QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday January 27, 2009 (Day 1)

1. Let \mathbb{P}^{n^2-1} be the space of nonzero $n \times n$ matrices mod scalars, and consider the subset

$$\Sigma = \{ (A,B) : AB = 0 \} \subset \mathbb{P}^{n^2 - 1} \times \mathbb{P}^{n^2 - 1}.$$

- (a) Prove that Σ is a Zariski closed subset of $\mathbb{P}^{n^2-1} \times \mathbb{P}^{n^2-1}$.
- (b) Is Σ irreducible?
- (c) What is the dimension of Σ ?
- 2. Consider the integral

$$\int_0^\infty \sin x \cdot x^{a-1} dx.$$

- (a) For which real values of *a* does the integral converge absolutely? For which does it converge conditionally?
- (b) Evaluate the integral for those values of a for which it does converge.
- **3.** (a) Let p be a prime number. Show that a group G of order p^n (n > 1) has a nontrivial normal subgroup, that is, G is not a simple group.
 - (b) Let p and q be primes, p > q. Show that a group G of order pq has a normal Sylow p-subgroup. If G has also a normal Sylow q-subgroup, show that G is cyclic.
 - (c) Give a necessary and sufficient condition on p and q for the existence of a non-abelian group of order pq. Justify your answer.
- 4. Let $X = S^1 \vee S^1$ be a figure 8.
 - (a) Exhibit two three-sheeted covering spaces $f: Y \to X$ and $g: Z \to X$ such that Y and Z are not homeomorphic.
 - (b) Exhibit two three-sheeted covering spaces $f: Y \to X$ and $g: Z \to X$ such that Y and Z are homeomorphic, but not as covering spaces of X (i.e., there is no homeomorphism $\phi: Y \to Z$ such that $g \circ \phi = f$).
 - (c) Exhibit a normal (that is, Galois) three-sheeted covering space of X.
 - (d) Exhibit a non-normal three-sheeted covering space of X.
 - (e) Which of the above would still be possible if we were considering twosheeted covering spaces instead of three-sheeted?.

- 5. Suppose T is a bounded operator in a Hilbert space V and there exist a basis $\{e_k\}$ for V such that $Te_k = \lambda_k e_k$. Prove that T is compact if $\lambda_k \to 0$ as $k \to \infty$.
- 6. Let $\Sigma \subset \mathbb{R}^3$ be a smooth 2-dimensional submanifold, and $n : \Sigma \to \mathbb{R}^3$ a smooth map such that n(p) is a unit length normal to Σ at p. Identify the tangent bundle $T\Sigma$ as the subspace of pairs $(p, v) \in \Sigma \times \mathbb{R}^3$ such that $v \cdot n(p) = 0$, where \cdot designates the Euclidean inner product. Suppose now that $t \to p(t)$ is a smoothly parametrized curve in \mathbb{R}^3 that lies on Σ . Prove that this curve is a geodesic if and only if

$$p''(t) \cdot (n(p(t)) \times p'(t)) = 0 \quad \forall t$$

Here, p' is the derivative of the map $t \to p(t)$ and p'' is the second derivative.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Wednesday January 28, 2009 (Day 2)

- 1. Let $C \subset \mathbb{P}^n$ be a smooth algebraic curve.
 - (a) Let $\Lambda \subset \mathbb{P}^n$ be a general (n-4)-plane. Show that the projection map $\pi_{\Lambda}: C \to \mathbb{P}^3$ is an embedding.
 - (b) Now let $\Lambda \subset \mathbb{P}^n$ be a general (n-3)-plane. Show that the projection map $\pi_{\Lambda} : C \to \mathbb{P}^2$ is birational onto its image, and that the image curve has only nodes (ordinary double points) as singularities.
- 2. Show that the function defined by

$$f(z) = \sum_{n=0}^{\infty} z^{2^n}$$

is analytic in the open disc |z| < 1, but has no analytic continuation to any larger domain.

