QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday August 30, 2016 (Day 1)

1. (DG)
(a) Show that if V is a \mathcal{C}^{∞}-vector bundle over a compact manifold X, then there exists a vector bundle W over X such that $V \oplus W$ is trivializable, i.e. isomorphic to a trivial bundle.
(b) Find a vector bundle W on S^{2}, the 2 -sphere, such that $T^{*} S^{2} \oplus W$ is trivializable.

Solution: Since V is locally trivializable and M is compact, one can find a finite open cover $U_{i}, i=1, \ldots, n$, of M and trivializations $T_{i}:\left.V\right|_{U_{i}} \rightarrow \mathbb{R}^{k}$. Thus, each T_{i} is a smooth map which restricts to a linear isomorphism on each fiber of $\left.V\right|_{U_{i}}$. Next, choose a smooth partition of unity $\left\{f_{i}\right\}_{i=1, \ldots, n}$ subordinate to the cover $\left\{U_{i}\right\}_{i=1, \ldots, n}$. If $p: V \rightarrow M$ is the projection to the base, then there are maps

$$
\left.V\right|_{U_{i}} \rightarrow \mathbb{R}^{k}, \quad v \mapsto f_{i}(p(v)) T_{i}(v)
$$

which extend (by zero) to all of V and which we denote by $f_{i} T_{i}$. Together, the $f_{i} T_{i}$ give a map $T: V \rightarrow \mathbb{R}^{n k}$ which has maximal rank k everywhere, because at each point of X at least one of the f_{i} is non-zero. Thus V is isomorphic to a subbundle, $T(V)$, of the trivial bundle, $\mathbb{R}^{n k}$. Using the standard inner product on $\mathbb{R}^{n k}$ we get an orthogonal bundle $W=T(V)^{\perp}$ which has the desired property.
For the second part, embed S^{2} into \mathbb{R}^{3} in the usual way, then

$$
T S^{2} \oplus N_{S^{2}}=\left.T \mathbb{R}^{3}\right|_{S^{2}}
$$

where $N_{S^{2}}$ is the normal bundle to S^{2} in \mathbb{R}^{3}. Dualizing we get

$$
T^{*} S^{2} \oplus\left(N_{S^{2}}\right)^{*}=\left.T^{*} \mathbb{R}^{3}\right|_{S^{2}}
$$

which solves the problem with $W=\left(N_{S^{2}}\right)^{*}$.
2. (RA) Let (X, d) be a metric space. For any subset $A \subset X$, and any $\epsilon>0$ we set

$$
B_{\epsilon}(A)=\bigcup_{p \in A} B_{\epsilon}(p) .
$$

(This is the " ϵ-fattening" of A.) For Y, Z bounded subsets of X define the Hausdorff distance between Y and Z by

$$
d_{H}(Y, Z):=\inf \left\{\epsilon>0 \mid Y \subset B_{\epsilon}(Z), \quad Z \subset B_{\epsilon}(Y)\right\}
$$

Show that d_{H} defines a metric on the set $\tilde{X}:=\{A \subset X \mid A$ is closed and bounded $\}$.

Solution: We need to show that $\left(\tilde{X}, d_{H}\right)$ is a metric space. First, since ${ }^{-}$ the sets are bounded, $d_{H}(Y, Z)$ is well defined for any closed sets Y, Z. Secondly, $d_{H}(Y, Z)=d_{H}(Z, Y) \geq 0$ is obvious from the definition. We need to prove that the distance is positive when $Y \neq Z$, and that d_{H} satisfies the triangle inequality. First, let us show that $d_{H}(Y, Z)>0$ if $Y \neq Z$. Without loss of generality, we can assume there is a point $p \in Y \cap Z^{c}$. Since Z is
closed, so there exists $r>0$ such that $B_{r}(p) \subset Z^{c}$. In particular, r is not in $B_{r}(Z)$. Thus Y is not contained in $B_{r}(Z)$ and so $d_{H}(Y, Z) \geq r>0$.

It remains to prove the triangle inequality. To this end, suppose that Y, Z, W are relevant subsets of X. Fix $\epsilon_{1}>d_{H}(Y, Z), \epsilon_{2}>d_{H}(Z, W)$, then

$$
Y \subset B_{\epsilon_{1}}(Z), \quad Z \subset B_{\epsilon_{1}}(Y), \quad Z \subset B_{\epsilon_{2}}(W), \quad W \subset B_{\epsilon_{2}}(Z)
$$

