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1. (DG)

(a) Show that if V is a C1-vector bundle over a compact manifold X, then
there exists a vector bundle W over X such that V �W is trivializable,
i.e. isomorphic to a trivial bundle.

(b) Find a vector bundle W on S2, the 2-sphere, such that T ⇤S2 � W is
trivializable.

Solution: Since V is locally trivializable and M is compact, one can find a
finite open cover Ui, i = 1, . . . , n, of M and trivializations Ti : V |Ui ! Rk.
Thus, each Ti is a smooth map which restricts to a linear isomorphism on each
fiber of V |Ui . Next, choose a smooth partition of unity {fi}i=1,...,n subordinate
to the cover {Ui}i=1,...,n. If p : V ! M is the projection to the base, then
there are maps

V |Ui ! Rk, v 7! fi(p(v))Ti(v)

which extend (by zero) to all of V and which we denote by fiTi. Together, the
fiTi give a map T : V ! Rnk which has maximal rank k everywhere, because
at each point of X at least one of the fi is non-zero. Thus V is isomorphic
to a subbundle, T (V ), of the trivial bundle, Rnk. Using the standard inner
product on Rnk we get an orthogonal bundle W = T (V )? which has the
desired property.

For the second part, embed S2 into R3 in the usual way, then

TS2 �NS2 = TR3|S2

where NS2 is the normal bundle to S2 in R3. Dualizing we get

T ⇤S2 � (NS2)⇤ = T ⇤R3|S2

which solves the problem with W = (NS2)⇤.

2. (RA) Let (X, d) be a metric space. For any subset A ⇢ X, and any ✏ > 0 we
set

B✏(A) =
[

p2A
B✏(p).



(This is the “✏-fattening” of A.) For Y, Z bounded subsets of X define the
Hausdor↵ distance between Y and Z by

dH(Y, Z) := inf {✏ > 0 | Y ⇢ B✏(Z), Z ⇢ B✏(Y )} .
Show that dH defines a metric on the set X̃ := {A ⇢ X

��A is closed and bounded}.

Solution: We need to show that (X̃, dH) is a metric space. First, since com-
pact sets are bounded, dH(Y, Z) is well defined for any compact sets Y, Z.
Secondly, dH(Y, Z) = dH(Z, Y ) � 0 is obvious from the definition. We need
to prove that the distance is positive when Y 6= Z, and that dH satisfies the
triangle inequality. First, let us show that dH(Y, Z) > 0 if Y 6= Z. Without
loss of generality, we can assume there is a point p 2 Y \Zc. Since Z is com-
pact, it is closed, so there exists r > 0 such that Br(p) ⇢ Zc. In particular, p
is not in Br(Z). Thus Y is not contained in Br(Z) and so dH(Y, Z) � r > 0.

It remains to prove the triangle inequality. To this end, suppose that Y, Z,W
are compact subsets of X. Fix ✏1 > dH(Y, Z), ✏2 > dH(Z,W ), then

Y ⇢ B✏1(Z), Z ⇢ B✏1(Y ), Z ⇢ B✏2(W ), W ⇢ B✏2(Z)

Then dH(Y, Z) < ✏1, dH(Z,W ) < ✏2. Let us prove that Y ⇢ B✏1+✏2(W ), the
other containment being identical. Fix a point y 2 Y . By our choice of ✏1
there exists a point z 2 Z such that y 2 N✏1(z). By our choice of ✏2 there
exists a point w 2 W such that z 2 B✏2(w). Then

d(y, w)  d(y, z) + d(z, w)  ✏1 + ✏2

so y 2 B✏1+✏2(w). This proves the containment. The other containment is
identical, by just swapping Y,W . Thus

dH(Y,W )  ✏1 + ✏2

But this holds for all ✏1, ✏2 as above. Taking the infimum we obtain the result.

3. (AT) Let Tn = Rn/Zn, the n-torus. Prove that any path-connected covering
space Y ! Tn is homeomorphic to Tm ⇥ Rn�m, for some m.

Solution: The universal covering space of Tn is Rn, so that any path connected
covering space of X is of the form Rn/G, for some subgroup G ✓ ⇡1(Tn).
We have ⇡1(Tn) = ⇡1(S1) ⇥ · · · ⇥ ⇡1(S1) = Zn, and Zn is acting on Rn by
translation. Thus, G ✓ Zn is free. Choose a Z-basis (v1, . . . , vm) of G, and
consider the (real!) change of basis taking (v1, . . . , vm) to the first m standard
basis vectors (e1, . . . , em). Hence, G is acting on Rn by translation in the first
m coordinates. Thus,

Rn/G ' Rm/Zm ⇥ Rn�m ' Tm ⇥ Rn�m.

the

closed

relevant



4. (CA)

Let f : C ! C be a nonconstant holomorphic function. Show that the image
of f is dense in C.

