QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday January 29 2008 (Day 1)

1. Let $K = \mathbb{C}(x)$ be the field of rational functions in one variable over \mathbb{C} , and consider the polynomial

$$f(y) = y^4 + x \cdot y^2 + x \in K[y].$$

- (a) Show that f is irreducible in K[y].
- (b) Let L = K[y]/(f). Is L a Galois extension of K?
- (c) Let L' be the splitting field of f over K. Find the Galois group of L'/K
- **2.** Let f be a holomorphic function on the unit disc $\Delta = \{z : |z| < 1\}$. Suppose |f(z)| < 1 for all $z \in \Delta$, and that

$$f(\frac{1}{2}) = f(-\frac{1}{2}) = 0.$$

Show that $|f(0)| \leq \frac{1}{3}$.

- **3.** Let \mathbb{CP}^n be complex projective *n*-space.
 - (a) Describe the cohomology ring $H^*(\mathbb{CP}^n, \mathbb{Z})$.
 - (b) Let $i : \mathbb{CP}^n \to \mathbb{CP}^{n+1}$ be the inclusion of \mathbb{CP}^n as a hyperplane in \mathbb{CP}^{n+1} . Show that there does not exist a map $f : \mathbb{CP}^{n+1} \to \mathbb{CP}^n$ such that the composition $f \circ i$ is the identity on \mathbb{CP}^n .
- **4.** Let f be the function on \mathbb{R} defined by

$$f(t) = t, \quad -\pi < t \le \pi$$

and

$$f(t+2\pi) = f(t) \quad \forall t.$$

Find the Fourier expansion of f.

- **5.** Let X, Y, Z and W be homogeneous coordinates on projective space \mathbb{P}^3 over a field K, and $Q \subset \mathbb{P}^3$ be the surface defined by the equation XY ZW = 0.
 - (a) Show that Q is smooth and irreducible.
 - (b) Show that Q is birational to \mathbb{P}^2 , that is, the function field of Q is isomorphic to K(s,t).

- (c) Show that Q is *not* isomorphic to \mathbb{P}^2 .
- **6.** (a) Define the *curvature* and *torsion* of a differentiable arc in \mathbb{R}^3 .
 - (b) Let $\Delta \subset \mathbb{R}^3$ be an arc given parametrically by the \mathcal{C}^{∞} vector-valued function $t \mapsto v(t) \in \mathbb{R}^3$ for t in the interval $I = (-1, 1) \subset \mathbb{R}$. Under what conditions is the map

$$\phi: (-\epsilon, \epsilon) \times (0, \eta) \to \mathbb{R}^3$$

given by

$$\phi(t,s) \mapsto v(t) + s \cdot v'(t)$$

an immersion for some positive ϵ and η ?

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday January 30 2008 (Day 2)

- **1.** Let $X \subset \mathbb{R}^3$ be the cone $x^2 = y^2 + z^2$, and let Y be the torus $(\sqrt{x^2 + y^2} 2)^2 + z^2 = 1$, that is, the torus obtained by rotating the circle $(x-2)^2 + z^2 1 = y = 0$ around the z-axis.
 - (a) Show that for any point $p \in X$ other than the vertex (0,0,0), there is a neighborhood of p in X isometric to an open subset of the Euclidean plane \mathbb{R}^2 .
 - (b) Show that no open subset of Y is isometric to any open subset of the Euclidean plane.
- **2.** Let V be an n-dimensional vector space over a field K, and $Q: V \times V \to K$ a symmetric bilinear form. By the *kernel* of Q we mean the subspace of V of vectors v such that Q(v, w) = 0 for all $w \in V$, and by the *rank* of Q we mean n minus the dimension of the kernel of Q.

Let $W \subset V$ be a subspace of dimension n - k, and let Q' be the restriction of Q to W. Show that

$$\operatorname{rank}(Q) - 2k \leq \operatorname{rank}(Q') \leq \operatorname{rank}(Q).$$

3. Find the solution of the differential equation

$$y''' - y'' - y' + y = 0$$

satisfying the conditions

$$y(0) = y'(0) = 0$$
 and $y''(0) = 1$.

- 4. Let S be a compact orientable 2-manifold of genus g, and let S_2 be its symmetric square, that is, the quotient of the ordinary product $S \times S$ by the involution exchanging factors.
 - (a) Show that S_2 is a manifold.
 - (b) Find the Euler characteristic $\chi(S_2)$.
 - (c) Find the Betti numbers of S_2 .
- 5. Prove the identity

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$$

for all $z \in \mathbb{C} \setminus \mathbb{Z}$

- 6. Let $\mathbb{P} \cong \mathbb{P}^n$ be the space of nonzero homogeneous polynomials of degree n in two variables, mod scalars, and let $\Delta \subset \mathbb{P}$ be the locus of polynomials with a repeated factor.
 - (a) Show that Δ is an irreducible subvariety of \mathbb{P} .
 - (b) Show that $\dim \Delta = n 1$.
 - (c) What is the degree of Δ ?

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday January 31 2008 (Day 3)

1. For c a nonzero real number, evaluate the integral

$$\int_0^\infty \frac{\log z}{z^2 + c^2} \, dz$$

- **2.** Let $\mathbb{G}(1,4)$ be the Grassmannian parametrizing lines in \mathbb{P}^4 , and let $Q \subset \mathbb{P}^4$ be a smooth quadric hypersurface. Let $F \subset \mathbb{G}(1,4)$ be the set of lines contained in Q.
 - (a) Show that F is an algebraic subvariety of $\mathbb{G}(1,4)$.
 - (b) Show that F is irreducible.
 - (c) What is the dimension of F?
- **3.** Let S be a compact orientable 2-manifold of genus 2 (that is, a 2-holed torus), and let $f : S \to S$ be any orientation-preserving homeomorphism of finite order.
 - (a) Show that f must have a fixed point.
 - (b) Is this statement still true if we drop the hypothesis that f is orientationpreserving? Prove or give a counterexample.
 - (c) Is this statement still true if we replace S by a compact orientable 2manifold of genus 3? Again, prove or give a counterexample
- 4. (a) State Fermat's Little Theorem on powers in the field \mathbb{F}_{37} with 37 elements.
 - (b) Let k be any natural number not divisible by 2 or 3, and let $a \in \mathbb{F}_{37}$ be any element. Show that there exists a unique solution to the equation

$$x^k = a$$

in \mathbb{F}_{37} .

(c) Solve the equation

$$x^5 = 2$$

in \mathbb{F}_{37} .

- **5.** Let X be a Banach space.
 - (a) Define the *weak topology* on X by describing a basis for the topology.

- (b) Let $A : X \to Y$ be a linear operator between Banach spaces that is continuous from the weak topology on X to the norm topology on Y. Show that the image $A(X) \subset Y$ is finite-dimensional.
- 6. Let $V \cong \mathbb{C}^2$ be the standard representation of $SL_2(\mathbb{C})$.
 - (a) Show that the n^{th} symmetric power $V_n = \text{Sym}^n V$ is irreducible.
 - (b) Which V_n appear in the decomposition of the tensor product $V_2 \otimes V_3$ into irreducible representations?