QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday September 4, 2018 (Day 1)

1. (AT)
(a) Let X and Y be compact, oriented manifolds of the same dimension n. Define the degree of a continuous map $f: X \rightarrow Y$.
(b) Let $f: \mathbb{C P}^{3} \rightarrow \mathbb{C P}^{3}$ be any continuous map. Show that the degree of f is of the form m^{3} for some integer m.
(c) Show that conversely for any $m \in \mathbb{Z}$ there is a continuous map $f: \mathbb{C P}^{3} \rightarrow$ $\mathbb{C P}^{3}$ of degree m^{3}.
2. (A) Let G be a group.
(a) Prove that, if V and W are irreducible G-representations defined over a field \mathbb{F}, then a G-homomorphism $f: V \rightarrow W$ is either zero or an isomorphism.
(b) Let $G=D_{8}$ be the dihedral group with 8 elements. What are the dimensions of its irreducible representations over \mathbb{C} ?
3. (CA) Let f_{n} be a sequence of analytic functions on the unit disk $\Delta \subset \mathbb{C}$ such that $f_{n} \rightarrow f$ uniformly on compact sets and such that f is not identically zero. Prove that $f(0)=0$ if and only if there is a sequence $z_{n} \rightarrow 0$ such that $f_{n}\left(z_{n}\right)=0$ for n large enough.
4. (AG) Let K be an algebraically closed field of characteristic 0 , and let \mathbb{P}^{n} be the projective space of homogeneous polynomials of degree n in two variables over K. Let $X \subset \mathbb{P}^{n}$ be the locus of $n^{\text {th }}$ powers of linear forms, and let $Y \subset \mathbb{P}^{n}$ be the locus of polynomials with a multiple root (that is, a repeated factor).
(a) Show that X and $Y \subset \mathbb{P}^{n}$ are closed subvarieties.
(b) What is the degree of X ?
(c) What is the degree of Y ?
5. (DG) Given a smooth function $f: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$, define $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
F\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n-1}\right)-x_{n}
$$

and consider the preimage $X_{f}=F^{-1}(0) \subset \mathbb{R}^{n}$.
(a) Prove that X_{f} is a smooth manifold which is diffeomorphic to \mathbb{R}^{n-1}.
(b) Consider the two examples X_{f} and $X_{g} \subset \mathbb{R}^{3}$ with $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ and $g\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$. Compute their normal vectors at every point $\left(x_{1}, x_{2}, x_{3}\right) \in X_{f}$ and $\left(x_{1}, x_{2}, x_{3}\right) \in X_{g}$.
6. (RA) Let $K \subset \mathbb{R}^{n}$ be a compact set. Show that for any measurable function $f: K \rightarrow \mathbb{C}$, it holds that

$$
\lim _{p \rightarrow \infty}\|f\|_{L^{p}(K)}=\|f\|_{L^{\infty}(K)} .
$$

(Recall that $\|f\|_{L^{p}(K)}=\left(\int_{K}|f|^{p} \mathrm{~d} x\right)^{1 / p}$ and that $\|f\|_{L^{\infty}(K)}$ is the essential supremum of f, i.e., the smallest upper bound if the behavior of f on null sets is ignored.)

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday September 5, 2018 (Day 2)

1. (AG) Let $C \subset \mathbb{P}^{2}$ be a smooth plane curve of degree d.
(a) Let K_{C} be the canonical bundle of C. For what integer n is it the case that $K_{C} \cong \mathcal{O}_{C}(n)$?
(b) Prove that if $d \geq 4$ then C is not hyperelliptic.
(c) Prove that if $d \geq 5$ then C is not trigonal (that is, expressible as a 3 -sheeted cover of \mathbb{P}^{1}).
2. (CA) (The $1 / 4$ theorem). Let \mathcal{S} denote the class of functions that are analytic on the disk and one-to-one with $f(0)=0$ and $f^{\prime}(0)=1$.
(a) Prove that if $f \in \mathcal{S}$ and w is not in the range of f then

$$
g(z)=\frac{w f(z)}{(w-f(z))}
$$

is also in \mathcal{S}.
(b) Show that for any $f \in \mathcal{S}$, the image of f contains the ball of radius $1 / 4$ around the origin. You may use the elementary result (Bieberbach) that if $f(z)=z+\sum_{k \geq 2} a_{k} z^{k}$ in \mathcal{S} then $\left|a_{2}\right| \leq 2$.
3. (A) Find a polynomial $f \in \mathbb{Q}[x]$ whose Galois group (over \mathbb{Q}) is D_{8}, the dihedral group of order 8 .
4. (RA)
(a) Let $a_{k} \geq 0$ be a monotone increasing sequence with $a_{k} \rightarrow \infty$, and consider the ellipse,

$$
E\left(a_{k}\right)=\left\{v \in \ell^{2}(\mathbb{Z}): \sum a_{k} v_{k}^{2} \leq 1\right\} .
$$

