QUALIFYING EXAMINATION

Harvard University
Department of Mathematics

Tuesday 4 February 2003 (Day 1)

There are six problems. Each question is worth 10 points, and parts of questions are of equal weight.

1a. Let k be any field. Show that the ring $k[x]$ has infinitely many maximal ideals.
2a. Let f be an entire function. Suppose that f vanishes to even order at every zero of f. Prove there exists a holomorphic function g such that $g^{2}=f$.

3a. Let k be a field. Let a, b be relatively prime positive integers. Is there an element in the field of fractions of the k-algebra $A=k[X, Y] /\left(Y^{a}-X^{b}\right)$ that generates the integral closure of A (i.e., generates it as k-algebra)? If so, find such an element; if not, prove not.

4a. Let $(f(v) \cos (u), f(v) \sin (u), g(v))$ be a parametrization of a surface of revolution $S \subset \mathbb{R}^{3}$ where $(u, v) \in(0,2 \pi) \times(a, b)$. If S is given the induced metric from \mathbb{R}^{3}, prove that the following map from S to \mathbb{R}^{2} is locally conformal where \mathbb{R}^{2} is given the standard Euclidean metric:

$$
(u, v) \rightarrow\left(u, \int \frac{\sqrt{\left(f^{\prime}(v)\right)^{2}+\left(g^{\prime}(v)\right)^{2}}}{f(v)} d v\right)
$$

5a. Let X be the space obtained by identifying the three edges of a triangle using the same orientation on each edge, as shown below.

Compute $\pi_{1}(X), H_{*}(X)$, and $H_{*}(X \times X)$.
6a. New Real Analysis Problem 1.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics

Wednesday 5 February 2003 (Day 2)

There are six problems. Each question is worth 10 points, and parts of questions are of equal weight.

1b. Let $X \subset \mathbb{C}^{2}$ be the curve defined by $x^{2}\left(y^{2}-1\right)=1$, and let $\bar{X} \subset \mathbb{P}^{2}$ be its closure.
(i) Find the singularities of \bar{X} and classify them into nodes, cusps, and so on.
(ii) Find the genus of the smooth completion of X.

2b. Let $0<s<1$. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{s-1}}{1+x} d x
$$

3b. (i) Consider \mathbb{R}^{n} with the standard Euclidean metric and let $p \in \mathbb{R}^{n}$ be an arbitrary point. For any $x \in \mathbb{R}^{n}$ let $\rho_{p}(x)$ be the distance from p to x. Viewing $\rho_{p}(x)$ as a smooth function of x away from p, verify that $\left|\operatorname{grad}\left(\rho_{p}(x)\right)\right|^{2}=1$ and that the integral curves of $\operatorname{grad}\left(\rho_{p}(x)\right)$ are straight lines. (Here $\operatorname{grad}\left(\rho_{p}(x)\right)$ refers to the usual gradient vector field of the function $\rho_{p}(x)$.)
(ii) More generally, given a smooth function f on a Riemannian manifold ($M, g_{i j}$), define $\operatorname{grad}(f)$ to be the vector field given locally by

$$
\sum_{i, j}\left(g^{i j} \frac{d f}{d x_{i}}\right) \frac{\partial}{\partial x_{j}}
$$

Show that if $|\operatorname{grad}(f)|^{2}=1$ then the integral curves of the vector field $\operatorname{grad}(f)$ are geodesics.

4b. A mechanical linkage is a collection of points (some fixed, some not) in the plane connected by rigid struts, each with a fixed length. Its configuration space is the set of all solutions to the constraints that the struts have a fixed
length, with the topology induced from the product of the plane with itself. For instance, this mechanical linkage

(in which \odot denotes a fixed vertex) can be described by the equations

$$
\left\{x_{0}, x_{1}, x_{2} \in \mathbb{R}^{2}\left|x_{0}=(0,0),\left|x_{0}-x_{1}\right|=1,\left|x_{2}-x_{1}\right|=1\right\}\right.
$$

The configuration space of this linkage is the torus $S^{1} \times S^{1}$.
Identify topologically the configuration space of the linkages

All edges have length 1, and the fixed vertices are at the indicated locations.
Hint: Consider the position of the central point, and compute the Euler characteristic.

5b. Let H_{d} be the space of degree d curves in \mathbb{P}^{2}, where $d>1$. We identify H_{d} with the projectivization of the vector space of degree d homogeneous polynomials in three variables, so $H_{d}=\mathbb{P}^{N}$ for some N.
(i) Find N, the dimension of H_{d}.
(ii) For a fixed point $p \in \mathbb{P}^{2}$ find the dimension of the set $\Sigma_{p} \subset H_{d}$ of curves that have a singularity at p.
(iii) Find the dimension of the set $\Sigma \subset H_{d}$ of singular curves.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics

Thursday 6 February 2003 (Day 3)

There are six problems. Each question is worth 10 points, and parts of questions are of equal weight.

1c. Let $Z \subset \mathbb{P}^{n}$ be a variety of degree d. Choose a point $P \notin Z$ and let $P Z$ be the union of lines containing the points P and Q, where the union is taken over all points $Q \in Z$. Prove that the degree of $P Z$ is at most d. (Hint: Intersect with a suitable hyperplane and use induction on dimension.)

2c. Let p, q, and r be non-constant non-vanishing entire holomorphic functions that satisfy the equation

$$
p+q+r=0 .
$$

Prove there exists an entire function h such that p, q and r are constant multiples of h.

3c. Let M be a smooth manifold with a connection ∇ on the tangent bundle. Recall the following definitions of the torsion tensor T and curvature tensor R : For arbitrary vector fields X, Y and Z on M we have

$$
T(X, Y):=\nabla_{Y} X-\nabla_{X} Y-[X, Y]
$$

and

$$
R(X, Y) Z:=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z-\nabla_{[Y, X]} Z
$$

Assuming we have a torsion-free connection $(T=0)$, verify the following identity:

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

(Hint: Begin by assuming that X, Y, Z are coordinate vector fields, then justify that there is no loss in generality in doing this.)

4c. (i) What is the symmetry group G of the following pattern? What is the topological space \mathbb{R}^{2} modulo G ?

(ii) What is the commutator subgroup of G ? Draw generators for the commutator subgroup on a copy of the pattern (see Page 6).

5c. Let ρ be a two-dimensional (complex) representation of a finite group G such that $\rho(g)$ has 1 as an eigenvalue for every $g \in G$. Prove that ρ is the sum of two one-dimensional representations.

6 c . Let k be a field. Let f, g be polynomials in $k[x, y]$ with no common factor. Show that the quotient ring $k[x, y] /(f, g)$ is a finite dimensional vector space over k.