Then $d_{H}(Y, Z)<\epsilon_{1}, d_{H}(Z, W)<\epsilon_{2}$. Let us prove that $Y \subset B_{\epsilon_{1}+\epsilon_{2}}(W)$, the other containment being identical. Fix a point $y \in Y$. By our choice of ϵ_{1} there exists a point $z \in Z$ such that $y \in N_{\epsilon_{1}}(z)$. By our choice of ϵ_{2} there exists a point $w \in W$ such that $z \in B_{\epsilon_{2}}(w)$. Then

$$
d(y, w) \leq d(y, z)+d(z, w) \leq \epsilon_{1}+\epsilon_{2}
$$

so $y \in B_{\epsilon_{1}+\epsilon_{2}}(w)$. This proves the containment. The other containment is identical, by just swapping Y, W. Thus

$$
d_{H}(Y, W) \leq \epsilon_{1}+\epsilon_{2}
$$

But this holds for all $\epsilon_{1}, \epsilon_{2}$ as above. Taking the infimum we obtain the result.
3. (AT) Let $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, the n-torus. Prove that any path-connected covering space $Y \rightarrow T^{n}$ is homeomorphic to $T^{m} \times \mathbb{R}^{n-m}$, for some m.

Solution: The universal covering space of T^{n} is \mathbb{R}^{n}, so that any path connected covering space of X is of the form \mathbb{R}^{n} / G, for some subgroup $G \subseteq \pi_{1}\left(T^{n}\right)$. We have $\pi_{1}\left(T^{n}\right)=\pi_{1}\left(S^{1}\right) \times \cdots \times \pi_{1}\left(S^{1}\right)=\mathbb{Z}^{n}$, and \mathbb{Z}^{n} is acting on \mathbb{R}^{n} by translation. Thus, $G \subseteq \mathbb{Z}^{n}$ is free. Choose a \mathbb{Z}-basis $\left(v_{1}, \ldots, v_{m}\right)$ of G, and consider the (real!) change of basis taking $\left(v_{1}, \ldots, v_{m}\right)$ to the first m standard basis vectors $\left(e_{1}, \ldots, e_{m}\right)$. Hence, G is acting on \mathbb{R}^{n} by translation in the first m coordinates. Thus,

$$
\mathbb{R}^{n} / G \simeq \mathbb{R}^{m} / \mathbb{Z}^{m} \times \mathbb{R}^{n-m} \simeq T^{m} \times \mathbb{R}^{n-m}
$$

4. (CA)

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a nonconstant holomorphic function. Show that the image of f is dense in \mathbb{C}.

Solution: Suppose that for some $w_{0} \in \mathbb{C}$ and some $\epsilon>0$, the image of f lies outside the ball $B_{\epsilon}\left(w_{0}\right)=\left\{w \in \mathbb{C}| | w-w_{0} \mid<\epsilon\right\}$. Then the function

$$
g(z)=\frac{1}{f(z)-w_{0}}
$$

is bounded and homomorphic in the entire plane, hence constant.
5. (A) Let $F \supset \mathbb{Q}$ be a splitting field for the polynomial $f=x^{n}-1$.
(a) Let $A \subset F^{\times}=\{z \in F \mid z \neq 0\}$ be a finite (multiplicative) subgroup. Prove that A is cyclic.
(b) Prove that $G=\operatorname{Gal}(F / \mathbb{Q})$ is abelian.

Solution: For the first part, let $m=|A|$. Suppose that A is not cyclic, so that the order of any element in A is less than $m . A$ is a finite abelian group so it is isomorphic to a product of cyclic groups $A \simeq \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$, where $n_{i} \mid n_{i+1}$. In particular, the order of any element in A divides n_{k}. Hence, for any $z \in A, z^{n_{k}}=1$. However, the polynomial $x^{n_{k}}-1 \in F[x]$ admits at most $n_{k}<m$ roots in F, which is a contradiction. So, there must be some element in A with order m.
For the second part, since $f^{\prime}=n x^{n-1}$ and f are relatively prime, f admits n distinct roots $1=z_{0}, \ldots, z_{n-1}$. As F is a splitting field of f we can assume that $F=\mathbb{Q}\left(z_{0}, \ldots, z_{n-1}\right) \subseteq \mathbb{C} . U=\left\{z_{0}, \ldots, z_{n-1}\right\} \subset F^{\times}$is a subgroup of the multiplicative group of units in F and is cyclic; moreover, $\operatorname{Aut}(U)$ is isomorphic to the (multiplicative) group of units $(\mathbb{Z} / n \mathbb{Z})^{*}$. Restriction defines a homomorphism $G \rightarrow \operatorname{Aut}(U), \alpha \mapsto \alpha_{\mid U}$; this homomorphism is injective because $F=\mathbb{Q}\left(z_{0}, \ldots, z_{n-1}\right)$. In particular, G is isomorphic to a subgroup of the abelian group $(\mathbb{Z} / n \mathbb{Z})^{*}$.
6. (AG) Let C and $D \subset \mathbb{P}^{2}$ be two plane cubics (that is, curves of degree 3), intersecting transversely in 9 points $\left\{p_{1}, p_{2}, \ldots, p_{9}\right\}$. Show that p_{1}, \ldots, p_{6} lie on a conic (that is, a curve of degree 2) if and only if p_{7}, p_{8} and p_{9} are colinear.

