QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Tuesday January 27, 2009 (Day 1)

1. Let $\mathbb{P}^{n^{2}-1}$ be the space of nonzero $n \times n$ matrices mod scalars, and consider the subset

$$
\Sigma=\{(A, B): A B=0\} \subset \mathbb{P}^{n^{2}-1} \times \mathbb{P}^{n^{2}-1}
$$

(a) Prove that Σ is a Zariski closed subset of $\mathbb{P}^{n^{2}-1} \times \mathbb{P}^{n^{2}-1}$.
(b) Is Σ irreducible?
(c) What is the dimension of Σ ?
2. Consider the integral

$$
\int_{0}^{\infty} \sin x \cdot x^{a-1} d x
$$

(a) For which real values of a does the integral converge absolutely? For which does it converge conditionally?
(b) Evaluate the integral for those values of a for which it does converge.
3. (a) Let p be a prime number. Show that a group G of order $p^{n}(n>1)$ has a nontrivial normal subgroup, that is, G is not a simple group.
(b) Let p and q be primes, $p>q$. Show that a group G of order $p q$ has a normal Sylow p-subgroup. If G has also a normal Sylow q-subgroup, show that G is cyclic.
(c) Give a necessary and sufficient condition on p and q for the existence of a non-abelian group of order $p q$. Justify your answer.
4. Let $X=S^{1} \vee S^{1}$ be a figure 8 .
(a) Exhibit two three-sheeted covering spaces $f: Y \rightarrow X$ and $g: Z \rightarrow X$ such that Y and Z are not homeomorphic.
(b) Exhibit two three-sheeted covering spaces $f: Y \rightarrow X$ and $g: Z \rightarrow X$ such that Y and Z are homeomorphic, but not as covering spaces of X (i.e., there is no homeomorphism $\phi: Y \rightarrow Z$ such that $g \circ \phi=f$).
(c) Exhibit a normal (that is, Galois) three-sheeted covering space of X.
(d) Exhibit a non-normal three-sheeted covering space of X.
(e) Which of the above would still be possible if we were considering twosheeted covering spaces instead of three-sheeted?.
5. Suppose T is a bounded operator in a Hilbert space V and there exist a basis $\left\{e_{k}\right\}$ for V such that $T e_{k}=\lambda_{k} e_{k}$. Prove that T is compact if $\lambda_{k} \rightarrow 0$ as $k \rightarrow \infty$.
6. Let $\Sigma \subset \mathbb{R}^{3}$ be a smooth 2-dimensional submanifold, and $n: \Sigma \rightarrow \mathbb{R}^{3}$ a smooth map such that $n(p)$ is a unit length normal to Σ at p. Identify the tangent bundle $T \Sigma$ as the subspace of pairs $(p, v) \in \Sigma \times \mathbb{R}^{3}$ such that $v \cdot n(p)=0$, where - designates the Euclidean inner product. Suppose now that $t \rightarrow p(t)$ is a smoothly parametrized curve in \mathbb{R}^{3} that lies on Σ. Prove that this curve is a geodesic if and only if

$$
p^{\prime \prime}(t) \cdot\left(n(p(t)) \times p^{\prime}(t)\right)=0 \quad \forall t
$$

Here, p^{\prime} is the derivative of the map $t \rightarrow p(t)$ and $p^{\prime \prime}$ is the second derivative.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Wednesday January 28, 2009 (Day 2)

1. Let $C \subset \mathbb{P}^{n}$ be a smooth algebraic curve.
(a) Let $\Lambda \subset \mathbb{P}^{n}$ be a general $(n-4)$-plane. Show that the projection map $\pi_{\Lambda}: C \rightarrow \mathbb{P}^{3}$ is an embedding.
(b) Now let $\Lambda \subset \mathbb{P}^{n}$ be a general $(n-3)$-plane. Show that the projection map $\pi_{\Lambda}: C \rightarrow \mathbb{P}^{2}$ is birational onto its image, and that the image curve has only nodes (ordinary double points) as singularities.
2. Show that the function defined by

