# Qualifying Examination 

Harvard University
Department of Mathematics
Spring 2018 (Day 1)

## Problem 1 (RA)

Let X be a subset of $[0,1]$ with the following two properties:

- For any real number, $r$, there is $x \in \mathrm{X}$ such that $r-x$ is rational.
- For any two distinct $x, y \in X$, the number $x-y$ is irrational.

Prove that X is not Lebesgue-measurable.

## Problem 2 (DG)

Use ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) for the Euclidean coordinate functions on $\mathbb{R}^{3}$ and let $a$ denote the 1-form

$$
a=\mathrm{dz}+\frac{1}{2}(\mathrm{xdy}-\mathrm{ydx}) .
$$

a) Compute $\mathrm{d} a$ and $a \wedge \mathrm{~d} a$.
b) Prove that the kernel of $a$ defines a smooth, 2-dimensional vector subbundle in $\mathrm{TR}^{3}$.
c) Suppose that $\mathrm{B} \subset \mathbb{R}^{3}$ is an open ball and that $u$ and $w$ are pointwise linearly independent vector fields in the kernel of $a$ on B. Prove that the commutator of $u$ and $v$ is nowhere in the kernel of $a$.

## Problem 3 (CA)

How many roots of the polynomial $P(z)=z^{4}-6 z+3$ occur where $|z|<2$ ?

## Problem 4 (T)

Let $X_{1}$ and $X_{2}$ denote distinct copies of $T^{2}$, so each is $S^{1} \times S^{1}$ with $S^{1}$ denoting the circle.
Define the space $X$ to be the quotient of the disjoint union of $X_{1}$ and $X_{2}$ by the equivalence relation whereby any point of the form $(z, 1)$ in $X_{1}$ is identified with the corresponding $(z, 1)$ in $X_{2}$. Compute the cohomology ring of the space $X$. (Thus, compute $\mathrm{H}^{*}(\mathrm{X} ; \mathbb{Z})$ and determine its cup-product structure.)

## Problem 5 (AG)

Let $X$ denote the affine curve in $\mathbb{A}^{2}$ where $y^{2}-x^{3}+x^{2}=0$. Prove that $X$ is singular and that there is a birational morphism from $\mathbb{A}^{1}$ onto $X$.

## Problem 6 (AN)

Let $G_{1}, \ldots, G_{n}$ denote finite groups. For each $m \in\{1, \ldots, n\}$, let $\rho_{m}: G_{m} \rightarrow G L\left(V_{m}\right)$ denote a finite dimensional, complex representation of $\mathrm{G}_{\mathrm{m}}$. Use $\chi_{\mathrm{m}}$ to denote the character of $\rho_{\mathrm{m}}$. Set $\mathrm{G}=\mathrm{G}_{1} \times \cdots \times \mathrm{G}_{\mathrm{m}}$ and $\mathrm{V}=\mathrm{V}_{1} \otimes \cdots \otimes \mathrm{~V}_{\mathrm{m}}$.
a) Define $\rho: G \rightarrow G L(V)$ by the rule $\rho\left(g_{1}, \ldots, g_{n}\right)=\rho_{1}\left(g_{1}\right) \otimes \cdots \otimes \rho_{n}\left(g_{n}\right)$. Write the character of $\rho$ in terms of the characters $\left\{\chi_{m}\right\}_{1 \leq m \leq n}$.
b) Prove that $(V, \rho)$ is an irreducible representation of $G$ if and only if, for all m, each $\left(V_{m}, \rho_{m}\right)$ is an irreducible representation of $G_{m}$.

Qualifying Examination<br>Harvard University<br>Department of Mathematics<br>Spring 2018 (Day 2)

## Problem 1 (RA)

a) Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$ be a countable collection of events in a probability space; and let $\mathrm{A}_{1}{ }^{\mathrm{c}}, \mathrm{A}_{2}{ }^{\mathrm{c}}, \ldots$ denote their respective complements. Prove the following assertion: If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$ are mutually independent, then $\mathrm{A}_{1}{ }^{\mathrm{c}}, \mathrm{A}_{2}{ }^{\mathrm{c}}, \ldots$ are also mutually independent.
(A collection of events $\left\{A_{n}\right\}_{n=1,2, \ldots}$ is said to be mutually independent when any member is independent of the mutual intersection of any finite subcollection of the other events.)
b) Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$ denote a sequence of mutually independent events in a probability space with the property that the sum of their probabilities is infinite. Prove that with probability one, the event $A_{n}$ must occur for infinitely many values of the index $n$.