Solution: First, observe that we can replace $C=V(F)$ and $D=V(G)$ by any two independent linear combinations $C^{\prime}=V\left(a_{0} F+a_{1} G\right)$ and $D^{\prime}=$ $V\left(b_{0} F+b_{1} G\right)$. Now suppose that p_{1}, \ldots, p_{6} lie on a conic $Q \subset \mathbb{P}^{2}$. Picking a seventh point $q \in Q$, we see that some linear combination C_{0} of C and D contains q and hence contains Q; thus $C_{0}=Q \cup L$ for some line $L \subset \mathbb{P}^{2}$. Replacing C or D with C_{0}, we see that p_{7}, p_{8} and $p_{9} \in L$.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday August 31, 2016 (Day 2)

1. (A) Let R be a commutative ring with unit. If $I \subseteq R$ is a proper ideal, we define the radical of I to be

$$
\sqrt{I}=\left\{a \in R \mid a^{m} \in I \quad \text { for some } m>0\right\} .
$$

Prove that

$$
\sqrt{I}=\bigcap_{\substack{\mathfrak{p} \supseteq I \\ \mathfrak{p} \text { prime }}} \mathfrak{p}
$$

Solution: First, we prove for the case $I=0$. Let $f \in \sqrt{0}$ so that $f^{n}=0$, and $f^{n} \in \mathfrak{p}$, for any prime ideal $\mathfrak{p} \subseteq R$. Let \mathfrak{p} be a prime ideal in R. The quotient ring R / \mathfrak{p} is an integral domain and, in particular, contains no nonzero nilpotent elements. Hence, $f^{n}+\mathfrak{p}=0 \in R / \mathfrak{p}$ so that $f \in \mathfrak{p}$.
Now, suppose that $f \notin \sqrt{0}$. The set $S=\left\{1, f, f^{2}, \ldots\right\}$ does not contain 0 so that the localisation R_{f} is not the zero ring. Let $\mathfrak{m} \subset R_{f}$ be a maximal ideal. Denote the canonical homomorphism $j: R \rightarrow R_{f}$. As $j(f) \in R_{f}$ is a unit, $j(f) \notin \mathfrak{m}$. Then $j^{-1}(\mathfrak{m}) \subset R$ is a prime ideal that does not contain f. Hence, $f \notin \bigcap_{\mathfrak{p} \subseteq R}$ prime \mathfrak{p}.
If $I \subseteq R$ is a proper ideal, we consider the quotient ring $\pi: R \rightarrow S=R / I$. Recall the bijective correspondence

$$
\{\text { prime ideals in } S\} \leftrightarrow\{\text { prime ideals in } R \text { containing } I\}, \mathfrak{p} \leftrightarrow \pi^{-1}(\mathfrak{p})
$$

Then,

$$
\sqrt{I}=\pi^{-1}\left(\sqrt{0_{S}}\right)=\pi^{-1}\left(\bigcap_{\mathfrak{p} \subseteq S \text { prime }} \mathfrak{p}\right)=\bigcap_{\mathfrak{p} \subseteq S \text { prime }} \pi^{-1}(\mathfrak{p})=\bigcap_{\substack{\mathfrak{q} \supseteq I \\ \mathfrak{q} \text { prime }}} \mathfrak{q} .
$$

2. (DG) Let $c(s)=(r(s), z(s))$ be a curve in the (x, z)-plane which is parameterized by arc length s. We construct the corresponding rotational surface, S, with parametrization

$$
\varphi:(s, \theta) \mapsto(r(s) \cos \theta, r(s) \sin \theta, z(s))
$$

Find an example of a curve c such that S has constant negative curvature -1 .

Solution:

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial s}(s, \theta)=\left(r^{\prime}(s) \cos \theta, r^{\prime}(s) \sin \theta, z^{\prime}(s)\right) \\
& \frac{\partial \varphi}{\partial \theta}(s, \theta)=(-r(s) \sin \theta, r(s) \cos \theta, 0)
\end{aligned}
$$

The coefficients of the first fundamental form are:

$$
E=r^{\prime}(s)^{2}+z^{\prime}(s)^{2}=1, \quad F=0, \quad G=r(s)^{2}
$$

Curvature:

$$
K=-\frac{1}{\sqrt{G}} \frac{\partial^{2}}{\partial s^{2}} \sqrt{G}=-\frac{r^{\prime \prime}(s)}{r(s)}
$$

To get $K=-1$ we need to find $r(s), z(s)$ such that

$$
\begin{gathered}
r^{\prime \prime}(s)=r(s), \\
r^{\prime}(s)^{2}+z^{\prime}(s)^{2}=1 .
\end{gathered}
$$