- **3.** (a) Let K be the splitting field of the polynomial $f(x) = x^3 2$ over \mathbb{Q} . Find the Galois group G of K/\mathbb{Q} and describe its action on the roots of f.
 - (b) Let K be the splitting field of the polynomial $X^4 + aX^2 + b$ (where $a, b \in \mathbb{Q}$) over the rationals. Assuming that the polynomial is irreducible, prove that the Galois group G of the extension K/\mathbb{Q} is either C_4 , or $C_2 \times C_2$, or the dihedral group D_8 .
- **4.** Let $\{f_n\}$ be a sequence of functions on the interval $X = (0,1) \subset \mathbb{R}$, and suppose $f_n \to f$ in $L_p(X)$ for all $p: 1 \leq p < \infty$. Does it imply that $f_n \to f$ almost everywhere? Does it imply that there is a subsequence of f_n converging to f almost everywhere? Prove your answer or give a counterexample.
- 5. View S^{2n+1} as the unit sphere in \mathbb{C}^{n+1} , and in particular S^1 as the unit circle in \mathbb{C} . Define an action of S^1 on S^{2n+1} by

$$\lambda: (z_1,\ldots,z_{n+1}\mapsto (\lambda z_1,\ldots,\lambda z_{n+1}))$$

The quotient is the space \mathbb{CP}^n . View the projection map $\pi: S^{2n+1} \to \mathbb{CP}^n$ as a principal S^1 -bundle.

(a) Explain why the restriction to S^{2n+1} of the 1-form

$$A = \frac{1}{2} \sum_{1 \le k \le n=1} (\overline{z}_k dz_k - z_k d\overline{z}_k)$$

defines a connection on this bundle.

(b) What is the pullback to S^{2n+1} of the curvature 2-form of this connection? 6. Let $X = S^2 \times \mathbb{RP}^3$ and $Y = S^3 \times \mathbb{RP}^2$

- (a) Find the homology groups $H_n(X,\mathbb{Z})$ and $H_n(Y,\mathbb{Z})$ for all n.
- (b) Find the homology groups $H_n(X, \mathbb{Z}/2)$ and $H_n(Y, \mathbb{Z}/2)$ for all n.
- (c) Find the homotopy groups $\pi_1(X)$ and $\pi_1(Y)$.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Thursday January 29, 2009 (Day 3)

- **1.** Let $C \subset \mathbb{P}^1 \times \mathbb{P}^1$ be an algebraic curve of bidegree (a, b) (that is, the zero locus of a bihomogeneous polynomial of bidegree (a, b)), and let $C' \subset \mathbb{P}^3$ be the image of C under the Segre embedding $\sigma : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$.
 - (a) What is the degree of C'?
 - (b) Assume now that $\max(a, b) \geq 3$. Show that C' lies on one and only one quadric surface $Q \subset \mathbb{P}^3$ (namely, the quadric surface $\sigma(\mathbb{P}^1 \times \mathbb{P}^1)$).
- 2. Find the Laurent expansion

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$

around 0 of the function

$$f(z) = \frac{1}{z^2 + z + 1}$$

- (a) valid in the open unit disc $\{z : |z| < 1\}$, and
- (b) valid in the complement $\{z : |z| > 1\}$ of the closed unit disc in \mathbb{C} .
- **3.** Let A be a commutative ring. Show that an element $a \in A$ belongs to the intersection of all prime ideals in A if and only if it's nilpotent.
- **4.** Let f be a given real-valued function on $X = (0, 1) \subset \mathbb{R}$, and define a function $\phi : [1, \infty) \to \mathbb{R}$ by

$$\phi(p) = \|f\|_{L^p(X)}^p.$$

Prove that ϕ is convex.

- 5. Let $X \subset \mathbb{R}^2$ be a connected one-dimensional real analytic submanifold, not contained in a line. Prove that not every tangent line to X is bitangent—that is, it is not the case that for all $p \in X$ there exists $q \neq p \in X$ such that the tangent line to X at p equals the tangent line to X at q as lines in \mathbb{R}^2 .
- **6.** Let X and Y be two CW complexes.
 - (a) Show that $\chi(X \times Y) = \chi(X)\chi(Y)$.
 - (b) Let A and B be two subcomplexes of X such that $X = A \cup B$. Show that $\chi(X) = \chi(A) + \chi(B) \chi(A \cap B)$.