
PROPOSED ANSWERS IN AG

(1) (a) If X is a linear subspace of Pn, it intersects transversely with a generic
linear subspace at a single point. Thus degX = 1.
Now consider the converse. Let k = dimX. Consider the projection
π : X → Pk+1 from a general (n − k − 2)-plane in Pn such that X
is birational onto its image X̄ ⊂ Pk+1. Since X is of degree one, X̄
is simply a hyperplane in Pk+1. Then the inverse image of X̄ under
the projection is a hyperplane in Pn. That means X is contained in
a hyperplane Pn−1 in Pn. Doing the same thing for X ⊂ Pn−1 and
continue the inductive process, we obtain X ⊂ P k+1 ⊂ P k+2 . . . ⊂
Pn−1 ⊂ Pn where one sits in the next one as a hyperplane. Thus X is
a linear subspace of Pn.

(b) Bézout’s theorem states that if X and Y are two subvarieties of Pn

which intersect generically transversely, then

deg(X ∩ Y ) = (degX)(deg Y ).

(c) Recall that the Veronese map vd : Pn → PN of degree d is defined
by sending [Z0, . . . , Zn] to [P0(Z0, . . . , Zn), . . . , PN (Z0, . . . , Zn)], where
Pi, i = 0, . . . , N are all the monomials of degree d in n + 1 variables,

where N =

(

n+ d
d

)

− 1.

The degree of Z equals to the number of intersection points of Z with
a generic linear subspace L of PN of dimension N−k, which is the zero
set of k linear functions l1, . . . , lk on PN . Since vd is an embedding,
it suffices to compute the number of intersection points in the inverse
image. The inverse image of the intersection between Z and L equals
to the intersection of Y and the zero set of v∗dl1, . . . , v

∗
dlk, which are

degree d polynomials. By Bézout’s theorem, the number of intersection
points equals to (deg Y )(deg v∗dl1) . . . (deg v

∗
dlk) = dka.

(2) (a) Recall that the Hilbert function hX : N → N is defined by

hX(m) = dim
(

(K[z0, . . . , zN ]/IX)m
)

where z0, . . . , zN are the homogeneous coordinates of PN , IX is the
defining ideal of X, and (K[z0, . . . , zN ]/IX)m denotes its m-th graded
piece.
Consider the linear map

ev : (K[z0, . . . , zN ]/IX)m → Kd

defined by sending f ∈ (K[z0, . . . , zN ]/IX)m to (f(v1), . . . , f(vd)),
where vi ∈ KN+1 are chosen representatives of xi ∈ PN for all i =
1, . . . , d. It is well-defined and one-one since f ∈ IX if and only if
f(vi) = 0 for all i = 1, . . . , d. When m ≥ d − 1, It is also surjective:
Let {ej}dj=1 be the standard basis of KN+1. For every j = 1, . . . , d,

there exists P ∈ K[z0, . . . , zN ]m such that ev([P ]) = ej ∈ Kd defined
1
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2 PROPOSED ANSWERS IN AG

as follows. For each i ∈ {1, . . . , d} − {j}, choose a linear function
li on KN+1 such that li(vi) = 0 and li(vj) = 1. (This is possible
since vi and vj cannot be linearly dependent, or otherwise pi = pj .)
For i = d + 1, . . . ,m + 1, choose a linear function li with li(vj) = 1.
Then P =

∏

i #=j li has degree m and satisfies P (vk) = 0 for k ∈

{1, . . . , d} − {j} and P (vj) = 1. Thus (K[z0, . . . , zN ]/IX)m ∼= Kd as
vector spaces, and hence hX(m) = dim(K[z0, . . . , zN ]/IX)m = d.

(b) Consider the pull-back K[z0, . . . , zN ]m → K[Z0, Z1]Nm by the embed-
ding P1 ↪→ PN . It is surjective: Every monomial in Z0 and Z1 of
degree Nm can be written as ZjN

0 ZkN
1 Zp

0Z
q
1 for some j, k, p, q ∈ Z≥0

with p, q < N . Then it is the image of zj0z
k
Nzq when q (= 0, or

zj0z
k
N when q = 0. Moreover, the kernel is exactly those polynomials

in K[z0, . . . , zN ]m which vanish on the rational normal curve. Thus
(K[z0, . . . , zN ]/IX)m ∼= K[Z0, Z1]Nm as vector spaces, which has di-
mension Nm+ 1.