## Problem 2 (DG)

The Euclidean metric on $\mathbb{R}^{2}$ can be written using the standard rectilinear coordinates $(x, y)$ as $d x \otimes d x+d y \otimes d y$. Let $u$ denote a smooth function on $\mathbb{R}^{2}$ and let $\mathfrak{g}$ denote the metric $\mathrm{e}^{2 \mathrm{u}}(\mathrm{dx} \otimes \mathrm{dx}+\mathrm{dy} \otimes d y)$. Let $\nabla$ denote the corresponding Levi-Civita covariant derivative for the metric $\mathfrak{g}$, acting on sections of $\mathrm{T} * \mathbb{R}^{2}$.
a) Write $\nabla(\mathrm{dx})$ and $\nabla(\mathrm{dy})$ in terms of $u$ and its derivatives.
b) Write the scalar curvature of the metric $\mathfrak{g}$ in terms of $u$ and its first and second derivatives.

## Problem 3 (CA)

Supposing that a is a positive number, evaluate the integral $\int_{0}^{\infty} \frac{\cos ^{2}(x)}{x^{2}+a^{2}} d x$ using the method of residues.

## Problem 4 (T)

Let $X=T^{2} \vee S^{2}$ which is the join of the torus $T^{2}$ (which is $S^{1} \times S^{1}$ ) and the 2-sphere $S^{2}$.
a) Describe the universal covering space of X .
b) Compute $\pi_{1}(\mathrm{X})$.
c) Compute $\pi_{2}(\mathrm{X})$.

## Problem 5 (AG)

Show that for any genus 2 curve, $C$, there is a divisor on $C$ which has degree greater than zero, but is not linearly equivalent to an effective divisor. (Hint: The Riemann-Roch formula states that $\hbar^{0}(C, \mathcal{L})-\hbar^{0}\left(\mathcal{C}, K_{C} \otimes \mathcal{L}\right)=\operatorname{deg}(\mathcal{L})+1-\mathrm{g}(C)$ for a line bundle $\mathcal{L}$ on a curve $C$. Here, $K_{C}$ denotes the canonical bundle of $C$ and $g(C)$ denotes the genus of $C$.)

## Problem 6 (AN)

Let $k$ denote a finite field of $2^{f}$ elements for some positive integer $f$.
a) Prove that the map from $k$ to itself given by $x \rightarrow x^{2}+x$ is a homomorphism of additive groups. Assuming this, then prove that exactly $2^{f-1}$ elements of $k$ can be written as $\mathrm{x}^{2}+\mathrm{x}$ for some $\mathrm{x} \in k$.
b) Prove that any given $a \in k$ can be written as $\mathrm{x}^{2}+\mathrm{x}$ for some $\mathrm{x} \in k$ if and only if $\sum_{\mathrm{i}=0}^{f-1} a^{2^{\mathrm{i}}}=0$.

Qualifying Examination<br>Harvard University<br>Department of Mathematics<br>Spring 2018 (Day 3)

## Problem 1 (RA)

For $f: \mathbb{R} \rightarrow \mathbb{R}$ a Lebesgue measurable function, let $\|f\|$ denote the norm,

$$
\|f\|=\int_{\mathbb{R}}|f| \mathrm{d} \mu
$$

where $\mathrm{d} \mu$ is the Lebesgue measure. Let $\mathrm{L}^{1}(\mathbb{R}$ ) denote the vector space (over $\mathbb{R}$ ) of Lebesgue measurable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\|f\|<\infty$ (we identify functions that are equal almost everywhere). If $f$, g are functions in $\mathrm{L}^{1}(\mathbb{R})$, define their convolution (an $\mathbb{R}$ valued function on $\mathbb{R}$ denoted by $f * g$ ) by the following rule:

$$
(f * \mathrm{~g})(\mathrm{x})=\int_{\mathbb{R}} f(\mathrm{x}-\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt} \text { if } \int_{\mathbb{R}}|f(\mathrm{x}-\mathrm{t})| \mathrm{g}(\mathrm{t}) \mid \mathrm{dt} \text { is finite; and }(f * \mathrm{~g})(\mathrm{x})=0 \text { otherwise. }
$$

Prove the following: There is no function $\mathfrak{e} \in \mathrm{L}^{1}(\mathbb{R})$ such that $\mathfrak{e} * f=f$ for all $f \in \mathrm{~L}^{1}(\mathbb{R})$.

Here are two hints: First, keep in mind that a function is Lebesgue measurable when, for any real number $E$, the set of points in $\mathbb{R}$ where the function is less than $E$ is Lebesgue measurable. Second, consider the sequence $\left\{f_{\mathrm{n}}\right\}_{\mathrm{n}=1,2, .,}$ of functions on $\mathbb{R}$ which is defined as follows: For any given positive integer n , set $f_{\mathrm{n}}(\mathrm{x})=1$ if $-\frac{1}{\mathrm{n}} \leq \mathrm{x} \leq \frac{1}{\mathrm{n}}$, and set $f_{\mathrm{n}}(\mathrm{x})=0$ otherwise.