Show that $E\left(a_{n}\right)$ is a compact subset of $\ell^{2}(\mathbb{Z})$.
(b) Let \mathbb{T} denote the one-dimensional torus; that is, $\mathbb{R} / 2 \pi \mathbb{Z}$, or $[0,2 \pi]$ with the ends identified. Recall that the space $H^{1}(\mathbb{T})$ is the closure of $C^{\infty}(\mathbb{T})$ in the norm

$$
\|f\|_{H^{1}(\mathbb{T})}=\sqrt{\|f\|_{L^{2}(\mathbb{T})}+\left\|\frac{d}{d x} f\right\|_{L^{2}(\mathbb{T})}} .
$$

Use part (a) to conclude that the inclusion $i: H^{1}(\mathbb{T}) \hookrightarrow L^{2}(\mathbb{T})$ is a compact operator.
5. (AT) Consider the following topological spaces:

$$
A=S^{1} \times S^{1} \quad B=S^{1} \vee S^{1} \vee S^{2}
$$

(a) Compute the fundamental group of each space.
(b) Compute the integral cohomology ring of each space.
(c) Show that B is not homotopy equivalent to any compact orientable manifold.
6. (DG) Consider the set

$$
G:=\left\{\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & x & y \\
0 & 0 & 1
\end{array}\right): x \in \mathbb{R}_{+}, y \in \mathbb{R}\right\}
$$

and equip it with a smooth structure via the global chart that sends $(x, y) \in$ $\mathbb{R}_{+} \times \mathbb{R}$ to the corresponding element of G.
(a) Show that G is a Lie subgroup of the Lie group $G L(\mathbb{R}, 3)$.
(b) Prove that the set

$$
\left\{x \frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right\}
$$

forms a basis of left-invariant vector fields on G.
(c) Find the structure constants of the Lie algebra \mathfrak{g} of G with respect to the basis in (b).

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday September 6, 2018 (Day 3)

1. (AT) Let $p: E \rightarrow B$ be a k-fold covering space, and suppose that the Euler characteristic $\chi(E)$ is defined, nonzero, and relatively prime to k. Show that any CW decomposition of B has infinitely many cells.
2. (RA) Let W be Gumbel distributed, that is $P(W \leq x)=e^{-e^{-x}}$. Let X_{i} be independent and identically distributed Exponential random variables with mean 1; that is, X_{i} are independent, with $P\left(X_{i} \leq x\right)=\exp (-\max x, 0)$.
Let

$$
M_{n}=\max _{i \leq n} X_{i} .
$$

Show that there are deterministic sequences a_{n}, b_{n} such that

$$
\frac{M_{n}-b_{n}}{a_{n}} \rightarrow W
$$

in law; that is, such that for any continuous bounded function F,

$$
\mathbb{E} F\left(\frac{M_{n}-b_{n}}{a_{n}}\right) \rightarrow \mathbb{E} F(W)
$$

3. (DG) Consider \mathbb{R}^{2} as a Riemannian manifold equipped with the metric

$$
g=e^{x} \mathrm{~d} x^{2}+\mathrm{d} y^{2}
$$

(i) Compute the Christoffel symbols of the Levi-Civita connection for g.
(ii) Show that the geodesics are described by the curves $x(t)=2 \log (A t+B)$ and $y(t)=C t+D$, for appropriate constants A, B, C, D.
(iii) Let $\gamma: \mathbb{R}_{+} \rightarrow \mathbb{R}^{2}, \gamma(t)=(t, t)$. Compute the parallel transport of the vector $(1,2)$ along the curve γ.
(iv) Are there two vector fields X, Y parallel to the curve γ, such that $g(X(t), Y(t))$ is non-constant?
4. (A) Let G be a group of order 78 .
(a) Show that G contains a normal subgroup of index 6 .
(b) Show by example that G may contain a subgroup of index 13 that is not normal.
5. (AG) Let K be an algebraically closed field of characteristic 0 , and consider the curve $C \subset \mathbb{A}^{3}$ over K given as the image of the map

$$
\begin{aligned}
\phi: \mathbb{A}^{1} & \rightarrow \mathbb{A}^{3} \\
t & \mapsto\left(t^{3}, t^{4}, t^{5}\right) .
\end{aligned}
$$

Show that no neighborhood of the point $\phi(0)=(0,0,0) \in C$ can be embedded in \mathbb{A}^{2}.
6. (CA) Let $f(z)$ be an entire function such that
a) $f(z)$ vanishes at all points $z=n, n \in \mathbb{Z}$;
b) $|f(z)| \leq e^{\pi|\operatorname{Im} z|}$ for all $z \in \mathbb{C}$.

Prove that $f(z)=c \sin \pi z$, with $c \in \mathbb{C},|c| \leq 1$.

