Qualifying Examination

HARVARD UNIVERSITY Department of Mathematics Spring 2018 (Day 1)

Problem 1 (RA)

Let X be a subset of [0, 1] with the following two properties:

- For any real number, r, there is $x \in X$ such that $r \cdot x$ is rational.
- For any two distinct $x, y \in X$, the number x y is irrational.

Prove that X is *not* Lebesgue-measurable.

Problem 2 (DG)

Use (x, y, z) for the Euclidean coordinate functions on \mathbb{R}^3 and let *a* denote the 1-form

$$a = \mathrm{d}z + \frac{1}{2}(x\,\mathrm{d}y - y\,\mathrm{d}x).$$

- a) Compute da and $a \wedge da$.
- b) Prove that the kernel of *a* defines a smooth, 2-dimensional vector subbundle in $T\mathbb{R}^3$.
- c) Suppose that $B \subset \mathbb{R}^3$ is an open ball and that *u* and *w* are pointwise linearly independent vector fields in the kernel of *a* on B. Prove that the commutator of *u* and *v* is nowhere in the kernel of *a*.

Problem 3 (CA) How many roots of the polynomial $P(z) = z^4 - 6z + 3$ occur where |z| < 2?

Problem 4 (T)

Let X_1 and X_2 denote distinct copies of T^2 , so each is $S^1 \times S^1$ with S^1 denoting the circle. Define the space X to be the quotient of the disjoint union of X_1 and X_2 by the equivalence relation whereby any point of the form (z, 1) in X_1 is identified with the corresponding (z, 1) in X_2 . Compute the cohomology ring of the space X. (Thus, compute H*(X; \mathbb{Z}) and determine its cup-product structure.)

Problem 5 (AG)

Let X denote the affine curve in \mathbb{A}^2 where $y^2 - x^3 + x^2 = 0$. Prove that X is singular and that there is a birational morphism from \mathbb{A}^1 onto X.

Problem 6 (AN)

Let G_1, \ldots, G_n denote finite groups. For each $m \in \{1, \ldots, n\}$, let $\rho_m: G_m \to GL(V_m)$ denote a finite dimensional, complex representation of G_m . Use χ_m to denote the character of ρ_m . Set $G = G_1 \times \cdots \times G_m$ and $V = V_1 \otimes \cdots \otimes V_m$.

- a) Define $\rho: G \to GL(V)$ by the rule $\rho(g_1, ..., g_n) = \rho_1(g_1) \otimes \cdots \otimes \rho_n(g_n)$. Write the character of ρ in terms of the characters $\{\chi_m\}_{1 \le m \le n}$.
- b) Prove that (V,ρ) is an irreducible representation of G if and only if, for all m, each (V_m,ρ_m) is an irreducible representation of G_m .

Qualifying Examination

HARVARD UNIVERSITY Department of Mathematics Spring 2018 (Day 2)

Problem 1 (RA)

a) Let A₁, A₂, ... be a countable collection of events in a probability space; and let A₁^c, A₂^c, ... denote their respective complements. Prove the following assertion: If A₁, A₂, ... are mutually independent, then A₁^c, A₂^c, ... are also mutually independent.

(A collection of events $\{A_n\}_{n=1,2,...}$ is said to be mutually independent when any member is independent of the mutual intersection of any finite subcollection of the other events.)

b) Let $A_1, A_2, ...$ denote a sequence of mutually independent events in a probability space with the property that the sum of their probabilities is infinite. Prove that with probability one, the event A_n must occur for infinitely many values of the index n.

Problem 2 (DG)

The Euclidean metric on \mathbb{R}^2 can be written using the standard rectilinear coordinates (x,y) as $dx \otimes dx + dy \otimes dy$. Let u denote a smooth function on \mathbb{R}^2 and let g denote the metric $e^{2u} (dx \otimes dx + dy \otimes dy)$. Let ∇ denote the corresponding Levi-Civita covariant derivative for the metric g, acting on sections of $T^*\mathbb{R}^2$.

- a) Write $\nabla(dx)$ and $\nabla(dy)$ in terms of u and its derivatives.
- b) Write the scalar curvature of the metric \mathfrak{g} in terms of u and its first and second derivatives.

Problem 3 (CA)

Supposing that a is a positive number, evaluate the integral $\int_{0}^{\infty} \frac{\cos^2(x)}{x^2 + a^2} dx$ using the method of residues.

Problem 4 (T)

Let $X = T^2 \vee S^2$ which is the join of the torus T^2 (which is $S^1 \times S^1$) and the 2-sphere S^2 .

- a) Describe the universal covering space of X.
- b) Compute $\pi_1(X)$.
- c) Compute $\pi_2(X)$.

Problem 5 (AG)

Show that for any genus 2 curve, *C*, there is a divisor on *C* which has degree greater than zero, but is not linearly equivalent to an effective divisor. (Hint: The Riemann-Roch formula states that $h^0(C, \mathcal{L}) - h^0(C, K_C \otimes \mathcal{L}) = \deg(\mathcal{L}) + 1 - g(C)$ for a line bundle \mathcal{L} on a curve *C*. Here, K_C denotes the canonical bundle of *C* and g(*C*) denotes the genus of *C*.)

Problem 6 (AN)

Let k denote a finite field of 2^{f} elements for some positive integer f.

