QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, October 24, 1995 (Day 1)

1. Let K be a field of characteristic 0.

a. Find three nonconstant polynomials $x(t), y(t), z(t) \in K[t]$ such that

$$x^2 + y^2 = z^2$$

b. Now let n be any integer, $n \ge 3$. Show that there do not exist three nonconstant polynomials $x(t), y(t), z(t) \in K[t]$ such that

$$x^n + y^n = z^n$$

2. For any integers k and n with $1 \le k \le n$, let

$$S^n = \{(x_1, \dots, x_{n+1}) : x_1^2 + \dots + x_{n+1}^2 = 1\} \subset \mathbb{R}^{n+1}$$

be the *n*-sphere, and let $D_k \subset \mathbb{R}^{n+1}$ be the closed disc

$$D_k = \{(x_1, \dots, x_{n+1}) : x_1^2 + \dots + x_k^2 \le 1; x_{k+1} = \dots = x_{n+1} = 0\} \subset \mathbb{R}^{n+1}.$$

Let $X_{k,n} = S^n \cup D_k$ be their union. Calculate the cohomology ring $H^*(X_{k,n}, \mathbb{Z})$.

3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be any \mathcal{C}^{∞} map such that

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \equiv 0.$$

Show that if f is not surjective then it is constant.

4. Let G be a finite group, and let $\sigma, \tau \in G$ be two elements selected at random from G (with the uniform distribution). In terms of the order of G and the number of conjugacy classes of G, what is the probability that σ and τ commute? What is the probability if G is the symmetric group S_5 on 5 letters?

5. Let $\Omega \subset \mathbb{C}$ be the region given by

 $\Omega \ = \ \{z \ : \ |z-1| < 1 \quad \text{and} \quad |z-i| < 1 \}.$

Find a conformal map $f: \Omega \to \Delta$ of Ω onto the unit disc $\Delta = \{z: |z| < 1\}.$

6. Find the degree and the Galois group of the splitting fields over \mathbb{Q} of the following polynomials:

a. $x^6 - 2$ b. $x^6 + 3$

QUALIFYING EXAMINATION

Harvard University Department of Mathematics Wednesday, October 25, 1995 (Day 2)

1. Find the ring A of integers in the real quadratic number field $K = \mathbb{Q}(\sqrt{5})$. What is the structure of the group of units in A? For which prime numbers $p \in \mathbb{Z}$ is the ideal $pA \subset A$ prime?

2. Let $U \subset \mathbb{R}^2$ be an open set.

a. Define a $Riemannian \ metric$ on U.

b. In terms of your definition, define the *distance* between two points $p, q \in U$.

c. Let $\Delta = \{(x, y) : x^2 + y^2 < 1\}$ be the open unit disc in \mathbb{R}^2 , and consider the metric on Δ given by

$$ds^{2} = \frac{dx^{2} + dy^{2}}{(1 - x^{2} - y^{2})^{2}}$$

Show that Δ is complete with respect to this metric.

3. Let K be a field of characteristic 0. Let \mathbb{P}^N be the projective space of homogeneous polynomials F(X, Y, Z) of degree d modulo scalars (N = d(d+3)/2). Let U be the subset of \mathbb{P}^N of polynomials F whose zero loci are smooth plane curves $C \subset \mathbb{P}^2$ of degree d, and let $V \subset \mathbb{P}^N$ be the complement of U in \mathbb{P}^N .

a. Show that V is a closed subvariety of \mathbb{P}^N .

- b. Show that $V \subset \mathbb{P}^N$ is a hypersurface.
- c. Find the degree of V in case d = 2.
- d. Find the degree of V for general d.

4. Let $\mathbb{P}^n_{\mathbb{R}}$ be real projective *n*-space.

a. Calculate the cohomology ring $H^*(\mathbb{P}^n_{\mathbb{R}}, \mathbb{Z}/2\mathbb{Z})$.

b. Show that for m > n there does not exist an *antipodal* map $f: S^m \to S^n$, that is, a continuous map carrying antipodal points to antipodal points.

5. Let V be any continuous nonnegative function on \mathbb{R} , and let $H: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by

$$H(f) = \frac{-1}{2}\frac{d^2f}{dx^2} + V \cdot f.$$

a. Show that the eigenvalues of H are all nonnegative. b. Suppose now that $V(x) = \frac{1}{2}x^2$ and f is an eigenfunction for H. Show that the Fourier transform

$$\hat{f}(y) = \int_{-\infty}^{\infty} e^{-ixy} f(x) dx$$

is also an eigenfunction for H.

6. Find the Laurent expansion of the function

$$f(z) = \frac{1}{z(z+1)}$$

valid in the annulus 1 < |z - 1| < 2.

QUALIFYING EXAMINATION

Harvard University Department of Mathematics Thursday, October 26, 1995 (Day 3)

1. Evaluate the integral

$$\int_0^\infty \frac{\sin x}{x} dx.$$

2. Let p be an odd prime, and let V be a vector space of dimension n over the field \mathbb{F}_p with p elements.

- a. Give the definition of a nondegenerate quadratic form $Q: V \to \mathbb{F}_p$
- b. Show that for any such form Q there is an $\epsilon \in \mathbb{F}_p$ and a linear isomorphism

$$\phi : V \longrightarrow \mathbb{F}_p^n$$
$$v \longmapsto (x_1, \dots, x_n)$$

such that Q is given by the formula

$$Q(x_1, x_2, \dots, x_n) = x_1^2 + x_2^2 + \dots + x_{n-1}^2 + \epsilon x_n^2$$

c. In what sense is ϵ determined by Q?

3. Let G be a finite group. Define the group ring $R = \mathbb{C}[G]$ of G. What is the center of R? How does this relate to the number of irreducible representations of G? Explain.

4. Let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ be any isometry, that is, a map such that the euclidean distance between any two points $x, y \in \mathbb{R}^n$ is equal to the distance between their images $\phi(x), \phi(y)$. Show that ϕ is affine linear, that is, there exists a vector $b \in \mathbb{R}^n$ and an orthogonal matrix $A \in O(n)$ such that for all $x \in \mathbb{R}^n$,

$$\phi(x) = Ax + b.$$

5. Let G be a finite group, $H \subset G$ a proper subgroup. Show that the union of the conjugates of H in G is not all of G, that is,

$$G \neq \bigcup_{g \in G} gHg^{-1}.$$

Give a counterexample to this assertion with G a compact Lie group.

6. Show that the sphere S^{2n} is not the underlying topological space of any Lie group.