A possible solution is $r(s)=e^{-s}$ with

$$
z(s)=\int \sqrt{1-e^{-2 t}} d t=\operatorname{Arcosh}\left(r^{-1}\right)-\sqrt{1-r^{2}}
$$

3. (RA) Let $f \in L^{2}(0, \infty)$ and consider

$$
F(z)=\int_{0}^{\infty} f(t) e^{2 \pi i z t} d t
$$

for z in the upper half-plane.
(a) Check that the above integral converges absolutely and uniformly in any region $\operatorname{Im}(z) \geq C>0$.
(b) Show that

$$
\sup _{y>0} \int_{0}^{\infty}|F(x+i y)|^{2} d x=\|f\|_{L^{2}(0, \infty)}^{2}
$$

Solution: For $\operatorname{Im}(z) \geq C>0$ we have

$$
\left|f(t) e^{2 \pi i z t}\right| \leq|f(t)| e^{-2 C \pi t}
$$

thus with the Cauchy-Schwarz inequality

$$
\int_{0}^{\infty}\left|f(t) e^{2 \pi i z t}\right| d t \leq\left(\int_{0}^{\infty}|f(t)|^{2} d t\right)^{1 / 2}\left(\int_{0}^{\infty} e^{-4 C \pi t} d t\right)^{1 / 2}
$$

which proves the claim.
For the second part, Plancherel's theorem gives

$$
\int_{0}^{\infty}|F(x+i y)|^{2} d x=\int_{0}^{\infty}|f(t)|^{2} e^{-4 \pi y t} d t \leq\|f\|_{L^{2}(0, \infty)}^{2}
$$

and

$$
\sup _{y>0} \int_{0}^{\infty}|f(t)|^{2} e^{-4 \pi y t} d t=\int_{0}^{\infty}|f(t)|^{2} d t
$$

by the monotone convergence theorem.
4. (CA) Given that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}$, use contour integration to prove that each of the improper integrals $\int_{0}^{2} \sin \left(x^{2}\right) d x$ and $\int_{0}^{\infty} \cos \left(x^{2}\right) d x$ converges to $\sqrt{\pi / 8}$.

Solution: We integrate $e^{-z^{2}} d z$ along a triangular contour with vertices at $0, M$, and $(1+i) M$, and let $M \rightarrow \infty$. Since $e^{-z^{2}}$ is holomorphic on \mathbb{C}, the integral vanishes. The integral from 0 to M is $\int_{0}^{M} e^{-x^{2}} d x$, which approaches $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}$. The vertical integral approaches zero, because it is bounded in absolute value by

$$
\begin{gathered}
\int_{0}^{M}\left|e^{-(M+y i)^{2}}\right| d y=\int_{0}^{M} e^{y^{2}-M^{2}} d y<\int_{0}^{M} e^{M(y-M)} d y \\
=\int_{0}^{M} e^{-M t} d t<\int_{0}^{\infty} e^{-M t} d t=\frac{1}{M} \rightarrow 0
\end{gathered}
$$

(substituting $t=M-y$ in the middle step). Thus the diagonal integral (with direction reversed, from 0 to $(1+i) \infty)$ equals $\frac{1}{2} \sqrt{\pi}$. The change of variable $z=e^{\pi i / 4} x$ converts this integral to $e^{\pi i / 4} \int_{0}^{\infty} e^{-i x^{2}} d x$. Hence

$$
\int_{0}^{\infty}\left(\cos x^{2}-i \sin x^{2}\right) d x=\int_{0}^{\infty} e^{-i x^{2}} d x=\frac{1}{2} e^{-\pi i / 4} \sqrt{\pi}=\frac{1-i}{2 \sqrt{2}} \sqrt{\pi}
$$

equating real and imaginary parts yields the required result.
5. (AT)
(a) Let $X=\mathbb{R} P^{3} \times S^{2}$ and $Y=\mathbb{R} P^{2} \times S^{3}$. Show that X and Y have the same homotopy groups but are not homotopy equivalent.
(b) Let $A=S^{2} \times S^{4}$ and $B=\mathbb{C} P^{3}$. Show that A and B have the same singular homology groups with \mathbb{Z}-coefficients but are not homotopy equivalent.

Solution: The universal covers of $\mathbb{R} P^{2}$ and $\mathbb{R} P^{3}$ are S^{2} and S^{3}, respectively. Moreover, these covers are both 2-sheeted. Hence, we have

$$
\begin{aligned}
& \pi_{1}(X)=\pi_{1}\left(\mathbb{R} P^{3}\right) \times \pi_{1}\left(S^{2}\right)=\pi_{1}\left(\mathbb{R} P^{3}\right)=\mathbb{Z} / 2 \mathbb{Z} \\
& \pi_{1}(Y)=\pi_{1}\left(\mathbb{R} P^{2}\right) \times \pi_{1}\left(S^{3}\right)=\pi_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