Solution: Suppose that for some w0 2 C and some ✏ > 0, the image of f lies
outside the ball B✏(w0) = {w 2 C | |w � w0| < ✏}. Then the function

g(z) =
1

f(z)� w0

is bounded and homomorphic in the entire plane, hence constant.

5. (A) Let F � Q be a splitting field for the polynomial f = xn � 1.

(a) Let A ⇢ F⇥ = {z 2 F | z 6= 0} be a finite (multiplicative) subgroup.
Prove that A is cyclic.

(b) Prove that G = Gal(F/Q) is abelian.

Solution: For the first part, let m = |A|. Suppose that A is not cyclic, so
that the order of any element in A is less than m. A is a finite abelian group
so it is isomorphic to a product of cyclic groups A ' Zn1 ⇥ · · · ⇥ Znk , where
ni|ni+1. In particular, the order of any element in A divides nk. Hence, for
any z 2 A, znk = 1. However, the polynomial xnk � 1 2 F [x] admits at most
nk < m roots in F , which is a contradiction. So, there must be some element
in A with order m.

For the second part, since f 0 = nxn�1 and f are relatively prime, f admits n
distinct roots 1 = z0, . . . , zn�1. As F is a splitting field of f we can assume
that F = Q(z0, . . . , zn�1) ✓ C. U = {z0, . . . , zn�1} ⇢ F⇥ is a subgroup
of the multiplicative group of units in F and is cyclic; moreover, Aut(U) is
isomorphic to the (multiplicative) group of units (Z/nZ)⇤. Restriction defines
a homomorphism G ! Aut(U) , ↵ 7! ↵|U ; this homomorphism is injective
because F = Q(z0, . . . , zn�1). In particular, G is isomorphic to a subgroup of
the abelian group (Z/nZ)⇤.

6. (AG) Let C and D ⇢ P2 be two plane cubics (that is, curves of degree 3),
intersecting transversely in 9 points {p1, p2, . . . , p9}. Show that p1, . . . , p6 lie
on a conic (that is, a curve of degree 2) if and only if p7, p8 and p9 are colinear.

Solution: First, observe that we can replace C = V (F ) and D = V (G)
by any two independent linear combinations C 0 = V (a0F + a1G) and D0 =
V (b0F + b1G). Now suppose that p1, . . . , p6 lie on a conic Q ⇢ P2. Picking
a seventh point q 2 Q, we see that some linear combination C0 of C and D
contains q and hence contains Q; thus C0 = Q [ L for some line L ⇢ P2.
Replacing C or D with C0, we see that p7, p8 and p9 2 L.
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1. (A) Let R be a commutative ring with unit. If I ✓ R is a proper ideal, we
define the radical of I to be

p
I = {a 2 R | am 2 I for some m > 0}.

Prove that p
I =

\

p◆I
p prime

p.

Solution: First, we prove for the case I = 0. Let f 2 p
0 so that fn = 0,

and fn 2 p, for any prime ideal p ✓ R. Let p be a prime ideal in R. The
quotient ring R/p is an integral domain and, in particular, contains no nonzero
nilpotent elements. Hence, fn + p = 0 2 R/p so that f 2 p.

Now, suppose that f /2 p
0. The set S = {1, f, f2, . . .} does not contain 0 so

that the localisation Rf is not the zero ring. Let m ⇢ Rf be a maximal ideal.
Denote the canonical homomorphism j : R ! Rf . As j(f) 2 Rf is a unit,
j(f) /2 m. Then j�1(m) ⇢ R is a prime ideal that does not contain f . Hence,
f /2 T

p✓R prime p.

If I ✓ R is a proper ideal, we consider the quotient ring ⇡ : R ! S = R/I.
Recall the bijective correspondence

{prime ideals in S} $ {prime ideals in R containing I} , p $ ⇡�1(p)

Then,

p
I = ⇡�1(

p
0S) = ⇡�1

0

@
\

p✓S prime

p

1

A =
\

p✓S prime

⇡�1(p) =
\

q◆I
q prime

q.

