will be xi times the Lebesgue measure. We show

that there is a choice of xi so that µ has the desired property. We want to
have ∫ 1

0
Pkdµ =

n∑
i=0

((
i+ 1

n+ 1
)k+1 − (

i

n+ 1
)k+1)xi = P ′k(0).

This is a system of n + 1 linearly independent linear equation in n + 1 vari-
ables, hence has a solution. (To see the linear independence, note the matrix
( i+1
n+1)k+1− ( i

n+1)k+1)i,k has the same determinant as a Van der Monde deter-
minant, as can be seen by adding the first column to the second column, then
add the second column to the third column and so on).

Now suppose µ is a finite Borel measure on [0, 1] such that∫ 1

0
pdµ = p′(0)

for all real polynomials p. Let f(x) be the characteristic function of the set
{0}, and put qn(x) = (1− x)n. Then

|
∫ 1

0
(f − qn)dµ| ≤ µ([0.1])

so

n = q′n(0) =

∫ 1

0
qndµ ≤

∫ 1

0
fdµ+ µ([0, 1])

for all n, a contradiction.

5. Let X = RP2 × RP4.

(a) Find the homology groups H∗(X,Z/2)

(b) Find the homology groups H∗(X,Z)

(c) Find the cohomology groups H∗(X,Z)

Solution. The Künneth formula says (for coefficient ring R)

Hn(X×Y,R) = ⊕i+j=nHi(X,R)⊗Hj(Y,R)⊕i+j=n−1TorR(Hi(X,R), Hj(Y,R)).

In particular for a field

Hn(X × Y,R) = ⊕i+j=nHi(X,R)⊗Hj(Y,R)



We have (the groups not shown are 0)

0 1 2 3 4

H∗(RP2,Z/2) Z/2 Z/2 Z/2 0 0

H∗(RP4,Z/2) Z/2 Z/2 Z/2 Z/2 Z/2

H∗(RP2,Z) Z Z/2 0 0 0

H∗(RP4,Z) Z Z/2 0 Z/2 0

So by the Künneth formula:

(a)

0 1 2 3 4 5 6

H∗(X,Z/2) Z/2 (Z/2)2 (Z/2)3 (Z/2)3 (Z/2)3 (Z/2)2 Z/2

(b)
0 1 2 3 4 5

H∗(X,Z) Z (Z/2)2 (Z/2) (Z/2)2 Z/2 Z/2

(c) By the universal coefficient theorem (for an abelian group G)

Hn(X,G) = Hom(Hn(X,Z), G)⊕ Ext1(Hn−1(X,Z), G)

hence by the previous part

0 1 2 3 4 5 6

H∗(X,Z) Z 0 (Z/2)2 Z/2 (Z/2)2 Z/2 Z/2

6. By a twisted cubic curve we mean the image of the map P1 → P3 given by

[X,Y ] 7→
[
F0(X,Y ), F1(X,Y ), F2(X,Y ), F3(X,Y )

]
where F0, . . . , F3 form a basis for the space of homogeneous cubic polynomials
in X and Y .



(a) Show that if C ⊂ P3 is a twisted cubic curve, then there is a 3-dimensional
vector space of homogeneous quadratic polynomials on P3 vanishing on
C.

(b) Show that C is the common zero locus of the homogeneous quadratic
polynomials vanishing on it.

(c) Suppose now that Q,Q′ ⊂ P3 are two distinct quadric surfaces containing
C. Describe the intersection Q ∩Q′.

Solution.

(a) Up to a projective automorphism, the twisted cubic is isomorphic to
the parametric curve [X : Y ] 7→ [X3 : X2Y : XY 2 : Y 3]. Given a
homogenous quadratic polynomial Q, Q will vanish on this curve iff
Q(X3, X2Y,XY 2, Y 3) is the zero polynomial. This happens iff each
coefficient of this degree 6 homogenous polynomial vanish. This gives
7 linear condition on the 10 coefficients of Q, which are linearly inde-
pendent because each equation involve a distinct set of coefficients. It
follows that the space of homogenous quadratic polynomial vanishing on
a twisted cubic has dimension 10− 7 = 3.

(b) As above, we assume the twisted cubic is given by [X : Y ] 7→ [X3 :
X2Y : XY 2 : Y 3]. In this case we see that it lies in the 3 quadrics
AD − BC = 0, B2 − AC = 0 and C2 − BD = 0 (here [A : B : C : D]
are homogenous coordinates for P3). We claim that the intersection of
these three quadrics is the twisted cubic. Indeed assume [A : B : C : D]
lies in the intersection. Without loss of generality we assume A 6= 0, and
put A = X3 for X 6= 0. Put Y = B/X2. Then C = B2/A = XY 2 and
D = BC/A = Y 3, so [A : B : C : D] lies in the twisted cubic.

(c) From the definition, the twisted cubic C does not lie in any hyperplane.
Hence it cannot lie in any reducible quadric, so all quadrics that contain
it are irreducible. For quadrics Q, Q′ containing C, their intersection will
have all component of dimension 1. The intersection has total multiplic-
ity 4 by Bézout’s theorem. The twisted cubic part contributes a multiple
of 3. So the intersection contains another component with multiplicity 1
and is a curve of degree 1, i.e. a line. Hence Q ∩ Q′ is the union of the
twisted cubic and a line (all with multiplicity 1) .