Also, $\pi_{k}\left(\mathbb{R} P^{j}\right)=\pi_{k}\left(S^{j}\right)$, for $k>1, j=2,3$ so that

$$
\pi_{k}(X)=\pi_{k}\left(S^{2}\right) \times \pi_{k}\left(S^{3}\right)=\pi_{k}(Y), \quad k>1 .
$$

To show that X and Y are not homotopy equivalent, we show that they have nonisomorphic homology groups. We make use of the following well-known singular homology groups (with integral coefficients)

$$
\begin{gathered}
H_{0}\left(S^{n}\right)=H_{n}\left(S^{n}\right)=\mathbb{Z}, \quad H_{i}\left(S^{k}\right)=0, i \neq 0, n, \\
H_{0}\left(\mathbb{R} P^{2}\right)=H_{2}\left(\mathbb{R} P^{2}\right)=\mathbb{Z}, H_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / 2 \mathbb{Z}, H_{i}\left(\mathbb{R} P^{2}\right)=0, i \neq 0,1,2 \\
H_{0}\left(\mathbb{R} P^{3}\right)=\mathbb{Z}, H_{1}\left(\mathbb{R} P^{3}\right)=\mathbb{Z} / 2 \mathbb{Z}, H_{i}\left(\mathbb{R} P^{3}\right)=0, i \neq 0,1
\end{gathered}
$$

Now, the Kunneth theorem in singular homology (with \mathbb{Z}-coefficients) gives an exact sequence
$0 \rightarrow \bigoplus_{i+j=2} H_{i}\left(\mathbb{R} P^{3}\right) \otimes_{\mathbb{Z}} H_{j}\left(S^{2}\right) \rightarrow H_{2}(X) \rightarrow \bigoplus_{i+j=1} \operatorname{Tor}_{1}\left(H_{i}\left(\mathbb{R} P^{3}\right), H_{j}\left(S^{2}\right)\right) \rightarrow 0$
Since $H_{k}\left(S^{2}\right)$ is free, for every k, we have

$$
H_{2}(X) \simeq \bigoplus_{i+j=2} H_{i}\left(\mathbb{R} P^{3}\right) \otimes_{\mathbb{Z}} H_{j}\left(S^{2}\right)=\mathbb{Z}
$$

Similarly, we compute

$$
H_{2}(Y) \simeq \bigoplus_{i+j=2} H_{i}\left(\mathbb{R} P^{2}\right) \otimes_{\mathbb{Z}} H_{j}\left(S^{3}\right)=\mathbb{Z} / 2 \mathbb{Z}
$$

In particular, X and Y are not homotopy equivalent.
For the second part, B can be constructed as a cell complex with a single cell in dimensions $0,2,4,6$. Therefore, the homology of B is $H_{2 i}(B)=\mathbb{Z}$, for $i=0, \ldots, 3$, and $H_{k}(B)=0$ otherwise.
The Kunneth theorem for singular cohomology (with \mathbb{Z}-coefficients), combined with the fact that $H_{k}\left(S^{n}\right)$ is free, for any k, gives

$$
H_{k}(A) \simeq \bigoplus_{i+j=k} H_{i}\left(S^{2}\right) \otimes H_{j}\left(S^{4}\right)
$$

Hence, $H_{2 i}(A)=\mathbb{Z}$, for $i=0, \ldots, 3$, and $H_{k}(A)=0$ otherwise.
In order to show that A and B are not homotopy equivalent we will show that they have nonisomorphic homotopy groups.
Consider the canonical quotient map $\mathbb{C}^{4}-\{0\} \rightarrow \mathbb{C} P^{3}$. This restricts to give a fiber bundle $S^{1} \rightarrow S^{7} \rightarrow \mathbb{C} P^{3}$. The associated long exact sequence in homotopy

$$
\cdots \rightarrow \pi_{k+1}\left(\mathbb{C} P^{3}\right) \rightarrow \pi_{k}\left(S^{1}\right) \rightarrow \pi_{k}\left(S^{7}\right) \rightarrow \pi_{k}\left(\mathbb{C} P^{3}\right) \rightarrow \cdots
$$

together with the fact that $\pi_{3}\left(S_{1}\right)=\pi_{4}\left(S^{7}\right)$, shows that $\pi_{4}\left(\mathbb{C} P^{3}\right)=0$. However, $\pi_{4}(A)=\pi_{4}\left(S^{4}\right)=\mathbb{Z}$.
6. (AG)

Let C be the smooth projective curve over \mathbb{C} with affine equation $y^{2}=f(x)$, where $f \in \mathbb{C}[x]$ is a square-free monic polynomial of degree $d=2 n$.
(a) Prove that the genus of C is $n-1$.
(b) Write down an explicit basis for the space of global differentials on C.