## Problem 2 (DG)

View the 4-dimensional sphere (denoted by $S^{4}$ ) as the 1-point compactification of $\mathbb{R}^{4}$, thus $\mathbb{R}^{4} \cup \infty$. A complex, rank 2 vector bundle over $S^{4}$ (to be denoted by $\mathbb{E}$ ) can be defined as follows: Cover the sphere $S^{4}$ by the two open sets $\mathbb{R}^{4}$ and $\left(\mathbb{R}^{4}-0\right) \cup \infty$. A map (to be denoted by $g$ ) from their intersection (which is $\mathbb{R}^{4}-0$ ) to the group $\mathrm{SU}(2)$ (the group of $2 \times 2$ unitary matrices with determinant 1 ) is defined by first writing the Euclidean coordinates of any given $\mathrm{x} \in \mathbb{R}^{4}$ as $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$ and using these coordinate functions to define $g(x)$ for $x \in \mathbb{R}^{4}-0$ by

$$
g(x)=\frac{1}{|x|}\left(\begin{array}{cc}
\mathrm{x}_{1}+i \mathrm{ix}_{2} & -\mathrm{x}_{3}+i \mathrm{ix}_{4} \\
\mathrm{x}_{3}+i \mathrm{ix}_{4} & \mathrm{x}_{1}-\mathrm{ix}
\end{array}\right)
$$

The vector bundle $\mathbb{E}$ is the quotient of the product $\mathbb{C}^{2}$ bundle over the $\mathbb{R}^{4}$ part of $S^{4}$, and the product $\mathbb{C}^{2}$ bundle over the complement in $S^{4}$ of $0 \in \mathbb{R}^{4}$ by the equivalence relation that identifies pairs $\left(\mathrm{x}, s_{0}\right) \in \mathbb{R}^{4} \times \mathbb{C}^{2}$ and $\left(\mathrm{y}, s_{1}\right) \in\left(\left(\mathbb{R}^{4}-0\right) \cup \infty\right)$ when x and y are in $\mathbb{R}^{4}-0$ and $\mathrm{x}=\mathrm{y}$ and $s_{1}=g(\mathrm{x}) s_{0}$. (The projection map from $\mathbb{E}$ to $\mathrm{S}^{4}$ sends the equivalence class of any ( $\mathrm{x}, \mathrm{s}$ ) for $\mathrm{x} \in \mathbb{R}^{4}$ to x ; and it sends the equivalence class of $(\infty, s)$ to $\infty$.)
a) Write a connection on this vector bundle.
b) Compute the curvature 2 -form of your connection.

Problem 3 (CA)
a) Prove that $\sum_{\mathrm{n} \in \mathbb{Z}} \frac{1}{(\mathrm{z}-\mathrm{n})^{2}}$ defines a meromorphic function on $\mathbb{C}$ with poles only at the points in $\mathbb{Z}$.
b) Prove that $\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^{2}}=\frac{\pi^{2}}{\sin ^{2}(\pi z)}$.

Problem 4 (T)
a) Construct a connected, topological space X such that $\pi_{1}(\mathrm{X})$ is generated by two elements, denoted by $a$ and $b$, subject to the relations $a^{3}=1$ and $b^{3}=1$.
b) For which $q \geq 1$, is $H_{q}(X ; \mathbb{Z})$ independent of your choice of $X$ ?

## Problem 5 (AG)

The twisted cubic (to be denoted by X ) is the image of the map from $\mathbb{P}^{1}$ to $\mathbb{P}^{3}$ defined using homogeneous coordinates by the rule $[s: t] \rightarrow\left[s^{3}: s^{2} t: t^{2}: t^{3}\right]$. It is also the locus in $\mathbb{P}^{3}$ where the three polynomials $\left\{\mathrm{z}_{0} \mathrm{z}_{3}-\mathrm{z}_{1} \mathrm{z}_{2}, \mathrm{z}_{0} \mathrm{z}_{2}-\mathrm{z}_{1}{ }^{2}, \mathrm{z}_{1} \mathrm{z}_{3}-\mathrm{z}_{2}{ }^{2}\right\}$ are simultaneously zero. Prove that the Hilbert polynomial of the twisted cubic, $\wp_{x}$, obeys $\wp_{x}(n)=3 n+1$.

Problem 6 (AN)
Prove that there is a unique positive integer $\mathrm{n} \leq 10^{2017}$ such that the last 2017 digits of $\mathrm{n}^{3}$ are $0000 \cdots 00002017$ (with all 2005 digits represented by $\cdots$ being zeros as well).