2. (DG) Let c(s) = (r(s), z(s)) be a curve in the (x, z)-plane which is parame-
terized by arc length s. We construct the corresponding rotational surface, S,
with parametrization

' : (s, ✓) 7! (r(s) cos ✓, r(s) sin ✓, z(s)).

Find an example of a curve c such that S has constant negative curvature �1.



Solution:

@'

@s
(s, ✓) = (r0(s) cos ✓, r0(s) sin ✓, z0(s))

@'

@✓
(s, ✓) = (�r(s) sin ✓, r(s) cos ✓, 0)

The coe�cients of the first fundamental form are:

E = r0(s)2 + z0(s)2 = 1, F = 0, G = r(s)2

Curvature:

K = � 1p
G

@2

@s2

p
G = �r00(s)

r(s)

To get K = �1 we need to find r(s), z(s) such that

r00(s) = r(s),

r0(s)2 + z0(s)2 = 1.

A possible solution is r(s) = e�s with

z(s) =

Z p
1� e�2tdt = Arcosh(r�1)�

p
1� r2.

3. (RA) Let f 2 L2(0,1) and consider

F (z) =

Z 1

0
f(t)e2⇡iztdt

for z in the upper half-plane.

(a) Check that the above integral converges absolutely and uniformly in any
region Im(z) � C > 0.

(b) Show that

sup
y>0

Z 1

0
|F (x+ iy)|2dx = kfk2L2(0,1).

Solution: For Im(z) � C > 0 we have

|f(t)e2⇡izt|  |f(t)|e�2C⇡t

thus with the Cauchy–Schwarz inequality

Z 1

0
|f(t)e2⇡izt|dt 

✓Z 1

0
|f(t)|2dt

◆1/2✓Z 1

0
e�4C⇡tdt

◆1/2



which proves the claim.

For the second part, Plancherel’s theorem gives
Z 1

0
|F (x+ iy)|2dx =

Z 1

0
|f(t)|2e�4⇡ytdt  kfk2L2(0,1)

and

sup
y>0

Z 1

0
|f(t)|2e�4⇡ytdt =

Z 1

0
|f(t)|2dt

by the monotone convergence theorem.

4. (CA) Given that
R1
0 e�x2

dx = 1
2

p
⇡, use contour integration to prove that

each of the improper integrals
R1
0 sin(x2) dx and

R1
0 cos(x2) dx converges top

⇡/8.

Solution: We integrate e�z2 dz along a triangular contour with vertices at
0, M , and (1 + i)M , and let M ! 1. Since e�z2 is holomorphic on C,
the integral vanishes. The integral from 0 to M is

RM
0 e�x2

dx, which ap-

proaches
R1
0 e�x2

dx = 1
2

p
⇡. The vertical integral approaches zero, because

it is bounded in absolute value by

Z M

0
|e�(M+yi)2 | dy =

Z M

0
ey

2�M2
dy <

Z M

0
eM(y�M) dy

=

Z M

0
e�Mt dt <

Z 1

0
e�Mt dt =

1

M
! 0

(substituting t = M � y in the middle step). Thus the diagonal integral (with
direction reversed, from 0 to (1 + i)1) equals 1

2

p
⇡. The change of variable

z = e⇡i/4x converts this integral to e⇡i/4
R1
0 e�ix2

dx. Hence

Z 1

0
(cosx2 � i sinx2) dx =

Z 1

0
e�ix2

dx =
1

2
e�⇡i/4p⇡ =

1� i

2
p
2

p
⇡.

equating real and imaginary parts yields the required result.

5. (AT)

(a) Let X = RP 3 ⇥ S2 and Y = RP 2 ⇥ S3. Show that X and Y have the
same homotopy groups but are not homotopy equivalent.

(b) Let A = S2⇥S4 and B = CP 3. Show that A and B have the same singu-
lar homology groups with Z-coe�cients but are not homotopy equivalent.



Solution: The universal covers of RP 2 and RP 3 are S2 and S3, respectively.
Moreover, these covers are both 2-sheeted. Hence, we have

⇡1(X) = ⇡1(RP 3)⇥ ⇡1(S
2) = ⇡1(RP 3) = Z/2Z

⇡1(Y ) = ⇡1(RP 2)⇥ ⇡1(S
3) = ⇡1(RP 2) = Z/2Z.

Also, ⇡k(RP j) = ⇡k(Sj), for k > 1, j = 2, 3 so that

⇡k(X) = ⇡k(S
2)⇥ ⇡k(S

3) = ⇡k(Y ), k > 1.