$$
f(z)=\sum_{n=0}^{\infty} z^{z^{n}}
$$

is analytic in the open disc $|z|<1$, but has no analytic continuation to any larger domain.
3. (a) Let K be the splitting field of the polynomial $f(x)=x^{3}-2$ over \mathbb{Q}. Find the Galois group G of K / \mathbb{Q} and describe its action on the roots of f.
(b) Let K be the splitting field of the polynomial $X^{4}+a X^{2}+b$ (where a, $b \in \mathbb{Q}$) over the rationals. Assuming that the polynomial is irreducible, prove that the Galois group G of the extension K / \mathbb{Q} is either C_{4}, or $C_{2} \times C_{2}$, or the dihedral group D_{8}.
4. Let $\left\{f_{n}\right\}$ be a sequence of functions on the interval $X=(0,1) \subset \mathbb{R}$, and suppose $f_{n} \rightarrow f$ in $L_{p}(X)$ for all $p: 1 \leq p<\infty$. Does it imply that $f_{n} \rightarrow f$ almost everywhere? Does it imply that there is a subsequence of f_{n} converging to f almost everywhere? Prove your answer or give a counterexample.
5. View $S^{2 n+1}$ as the unit sphere in \mathbb{C}^{n+1}, and in particular S^{1} as the unit circle in \mathbb{C}. Define an action of S^{1} on $S^{2 n+1}$ by

$$
\lambda:\left(z_{1}, \ldots, z_{n+1} \mapsto\left(\lambda z_{1}, \ldots, \lambda z_{n+1}\right)\right.
$$

The quotient is the space $\mathbb{C P}^{n}$. View the projection map $\pi: S^{2 n+1} \rightarrow \mathbb{C} \mathbb{P}^{n}$ as a principal S^{1}-bundle.
(a) Explain why the restriction to $S^{2 n+1}$ of the 1-form

$$
A=\frac{1}{2} \sum_{1 \leq k \leq n=1}\left(\bar{z}_{k} d z_{k}-z_{k} d \bar{z}_{k}\right)
$$

defines a connection on this bundle.
(b) What is the pullback to $S^{2 n+1}$ of the curvature 2-form of this connection?
6. Let $X=S^{2} \times \mathbb{R}^{3}$ and $Y=S^{3} \times \mathbb{R}^{2}{ }^{2}$
(a) Find the homology groups $H_{n}(X, \mathbb{Z})$ and $H_{n}(Y, \mathbb{Z})$ for all n.
(b) Find the homology groups $H_{n}(X, \mathbb{Z} / 2)$ and $H_{n}(Y, \mathbb{Z} / 2)$ for all n.
(c) Find the homotopy groups $\pi_{1}(X)$ and $\pi_{1}(Y)$.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Thursday January 29, 2009 (Day 3)

1. Let $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ be an algebraic curve of bidegree (a, b) (that is, the zero locus of a bihomogeneous polynomial of bidegree $(a, b))$, and let $C^{\prime} \subset \mathbb{P}^{3}$ be the image of C under the Segre embedding $\sigma: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$.
(a) What is the degree of C^{\prime} ?
(b) Assume now that $\max (a, b) \geq 3$. Show that C^{\prime} lies on one and only one quadric surface $Q \subset \mathbb{P}^{3}$ (namely, the quadric surface $\sigma\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$).
2. Find the Laurent expansion

$$
f(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}
$$

around 0 of the function

$$
f(z)=\frac{1}{z^{2}+z+1}
$$

(a) valid in the open unit disc $\{z:|z|<1\}$, and
(b) valid in the complement $\{z:|z|>1\}$ of the closed unit disc in \mathbb{C}.
3. Let A be a commutative ring. Show that an element $a \in A$ belongs to the intersection of all prime ideals in A if and only if it's nilpotent.
4. Let f be a given real-valued function on $X=(0,1) \subset \mathbb{R}$, and define a function $\phi:[1, \infty) \rightarrow \mathbb{R}$ by

$$
\phi(p)=\|f\|_{L^{p}(X)}^{p}
$$

Prove that ϕ is convex.
5. Let $X \subset \mathbb{R}^{2}$ be a connected one-dimensional real analytic submanifold, not contained in a line. Prove that not every tangent line to X is bitangent-that is, it is not the case that for all $p \in X$ there exists $q \neq p \in X$ such that the tangent line to X at p equals the tangent line to X at q as lines in \mathbb{R}^{2}.
6. Let X and Y be two CW complexes.
(a) Show that $\chi(X \times Y)=\chi(X) \chi(Y)$.
(b) Let A and B be two subcomplexes of X such that $X=A \cup B$. Show that $\chi(X)=\chi(A)+\chi(B)-\chi(A \cap B)$.

