Qualifying exam, Spring 2006, Day 1

(1) Let $\phi : A \to B$ be a homomorphism of commutative rings, and let $\mathfrak{p}_B \subset B$ be a maximal ideal. Set $A \supset \mathfrak{p}_A := \phi^{-1}(\mathfrak{p}_B)$.

(a) Show that \mathfrak{p}_A is prime but in general non maximal.

(b) Assume that A, B are finitely generated algebras over a field k and ϕ is a morphism of k-algebras. Show that in this case \mathfrak{p}_A is maximal.

(2) Let V be a 4-dimensional vector space over k, and let $Gr^2(V)$ denote the set of 2-dimensional vector subspaces of V. Set $W = \Lambda^2(V)$, and let \mathbb{P}^5 be the 5-dimensional projective space, thought of as the set of lines in W.

Define a map of sets $Gr^2(V) \to \mathbb{P}^5$ that sends a 2-dimensional subspace $U \subset V$ to the line $\Lambda^2(U) \subset \Lambda^2(V) = W$.

(a) Show that the above map is injective and identifies $Gr^2(V)$ with the set of points of a projective subvariety of \mathbb{P}^5 .

(b) Find the dimension of the above projective variety, and its degree.

(3) Are there any non-constant bounded holomorphic functions defined on the complement $\mathbb{C} \setminus I$ of the unit interval

$$I = \{a \in \mathbb{R} \mid 0 \le a \le 1\} \subset \mathbb{C}$$

in the complex plane \mathbb{C} ?

(4) Let X be the topological space obtained by removing one point from a Riemann surface of genus $g \ge 1$. Compute the homotopy groups $\pi_n(X)$.

(5) Let γ be a geodesic curve on a regular surface of revolution $S \subset \mathbb{R}^3$. Let $\theta(p)$ denote the angle the curve forms with the parallel at a point $p \in \gamma$ and r(p) be the distance to the axes of revolution. Prove Clairaut's relation: $r \cos \theta = const$.

(6) Define the function f on the interval [0,1] as follows. If $x = 0.x_1x_2x_3...$ is the unique non-terminating decimal expansion of $x \in (0,1]$, define $f(x) = \max_n \{x_n\}$. Prove that f is measurable.

Qualifying exam, Spring 2006, Day 2

(1) Describe irreducible representations of the finite group A_4 .

(2) Show that every morphism of projective varieties $\mathbb{P}^2 \to \mathbb{P}^1$ is constant.

(3) Let g(z) be an entire holomorphic function. Define the function F(z) on $\mathbb{C} \setminus [-1,1]$ by

$$F(z) = \int_{-1}^{1} \frac{g(x)}{x - z} \, dx.$$

(a) Show that F(z) is analytic in $\mathbb{C} \setminus [-1, 1]$ and can be analytically continued across the open interval (-1, 1).

(b) Call $F_{-}(z)$ and $F_{+}(z)$ the analytic continuations from below and from above (-1, 1) respectively. Calculate $F_{+}(z) - F_{-}(z)$ on (-1, 1).

(4) Let X be the blow-up of \mathbb{CP}^2 at one point. Compute the groups $H^i(X, \mathbb{Z})$.

(5) Let F(x, y, z) be a smooth homogenous function of degree n, i.e. $F(\lambda x, \lambda y, \lambda z) = \lambda^n F(x, y, z)$. Prove that away from the origin the induced metric on the conical surface

$$\Sigma = \{(x, y, z) \mid F(x, y, z) = 0\}$$

has Gaussian curvature equal to 0.

(6) Let p > 0. Let l^p denote sequences $\underline{x} = \{x_n\} \in \mathbb{R}^{\mathbb{N}}$ (here \mathbb{N} denotes the set of natural numbers), such that $\sum |x_n|^p$ converges. We define a topology on l^p with the basis

$$B^r(\underline{x}) = \{\underline{y} \mid \sum |y_n - x_n|^p < r\}.$$

For which p does this topology arise from a norm?

Qualifying exam, Spring 2006, Day 3

(1) Let $\zeta = e^{2\pi i/37}$ and let $\alpha = \zeta + \zeta^{10} + \zeta^{26}$. Find (with proof) the degree of $\mathbf{Q}(\alpha)$ over \mathbf{Q} .

(2) Let $X \subset \mathbb{A}^n$ be an algebraic subvariety, defined by a non-trivial homegeneous ideal $I \subset k[t_1, ..., t_n]$.

(a) Show that the point 0 is contained in X.

(b) Assume that X is non-singular at 0. Show that X = W for some linear subspace $W \subset \mathbb{A}^n$.

(3) Let f be a holomorphic function on **C** whose image lands in the upper half plane. Prove that f is constant without using Picard's theorem.

(4) Let f be a continuous map $\mathbb{CP}^n \to \mathbb{CP}^n$.

(a) Prove that if n is even, then f necessarily has a fixed point.

(b) Verify that the map $f : \mathbf{C}^4 \to \mathbf{C}^4$ defined by $f(z_1, z_2, z_3, z_4) = (\overline{z}_2, -\overline{z}_1, \overline{z}_4, -\overline{z}_3)$ induces a map $\mathbf{CP}^3 \to \mathbf{CP}^3$ with no fixed points.

(5)

(a) Let f, g be two C^{∞} -maps between manifolds $X \to Y$. Let ω^k be a closed differential form on Y, and consider $f^*(\omega), g^*(\omega) \in \Omega^k(X)$. Assume that there exists a homotopy between f and g, i.e., a smooth map $h : \mathbb{R} \times X \to Y$ such that $h|_{0 \times X} = f$ and $h|_{1 \times X} = g$. Show that $f^*(\omega) - g^*(\omega)$ is exact.

(b) Deduce that every closed k-form $(k \ge 1)$ on \mathbb{R}^n is exact.

(6) Does there exist a continuous function on the interval [0, 1] such that

$$\int_0^1 x^n f(x) dx = \begin{cases} 1, & n = 1 \\ 0, & n = 2, 3, \dots \end{cases}$$