To show that X and Y are not homotopy equivalent, we show that they have
nonisomorphic homology groups. We make use of the following well-known
singular homology groups (with integral coe�cients)

H0(S
n) = Hn(S

n) = Z, Hi(S
k) = 0, i 6= 0, n,

H0(RP 2) = H2(RP 2) = Z, H1(RP 2) = Z/2Z, Hi(RP 2) = 0, i 6= 0, 1, 2

H0(RP 3) = Z, H1(RP 3) = Z/2Z, Hi(RP 3) = 0, i 6= 0, 1

Now, the Kunneth theorem in singular homology (with Z-coe�cients) gives
an exact sequence

0 !
M

i+j=2

Hi(RP 3)⌦ZHj(S
2) ! H2(X) !

M

i+j=1

Tor1(Hi(RP 3), Hj(S
2)) ! 0

Since Hk(S2) is free, for every k, we have

H2(X) '
M

i+j=2

Hi(RP 3)⌦Z Hj(S
2) = Z

Similarly, we compute

H2(Y ) '
M

i+j=2

Hi(RP 2)⌦Z Hj(S
3) = Z/2Z.

In particular, X and Y are not homotopy equivalent.

For the second part, B can be constructed as a cell complex with a single
cell in dimensions 0, 2, 4, 6. Therefore, the homology of B is H2i(B) = Z, for
i = 0, . . . , 3, and Hk(B) = 0 otherwise.

The Kunneth theorem for singular cohomology (with Z-coe�cients), combined
with the fact that Hk(Sn) is free, for any k, gives

Hk(A) '
M

i+j=k

Hi(S
2)⌦Hj(S

4).



Hence, H2i(A) = Z, for i = 0, . . . , 3, and Hk(A) = 0 otherwise.

In order to show that A and B are not homotopy equivalent we will show that
they have nonisomorphic homotopy groups.

Consider the canonical quotient map C4 � {0} ! CP 3. This restricts to
give a fiber bundle S1 ! S7 ! CP 3. The associated long exact sequence in
homotopy

· · · ! ⇡k+1(CP 3) ! ⇡k(S
1) ! ⇡k(S

7) ! ⇡k(CP 3) ! · · ·

together with the fact that ⇡3(S1) = ⇡4(S7), shows that ⇡4(CP 3) = 0. How-
ever, ⇡4(A) = ⇡4(S4) = Z.

6. (AG)

Let C be the smooth projective curve over C with a�ne equation y2 = f(x),
where f 2 C[x] is a square-free monic polynomial of degree d = 2n.

(a) Prove that the genus of C is n� 1.

(b) Write down an explicit basis for the space of global di↵erentials on C.

Solution: For the first part, use Riemann-Hurwitz: the 2 : 1 map from C
to the x-line is ramified above the roots of f and nowhere else (not even at
infinity because deg f is even), so

2� 2g(C) = �(C) = 2�(P1)� degP = 4� 2n,

whence g(C) = n� 1.

For the second, let !0 = dx/y. This di↵erential is holomorphic, with zeros of
order g � 1 at the two points at infinity. (Proof by local computation around
those points and the roots of P , which are the only places where holomorphy
is not immediate; dx has a pole of order �2 at infinity but 1/y has zeros of
order n at the points above x = 1, while 2y dy = P 0(x) dx takes care of the
Weierstrass points.) Hence the space of holomorphic di↵erentials contains

⌦ := {P (x)!0 | degP < g},

which has dimension g. Thus ⌦ is the full space of di↵erentials, with basis
{!k = xk!0, k = 0, . . . , g � 1}.
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1. (AT) Model S2n�1 as the unit sphere in Cn, and consider the inclusions

· · · ! S2n�1 ! S2n+1 ! · · ·
# #

· · · ! Cn ! Cn+1 ! · · · .
Let S1 and C1 denote the union of these spaces, using these inclusions.

(a) Show that S1 is a contractible space.

(b) The group S1 appears as the unit norm elements of C⇥, which acts
compatibly on the spaces Cn and S2n�1 in the systems above. Calculate
all the homotopy groups of the homogeneous space S1/S1.

Solution: The shift operator gives a norm-preserving injective map T : C1 !
C1 that sends S1 into the hemisphere where the first coordinate is zero. The
line joining x 2 S1 to T (x) cannot pass through zero, since x and T (x) cannot
be scalar multiples, and hence the linear homotopy joining x to T (x) shows
that T is homotopic to the identity. However, since T (S1) forms an equatorial
hemisphere, there is a also a linear homotopy from T to the constant map at
either of the poles.