Solution: For the first part, use Riemann-Hurwitz: the 2: 1 map from C to the x-line is ramified above the roots of f and nowhere else (not even at infinity because $\operatorname{deg} f$ is even), so

$$
2-2 g(C)=\chi(C)=2 \chi\left(\mathbb{P}^{1}\right)-\operatorname{deg} P=4-2 n,
$$

whence $g(C)=n-1$.
For the second, let $\omega_{0}=d x / y$. This differential is holomorphic, with zeros of order $g-1$ at the two points at infinity. (Proof by local computation around those points and the roots of P, which are the only places where holomorphy is not immediate; $d x$ has a pole of order -2 at infinity but $1 / y$ has zeros of order n at the points above $x=\infty$, while $2 y d y=P^{\prime}(x) d x$ takes care of the Weierstrass points.) Hence the space of holomorphic differentials contains

$$
\Omega:=\left\{P(x) \omega_{0} \mid \operatorname{deg} P<g\right\},
$$

which has dimension g. Thus Ω is the full space of differentials, with basis $\left\{\omega_{k}=x^{k} \omega_{0}, k=0, \ldots, g-1\right\}$.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Thursday September 1, 2016 (Day 3)

1. (AT) Model $S^{2 n-1}$ as the unit sphere in \mathbb{C}^{n}, and consider the inclusions

Let S^{∞} and \mathbb{C}^{∞} denote the union of these spaces, using these inclusions.
(a) Show that S^{∞} is a contractible space.
(b) The group S^{1} appears as the unit norm elements of \mathbb{C}^{\times}, which acts compatibly on the spaces \mathbb{C}^{n} and $S^{2 n-1}$ in the systems above. Calculate all the homotopy groups of the homogeneous space S^{∞} / S^{1}.

Solution: The shift operator gives a norm-preserving injective map $T: \mathbb{C}^{\infty} \rightarrow$ \mathbb{C}^{∞} that sends S^{∞} into the hemisphere where the first coordinate is zero. The line joining $x \in S^{\infty}$ to $T(x)$ cannot pass through zero, since x and $T(x)$ cannot be scalar multiples, and hence the linear homotopy joining x to $T(x)$ shows that T is homotopic to the identity. However, since $T\left(S^{\infty}\right)$ forms an equatorial hemisphere, there is a also a linear homotopy from T to the constant map at either of the poles.
For the second part, because S^{1} acts properly discontinuously on S^{∞}, the quotient sequence

$$
S^{1} \rightarrow S^{\infty} \rightarrow S^{\infty} / S^{1}
$$

forms a fiber bundle. The homotopy groups of S^{1} are known: $\pi_{1} S^{1} \cong \mathbb{Z}$ and $\pi_{\neq 1} S^{1}=0$ otherwise. Since S^{∞} is contractible, the long exact sequence of higher homotopy groups shows that $\pi_{2}\left(S^{\infty} / S^{1}\right)=\mathbb{Z}$ and $\pi_{\neq 2}\left(S^{\infty} / S^{1}\right)=0$ otherwise.
2. (AG) Let $X \subset \mathbb{P}^{n}$ be a general hypersurface of degree d. Show that if

$$
\binom{k+d}{k}>(k+1)(n-k)
$$

then X does not contain any k-plane $\Lambda \subset \mathbb{P}^{n}$.

Solution: For the first, let \mathbb{P}^{N} be the space of all hypersurfaces of degree d in \mathbb{P}^{n}, and let

$$
\Gamma=\left\{(X, \Lambda) \in \mathbb{P}^{N} \times \mathbb{G}(k, n) \mid \Lambda \subset X\right\}
$$

The fiber of Γ over the point $[\Lambda] \in \mathbb{G}(k, n)$ is just the subspace of \mathbb{P}^{N} corresponding to the vector space of polynomials vanishing on Λ; since the space of polynomials on \mathbb{P}^{n} surjects onto the space of polynomials on $\Lambda \cong \mathbb{P}^{k}$, this is a subspace of codimension $\binom{k+d}{k}$ in \mathbb{P}^{N}. We deduce that

$$
\operatorname{dim} \Gamma=(k+1)(n-k)+N-\binom{k+d}{k}
$$

in particular, if the inequality of the problem holds, $\operatorname{then} \operatorname{dim} \Gamma<N$, so that Γ cannot dominate \mathbb{P}^{N}.
3. (DG) Let $\mathcal{H}^{2}:=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$. Equip \mathcal{H}^{2} with a metric

$$
g_{\alpha}:=\frac{d x^{2}+d y^{2}}{y^{\alpha}}
$$

where $\alpha \in \mathbb{R}$.
(a) Show that $\left(\mathcal{H}^{2}, g_{\alpha}\right)$ is incomplete if $\alpha \neq 2$.
(b) Identify $z=x+i y$. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})$, consider the map $z \mapsto \frac{a z+b}{c z+d}$. Show that this defines an isometry of $\left(\mathcal{H}^{2}, g_{2}\right)$.
(c) Show that $\left(\mathcal{H}^{2}, g_{2}\right)$ is complete. (Hint: Show that the isometry group acts transitively on the tangent space at each point.)

