QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday August 30, 2016 (Day 1)

1. (DG)
(a) Show that if V is a \mathcal{C}^{∞}-vector bundle over a compact manifold X, then there exists a vector bundle W over X such that $V \oplus W$ is trivializable, i.e. isomorphic to a trivial bundle.
(b) Find a vector bundle W on S^{2}, the 2 -sphere, such that $T^{*} S^{2} \oplus W$ is trivializable.
2. (RA) Let (X, d) be a metric space. For any subset $A \subset X$, and any $\epsilon>0$ we set

$$
B_{\epsilon}(A)=\bigcup_{p \in A} B_{\epsilon}(p) .
$$

(This is the " ϵ-fattening" of A.) For Y, Z bounded subsets of X define the Hausdorff distance between Y and Z by

$$
d_{H}(Y, Z):=\inf \left\{\epsilon>0 \mid Y \subset B_{\epsilon}(Z), \quad Z \subset B_{\epsilon}(Y)\right\}
$$

Show that d_{H} defines a metric on the set $\tilde{X}:=\{A \subset X \mid A$ is closed and bounded $\}$.
3. (AT) Let $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, the n-torus. Prove that any path-connected covering space $Y \rightarrow T^{n}$ is homeomorphic to $T^{m} \times \mathbb{R}^{n-m}$, for some m.
4. (CA)

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a nonconstant holomorphic function. Show that the image of f is dense in \mathbb{C}.
5. (A) Let $F \supset \mathbb{Q}$ be a splitting field for the polynomial $f=x^{n}-1$.
(a) Let $A \subset F^{\times}=\{z \in F \mid z \neq 0\}$ be a finite (multiplicative) subgroup. Prove that A is cyclic.
(b) Prove that $G=\operatorname{Gal}(F / \mathbb{Q})$ is abelian.
6. (AG) Let C and $D \subset \mathbb{P}^{2}$ be two plane cubics (that is, curves of degree 3), intersecting transversely in 9 points $\left\{p_{1}, p_{2}, \ldots, p_{9}\right\}$. Show that p_{1}, \ldots, p_{6} lie on a conic (that is, a curve of degree 2) if and only if p_{7}, p_{8} and p_{9} are colinear.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday August 31, 2016 (Day 2)

1. (A) Let R be a commutative ring with unit. If $I \subseteq R$ is a proper ideal, we define the radical of I to be

$$
\sqrt{I}=\left\{a \in R \mid a^{m} \in I \quad \text { for some } m>0\right\} .
$$

Prove that

$$
\sqrt{I}=\bigcap_{\substack{\mathfrak{p} \supseteq I \\ \mathfrak{p} \text { prime }}} \mathfrak{p} .
$$

2. (DG) Let $c(s)=(r(s), z(s))$ be a curve in the (x, z)-plane which is parameterized by arc length s. We construct the corresponding rotational surface, S, with parametrization

$$
\varphi:(s, \theta) \mapsto(r(s) \cos \theta, r(s) \sin \theta, z(s)) .
$$

Find an example of a curve c such that S has constant negative curvature - 1 .
3. (RA) Let $f \in L^{2}(0, \infty)$ and consider

$$
F(z)=\int_{0}^{\infty} f(t) e^{2 \pi i z t} d t
$$

for z in the upper half-plane.
(a) Check that the above integral converges absolutely and uniformly in any region $\operatorname{Im}(z) \geq C>0$.
(b) Show that

$$
\sup _{y>0} \int_{0}^{\infty}|F(x+i y)|^{2} d x=\|f\|_{L^{2}(0, \infty)}^{2}
$$

4. (CA) Given that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}$, use contour integration to prove that each of the improper integrals $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$ and $\int_{0}^{\infty} \cos \left(x^{2}\right) d x$ converges to $\sqrt{\pi / 8}$.
5. (AT)
(a) Let $X=\mathbb{R} P^{3} \times S^{2}$ and $Y=\mathbb{R} P^{2} \times S^{3}$. Show that X and Y have the same homotopy groups but are not homotopy equivalent.
(b) Let $A=S^{2} \times S^{4}$ and $B=\mathbb{C} P^{3}$. Show that A and B have the same singular homology groups with \mathbb{Z}-coefficients but are not homotopy equivalent.
6. (AG)

Let C be the smooth projective curve over \mathbb{C} with affine equation $y^{2}=f(x)$, where $f \in \mathbb{C}[x]$ is a square-free monic polynomial of degree $d=2 n$.
(a) Prove that the genus of C is $n-1$.
(b) Write down an explicit basis for the space of global differentials on C.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday September 1, 2016 (Day 3)

1. (AT) Model $S^{2 n-1}$ as the unit sphere in \mathbb{C}^{n}, and consider the inclusions

$$
\begin{array}{lllllll}
\cdots & \rightarrow & S^{2 n-1} & \rightarrow & S^{2 n+1} & \rightarrow & \cdots \\
& & \downarrow & & \downarrow \\
\cdots & \rightarrow & \mathbb{C}^{n} & \rightarrow & \mathbb{C}^{n+1} & \rightarrow & \cdots
\end{array}
$$

Let S^{∞} and \mathbb{C}^{∞} denote the union of these spaces, using these inclusions.
(a) Show that S^{∞} is a contractible space.
(b) The group S^{1} appears as the unit norm elements of \mathbb{C}^{\times}, which acts compatibly on the spaces \mathbb{C}^{n} and $S^{2 n-1}$ in the systems above. Calculate all the homotopy groups of the homogeneous space S^{∞} / S^{1}.
2. (AG) Let $X \subset \mathbb{P}^{n}$ be a general hypersurface of degree d. Show that if

$$
\binom{k+d}{k}>(k+1)(n-k)
$$

then X does not contain any k-plane $\Lambda \subset \mathbb{P}^{n}$.
3. (DG) Let $\mathcal{H}^{2}:=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$. Equip \mathcal{H}^{2} with a metric

$$
g_{\alpha}:=\frac{d x^{2}+d y^{2}}{y^{\alpha}}
$$

where $\alpha \in \mathbb{R}$.
(a) Show that $\left(\mathcal{H}^{2}, g_{\alpha}\right)$ is incomplete if $\alpha \neq 2$.
(b) Identify $z=x+i y$. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})$, consider the map $z \mapsto \frac{a z+b}{c z+d}$. Show that this defines an isometry of $\left(\mathcal{H}^{2}, g_{2}\right)$.
(c) Show that $\left(\mathcal{H}^{2}, g_{2}\right)$ is complete. (Hint: Show that the isometry group acts transitively on the tangent space at each point.)
4. (RA)
(a) Let H be a Hilbert space, $K \subset H$ a closed subspace, and x a point in H. Show that there exists a unique y in K that minimizes the distance $\|x-y\|$ to x.
(b) Give an example to show that the conclusion can fail if H is an inner product space which is not complete.
5. (A)
(a) Prove that there exists a unique (up to isomorphism) nonabelian group of order 21.
(b) Let G be this group. How many conjugacy classes does G have?
(c) What are the dimensions of the irreducible representations of G ?
6. (CA) Find (with proof) all entire holomorphic functions $f: \mathbb{C} \rightarrow \mathbb{C}$ satisfying the conditions:

1. $f(z+1)=f(z)$ for all $z \in \mathbb{C}$; and
2. There exists M such that $|f(z)| \leq M \exp (10|z|)$ for all $z \in \mathbb{C}$.