For the second part, because S1 acts properly discontinuously on S1, the
quotient sequence

S1 ! S1 ! S1/S1

forms a fiber bundle. The homotopy groups of S1 are known: ⇡1S
1 ⇠= Z and

⇡ 6=1S
1 = 0 otherwise. Since S1 is contractible, the long exact sequence of

higher homotopy groups shows that ⇡2(S1/S1) = Z and ⇡6=2(S1/S1) = 0
otherwise.

2. (AG) Let X ⇢ Pn be a general hypersurface of degree d. Show that if
✓
k + d

k

◆
> (k + 1)(n� k)

then X does not contain any k-plane ⇤ ⇢ Pn.

Solution: For the first, let PN be the space of all hypersurfaces of degree d in
Pn, and let

� = {(X,⇤) 2 PN ⇥G(k, n) | ⇤ ⇢ X}.



The fiber of � over the point [⇤] 2 G(k, n) is just the subspace of PN corre-
sponding to the vector space of polynomials vanishing on ⇤; since the space
of polynomials on Pn surjects onto the space of polynomials on ⇤ ⇠= Pk, this
is a subspace of codimension

�
k+d
k

�
in PN . We deduce that

dim� = (k + 1)(n� k) +N �
✓
k + d

k

◆
;

in particular, if the inequality of the problem holds, then dim� < N , so that
� cannot dominate PN .

3. (DG) Let H2 := {(x, y) 2 R2 : y > 0}. Equip H2 with a metric

g↵ :=
dx2 + dy2

y↵

where ↵ 2 R.

(a) Show that (H2, g↵) is incomplete if ↵ 6= 2.

(b) Identify z = x + iy. For

✓
a b
c d

◆
2 SL(2,R), consider the map

z 7! az+b
cz+d . Show that this defines an isometry of (H2, g2).

(c) Show that (H2, g2) is complete. (Hint: Show that the isometry group
acts transitively on the tangent space at each point.)

Solution: For the first part, consider the geodesic �(t) with �(0) = (0, 1), and
�0(0) = @

@y . In order for (H2, g↵) to be complete, this geodesics must exist for
all t 2 (�1,1). By symmetry, this geodesic must be given by

x(t) = (0, y(t)).

Furthermore, x(t) must have constant speed, which we may as well take to be

1. Thus (ẏ)2

y↵ = 1, or in other words,

ẏ = y↵/2.

If ↵ 6= 2, then the solution to this ODE is

y(t) =
⇣
(1� ↵

2
)t+ 1

⌘1/(1�↵
2 )

thus, this geodesics persists only as long as (1� ↵
2 )t+1 � 0. This set is always

bounded from one side. Note that when ↵ = 2, we get x(t) = (0, et), which



exists for all time.

(b) To begin, note that dz ⌦ dz̄ = dx ⌦ dx + dy ⌦ dy, so we can write the
metric as

g2 =
4dz ⌦ dz̄

|z � z̄|2
Let A 2 SL(2,R), we compute

A⇤dz =
adz

cz + d
� c

(az + b)dz

(cz + d)2
= (ad� bc)

dz

(cz + d)2
=

dz

(cz + d)2

and so A⇤dz̄ = dz̄
(cz̄+d)2 . It remains to compute

A⇤z �A⇤z̄ =
az + b

cz + d
� az̄ + b

cz̄ + d
=

z � z̄

|cz + d|2 ,

where we have used that A 2 SL(2,R). Putting everything together we get

A⇤g2 =
4dz ⌦ dz̄

|cz + d|4 · |cz + d|4
|z � z̄|2 = g2,

and so SL(2,R) acts by isometry.

(c) By the computation from part (a), we know that the geodesic– let’s call
it �0(t)– through the point (0, 1) in the direction (0, 1) exists for all time. Let
z = x + iy be any point in H2. By an isometry, we can map this point to
z = iy. Without loss of generality, let us assume y = 1. It su�ces to show
that we can find A 2 SL(2,R) so that A(i) = i, and A⇤V = (0, 1), where V
is any unit vector in the tangent space TiH2, for then the geodesic through
i with tangent vector V will be nothing but A�1(�0(t)), and hence will exist

for all time. First, observe that A(i) = i, if and only if A =

✓
a b
�b a

◆
.