Solution: For the first part, consider the geodesic $\gamma(t)$ with $\gamma(0)=(0,1)$, and $\gamma^{\prime}(0)=\frac{\partial}{\partial y}$. In order for $\left(\mathcal{H}^{2}, g_{\alpha}\right)$ to be complete, this geodesics must exist for all $t \in(-\infty, \infty)$. By symmetry, this geodesic must be given by

$$
\mathbf{x}(t)=(0, y(t)) .
$$

Furthermore, $\mathbf{x}(t)$ must have constant speed, which we may as well take to be 1. Thus $\frac{(\dot{y})^{2}}{y^{\alpha}}=1$, or in other words,

$$
\dot{y}=y^{\alpha / 2} .
$$

If $\alpha \neq 2$, then the solution to this ODE is

$$
y(t)=\left(\left(1-\frac{\alpha}{2}\right) t+1\right)^{1 /\left(1-\frac{\alpha}{2}\right)}
$$

thus, this geodesics persists only as long as $\left(1-\frac{\alpha}{2}\right) t+1 \geq 0$. This set is always bounded from one side. Note that when $\alpha=2$, we get $\mathbf{x}(t)=\left(0, e^{t}\right)$, which
exists for all time.
(b) To begin, note that $d z \otimes d \bar{z}=d x \otimes d x+d y \otimes d y$, so we can write the metric as

$$
g_{2}=\frac{4 d z \otimes d \bar{z}}{|z-\bar{z}|^{2}}
$$

Let $A \in S L(2, \mathbb{R})$, we compute

$$
A^{*} d z=\frac{a d z}{c z+d}-c \frac{(a z+b) d z}{(c z+d)^{2}}=(a d-b c) \frac{d z}{(c z+d)^{2}}=\frac{d z}{(c z+d)^{2}}
$$

and so $A^{*} d \bar{z}=\frac{d \bar{z}}{(c \bar{z}+d)^{2}}$. It remains to compute

$$
A^{*} z-A^{*} \bar{z}=\frac{a z+b}{c z+d}-\frac{a \bar{z}+b}{c \bar{z}+d}=\frac{z-\bar{z}}{|c z+d|^{2}}
$$

where we have used that $A \in S L(2, \mathbb{R})$. Putting everything together we get

$$
A^{*} g_{2}=\frac{4 d z \otimes d \bar{z}}{|c z+d|^{4}} \cdot \frac{|c z+d|^{4}}{|z-\bar{z}|^{2}}=g_{2}
$$

and so $S L(2, \mathbb{R})$ acts by isometry.
(c) By the computation from part (a), we know that the geodesic- let's call it $\gamma_{0}(t)$ - through the point $(0,1)$ in the direction $(0,1)$ exists for all time. Let $z=x+i y$ be any point in \mathcal{H}^{2}. By an isometry, we can map this point to $z=i y$. Without loss of generality, let us assume $y=1$. It suffices to show that we can find $A \in S L(2, \mathbb{R})$ so that $A(i)=i$, and $A_{*} V=(0,1)$, where V is any unit vector in the tangent space $T_{i} \mathcal{H}^{2}$, for then the geodesic through i with tangent vector V will be nothing but $A^{-1}\left(\gamma_{0}(t)\right)$, and hence will exist for all time. First, observe that $A(i)=i$, if and only if $A=\left(\begin{array}{ll}a & b \\ -b & a\end{array}\right)$. Consider the rotation matrix

$$
A=\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

A straightforward computation shows that, in complex coordinates,

$$
A_{*} V=\frac{1}{(\cos \theta+i \sin \theta)^{2}} V=e^{-2 \sqrt{-1} \theta} V
$$

that is, $A_{*}: T_{i} \mathcal{H}^{2} \rightarrow T_{i} \mathcal{H}^{2}$ acts as a rotation. Since θ is arbitrary, and the rotations act transitively on S^{2}, we're done.
4. (RA)
(a) Let H be a Hilbert space, $K \subset H$ a closed subspace, and x a point in H. Show that there exists a unique y in K that minimizes the distance $\|x-y\|$ to x.
(b) Give an example to show that the conclusion can fail if H is an inner product space which is not complete.