- a) Prove that the map from k to itself given by $x \to x^2 + x$ is a homomorphism of additive groups. Assuming this, then prove that exactly 2^{f-1} elements of k can be written as $x^2 + x$ for some $x \in k$.
- b) Prove that any given $a \in k$ can be written as $x^2 + x$ for some $x \in k$ if and only if $\sum_{i=1}^{f-1} a^{2^i} = 0.$

Qualifying Examination

HARVARD UNIVERSITY Department of Mathematics Spring 2018 (Day 3)

Problem 1 (RA)

For $f: \mathbb{R} \to \mathbb{R}$ a Lebesgue measurable function, let ||f|| denote the norm,

$$\|f\| = \int_{\mathbb{R}} |f| \,\mathrm{d}\mu$$

where $d\mu$ is the Lebesgue measure. Let $L^1(\mathbb{R})$ denote the vector space (over \mathbb{R}) of Lebesgue measurable functions $f: \mathbb{R} \to \mathbb{R}$ with $||f|| < \infty$ (we identify functions that are equal almost everywhere). If f, g are functions in $L^1(\mathbb{R})$, define their convolution (an \mathbb{R} valued function on \mathbb{R} denoted by f*g) by the following rule:

$$(f*g)(x) = \int_{\mathbb{R}} f(x-t)g(t) dt \quad \text{if} \quad \int_{\mathbb{R}} |f(x-t)||g(t)| dt \text{ is finite; and } (f*g)(x) = 0 \text{ otherwise.}$$

Prove the following: There is no function $e \in L^1(\mathbb{R})$ such that e * f = f for all $f \in L^1(\mathbb{R})$.

Here are two hints: First, keep in mind that a function is Lebesgue measurable when, for any real number E, the set of points in \mathbb{R} where the function is less than E is Lebesgue measurable. Second, consider the sequence $\{f_n\}_{n=1,2,..}$ of functions on \mathbb{R} which is defined as follows: For any given positive integer n, set $f_n(x) = 1$ if $-\frac{1}{n} \le x \le \frac{1}{n}$, and set $f_n(x) = 0$ otherwise.

Problem 2 (DG)

View the 4-dimensional sphere (denoted by S⁴) as the 1-point compactification of \mathbb{R}^4 , thus $\mathbb{R}^4 \cup \infty$. A complex, rank 2 vector bundle over S⁴ (to be denoted by \mathbb{E}) can be defined as follows: Cover the sphere S⁴ by the two open sets \mathbb{R}^4 and (\mathbb{R}^4 -0) $\cup \infty$. A map (to be denoted by g) from their intersection (which is \mathbb{R}^4 -0) to the group SU(2) (the group of 2×2 unitary matrices with determinant 1) is defined by first writing the Euclidean coordinates of any given $x \in \mathbb{R}^4$ as (x_1, x_2, x_3, x_4) and using these coordinate functions to define g(x) for $x \in \mathbb{R}^4$ -0 by

$$g(\mathbf{x}) = \frac{1}{|\mathbf{x}|} \begin{pmatrix} x_1 + ix_2 & -x_3 + ix_4 \\ x_3 + ix_4 & x_1 - ix_2 \end{pmatrix} .$$

The vector bundle \mathbb{E} is the quotient of the product \mathbb{C}^2 bundle over the \mathbb{R}^4 part of S^4 , and the product \mathbb{C}^2 bundle over the complement in S^4 of $0 \in \mathbb{R}^4$ by the equivalence relation that identifies pairs $(x, s_0) \in \mathbb{R}^4 \times \mathbb{C}^2$ and $(y, s_1) \in ((\mathbb{R}^4 - 0) \cup \infty)$ when x and y are in $\mathbb{R}^4 - 0$ and x = y and $s_1 = g(x) s_0$. (The projection map from \mathbb{E} to S^4 sends the equivalence class of any (x, s) for $x \in \mathbb{R}^4$ to x; and it sends the equivalence class of (∞, s) to ∞ .)

- a) Write a connection on this vector bundle.
- b) Compute the curvature 2-form of your connection.

Problem 3 (CA)

a) Prove that $\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$ defines a meromorphic function on \mathbb{C} with poles only at the points in \mathbb{Z} .

b) Prove that
$$\sum_{n \in \mathbb{Z}} \frac{1}{(z - n)^2} = \frac{\pi^2}{\sin^2(\pi z)}$$

Problem 4 (T)

- a) Construct a connected, topological space X such that $\pi_1(X)$ is generated by two elements, denoted by *a* and *b*, subject to the relations $a^3 = 1$ and $b^3 = 1$.
- b) For which $q \ge 1$, is $H_q(X; \mathbb{Z})$ independent of your choice of X?

Problem 5 (AG)

The *twisted cubic* (to be denoted by X) is the image of the map from \mathbb{P}^1 to \mathbb{P}^3 defined using homogeneous coordinates by the rule $[s:t] \rightarrow [s^3: s^2t: st^2: t^3]$. It is also the locus in \mathbb{P}^3 where the three polynomials $\{z_0z_3 - z_1z_2, z_0z_2 - z_1^2, z_1z_3 - z_2^2\}$ are simultaneously zero. Prove that the Hilbert polynomial of the twisted cubic, \mathcal{D}_X , obeys $\mathcal{D}_X(n) = 3n+1$.

Problem 6 (AN)

Prove that there is a unique positive integer $n \le 10^{2017}$ such that the last 2017 digits of n^3 are 0000 \cdots 00002017 (with all 2005 digits represented by \cdots being zeros as well).