Consider the rotation matrix

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

A straightforward computation shows that, in complex coordinates,

A⇤V =
1

(cos ✓ + i sin ✓)2
V = e�2

p
�1✓V,

that is, A⇤ : TiH2 ! TiH2 acts as a rotation. Since ✓ is arbitrary, and the
rotations act transitively on S2, we’re done.

4. (RA)



(a) Let H be a Hilbert space, K ⇢ H a closed subspace, and x a point in
H. Show that there exists a unique y in K that minimizes the distance
kx� yk to x.

(b) Give an example to show that the conclusion can fail if H is an inner
product space which is not complete.

Solution: (a): If y, y0 2 K both minimize distance to x, then by the parallel-
ogram law:

kx� y + y0

2
k2 + ky � y0

2
k2 = 1

2
(kx� yk2 + kx� y0k2) = kx� yk2

But y+y0

2 cannot be closer to x than y, by assumption, so y = y0.

Let C = infy2K kx � yk, then 0  C < 1 because K is non-empty. We can
find a sequence yn 2 K such that kx � ynk ! C, which we want to show is
Cauchy. The midpoints yn+ym

2 are in K by convexity, so kx � yn+ym
2 k � C

and using the parallelogram law as above one sees that kyn � ymk ! 0 as
n,m ! 1. By completeness of H the sequence yn converges to a limit y,
which is in K, since K is closed. Finally, continuity of the norm implies that
kx� yk = C.

(b): For example choose H = C([0, 1]) ⇢ L2([0, 1]), K the subspace of func-
tions with support contained in [0, 12 ], and and x = 1 the constant function.

If fn is a sequence in K converging to f 2 H in L2-norm, then

Z 1

1/2
|f |2 = 0

thus f vanishes on [1/2, 1], showing that K is closed. The distance kx � yk
can be made arbitrarily close to 1/

p
2 for y 2 K by approximating �[0,1/2] by

continuous functions, but the infimum is not attained.

5. (A)

(a) Prove that there exists a unique (up to isomorphism) nonabelian group
of order 21.

(b) Let G be this group. How many conjugacy classes does G have?

(c) What are the dimensions of the irreducible representations of G?

Solution: Let G be a group of order 21, and select elements g3 and g7 of orders
3 and 7 respectively. The subgroup generated by g7 is normal — if it weren’t,
then g7 and xg7x

�1 witnessing nonnormality would generate a group of order



49. In particular, we have g3g7g
�1
3 = gj7 for some nonzero j 2 Z/7. Now we

use the order of g3:

g7 = g3g3g3 · g7 · g�1
3 g�1

3 g�1
3

= g3g3(g
j
7)g

�1
3 g�1

3

= g3(g
j2

7 )g�1
3

= gj
3

7 ,

and hence j3 ⌘ 1 (mod 7). This is nontrivially solved by j = 2 and j = 4,
and these two cases coincide: if for instance g3g7g

�1
3 = g27, then by replacing

the generator g3 with g23 we instead see

g23g7(g
2
3)

�1 = g3g
2
7g

�1
3 = g47.

We have the following conjugacy classes of elements:

• {e} forms a class of its own.

• {g7, g47, g27} and {g37, g57, g67} form classes by our choice of j.

• Any element of order 3 generates a Sylow 3–subgroup, all of which are
conjugate as subgroups. However, there cannot be an x with xg3x

�1 =
g23, since G has only elements of odd order. Hence, there are two final
conjugacy classes, each of size 7: those elements conjugate to g3 and
those conjugate to g23.

These five conjugacy sets give rise to five irreducible representations, which
must be of dimensions 1, 1, 1, 3, and 3 (since these square-sum to |G| = 21).

6. (CA) Find (with proof) all entire holomorphic functions f : C ! C satisfying
the conditions:

1. f(z + 1) = f(z) for all z 2 C; and
2. There exists M such that |f(z)|  M exp(10|z|) for all z 2 C.

Solution: The functions satisfying these conditions are precisely the C-linear
combinations of e�2⇡iz, 1, and e2⇡iz. Indeed such f is readily seen to satisfy
the two conditions. Conversely (1) means that f descends to a function of
q := e2⇡iz 2 C⇤, say f(z) = F (q), and then by (2) there is some M 0 such
that |F (q)|  M 0max(|q|�5/⇡, |q|5/⇡) for all q, whence qF and q�1F have
removable singularities at q = 0 and q = 1 respectively, etc.