Solution: (a): If $y, y^{\prime} \in K$ both minimize distance to x, then by the parallelogram law:

$$
\left\|x-\frac{y+y^{\prime}}{2}\right\|^{2}+\left\|\frac{y-y^{\prime}}{2}\right\|^{2}=\frac{1}{2}\left(\|x-y\|^{2}+\left\|x-y^{\prime}\right\|^{2}\right)=\|x-y\|^{2}
$$

But $\frac{y+y^{\prime}}{2}$ cannot be closer to x than y, by assumption, so $y=y^{\prime}$.
Let $C=\inf _{y \in K}\|x-y\|$, then $0 \leq C<\infty$ because K is non-empty. We can find a sequence $y_{n} \in K$ such that $\left\|x-y_{n}\right\| \rightarrow C$, which we want to show is Cauchy. The midpoints $\frac{y_{n}+y_{m}}{2}$ are in K by convexity, so $\left\|x-\frac{y_{n}+y_{m}}{2}\right\| \geq C$ and using the parallelogram law as above one sees that $\left\|y_{n}-y_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. By completeness of H the sequence y_{n} converges to a limit y, which is in K, since K is closed. Finally, continuity of the norm implies that $\|x-y\|=C$.
(b): For example choose $H=C([0,1]) \subset L^{2}([0,1]), K$ the subspace of functions with support contained in $\left[0, \frac{1}{2}\right]$, and and $x=1$ the constant function. If f_{n} is a sequence in K converging to $f \in H$ in L^{2}-norm, then

$$
\int_{1 / 2}^{1}|f|^{2}=0
$$

thus f vanishes on $[1 / 2,1]$, showing that K is closed. The distance $\|x-y\|$ can be made arbitrarily close to $1 / \sqrt{2}$ for $y \in K$ by approximating $\chi_{[0,1 / 2]}$ by continuous functions, but the infimum is not attained.
5. (A)
(a) Prove that there exists a unique (up to isomorphism) nonabelian group of order 21.
(b) Let G be this group. How many conjugacy classes does G have?
(c) What are the dimensions of the irreducible representations of G ?

Solution: Let G be a group of order 21, and select elements g_{3} and g_{7} of orders 3 and 7 respectively. The subgroup generated by g_{7} is normal - if it weren't, then g_{7} and $x g_{7} x^{-1}$ witnessing nonnormality would generate a group of order
49. In particular, we have $g_{3} g_{7} g_{3}^{-1}=g_{7}^{j}$ for some nonzero $j \in \mathbb{Z} / 7$. Now we use the order of g_{3} :

$$
\begin{aligned}
g_{7} & =g_{3} g_{3} g_{3} \cdot g_{7} \cdot g_{3}^{-1} g_{3}^{-1} g_{3}^{-1} \\
& =g_{3} g_{3}\left(g_{7}^{j}\right) g_{3}^{-1} g_{3}^{-1} \\
& =g_{3}\left(g_{7}^{j^{2}}\right) g_{3}^{-1} \\
& =g_{7}^{j^{3}},
\end{aligned}
$$

and hence $j^{3} \equiv 1(\bmod 7)$. This is nontrivially solved by $j=2$ and $j=4$, and these two cases coincide: if for instance $g_{3} g_{7} g_{3}^{-1}=g_{7}^{2}$, then by replacing the generator g_{3} with g_{3}^{2} we instead see

$$
g_{3}^{2} g_{7}\left(g_{3}^{2}\right)^{-1}=g_{3} g_{7}^{2} g_{3}^{-1}=g_{7}^{4}
$$

We have the following conjugacy classes of elements:

- $\{e\}$ forms a class of its own.
- $\left\{g_{7}, g_{7}^{4}, g_{7}^{2}\right\}$ and $\left\{g_{7}^{3}, g_{7}^{5}, g_{7}^{6}\right\}$ form classes by our choice of j.
- Any element of order 3 generates a Sylow 3-subgroup, all of which are conjugate as subgroups. However, there cannot be an x with $x g_{3} x^{-1}=$ g_{3}^{2}, since G has only elements of odd order. Hence, there are two final conjugacy classes, each of size 7: those elements conjugate to g_{3} and those conjugate to g_{3}^{2}.

These five conjugacy sets give rise to five irreducible representations, which must be of dimensions $1,1,1,3$, and 3 (since these square-sum to $|G|=21$).
6. (CA) Find (with proof) all entire holomorphic functions $f: \mathbb{C} \rightarrow \mathbb{C}$ satisfying the conditions:

1. $f(z+1)=f(z)$ for all $z \in \mathbb{C}$; and
2. There exists M such that $|f(z)| \leq M \exp (10|z|)$ for all $z \in \mathbb{C}$.

Solution: The functions satisfying these conditions are precisely the \mathbb{C}-linear combinations of $e^{-2 \pi i z}, 1$, and $e^{2 \pi i z}$. Indeed such f is readily seen to satisfy the two conditions. Conversely (1) means that f descends to a function of $q:=e^{2 \pi i z} \in \mathbb{C}^{*}$, say $f(z)=F(q)$, and then by (2) there is some M^{\prime} such that $|F(q)| \leq M^{\prime} \max \left(|q|^{-5 / \pi},|q|^{5 / \pi}\right)$ for all q, whence $q F$ and $q^{-1} F$ have removable singularities at $q=0$ and $q=\infty$ respectively, etc.