(c) Let n = dimX. Let P be a linear subspace of dimension N − n
which intersects X transversely. P is the zero set of n linear functions
l1, . . . , ln. The number of intersection points between X and P is
d = degX. Let X(i) = X ∩ {l1 = . . . = li = 0} for i = 0, . . . , n. Then
for all i = 0, . . . , n− 1, we have a homomorphism

A(X(i))m → A(X(i))m+1

given by multiplication by li+1. Here A(X(i)) := K[z0, . . . , zN ]/IX(i)

denotes the coordinate ring ofX(i). Since the intersection is transverse,
this homomorphism is injective. Moreover

A(X(i))m+1/Im(A(X(i))m) ∼= A(X(i+1))m+1

given by restriction. Thus

hX(i)(m+ 1)− hX(i)(m) = hX(i+1)(m+ 1)

for all m ∈ N.
By (b), hX(n)(m) = d for all sufficiently large m. We conclude that
hX = hX(0) is a polynomial.

(3) (a) By Riemann-Roch, h0(KX) − h0(OX) = deg(KX) − g + 1. Since
h0(OX) = 1 and h0(KX) = g, deg(KX) = 2g − 2.

(b) degKX = 0 while h0(KX) = 1. Thus there exists a meromorphic
function f such that KX + (f) is an effective divisor. KX + (f) is of
degree 0 because (f) and KX are. This forces KX +(f) = 0. It follows
that KX ∼ 0.

(c) Since D is effective,

dim |D| = h0(D)− 1

= h0(K −D) + degD − g

≤ h0(K) + degD − g

= degD.

Equality holds if and only if h0(K − D) = h0(K). Obviously D = 0
implies this equality. When g = h0(K) = 0, 0 ≤ h0(K−D) ≤ h0(K) =
0. Thus h0(K −D) = h0(K) = 0 and equality holds.
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Conversely, suppose equality holds, yet g (= 0. Then D ∼ 0, and since
D is effective, D = 0.



A1. The characteristic polynomial is Tn − 1. The Galois group of K = Fpn

over Fp is the cyclic group of order n generated by F . By the normal basis
theorem there is an element v ∈ K such that

v, Fv, · · · , Fn−1v

forms an Fp-basis of K. So det(T · In − F ) = Tn − 1.

A2.

(a) It fixes the generator of I, hence preserves the ideal I.

(b) If P is a prime ideal, and if s, t ∈ S satisfy s · t ∈ τ(P ), then τ−1(s) ·
τ−1(t) ∈ P and either τ−1(s) ∈ P or τ−1(t) ∈ P , hence s ∈ τ(P ) or
t ∈ τ(P ). In addition, by definition 1 #∈ P , which implies 1 #∈ τ(P ).

The image under τ of the principal ideal generated by α is that gen-
erated by τ(α).

(c) We have R/p = Q[x, y]/(x, y) = Q, which is an integral domain.

(d) First, we have p2 = (x̄). For ⊆, note ȳ2 = x̄(x̄2 − 1). For ⊇, note that
p2 contains both x̄2 and −ȳ2 = x̄− x̄3.

Suppose p = (α), and write α = P1(x)+P2(x)ȳ. Since p is fixed by σ,
we have

p
2 = pσ(p) = (P1(x)+P2(x)ȳ)(P1(x)−P2(x)ȳ) = (P1(x)

2−P2(x)
2(x3−x)).

Because this ideal contains x, there are Q1(x) and Q2(x) such that

x = (P 2
1 − P 2

2 · (x3 − x))(Q1 + ȳQ2)

in R. First, by taking half the trace ((1 + σ)/2), we may assume
Q2 = 0. Then the degree consideration in Q[x] leads to P2 = 0 and
P1(x) ∈ Q×, which is absurd.

A3.

(a) |G| = (p2 − 1)(p2 − p) = p(p− 1)2(p+ 1), |G′| = p(p− 1)(p+ 1).

(b) The upper unitriangular matrices.

(c) The units act trivially on X. Conversely, any g ∈ G fixing every line
fixes both [1 : 0] and [0 : 1], hence g is diagonal. If the entries were
distinct, it would fail to fix [1 : 1].

(d) From (c) we get an injection PGL2(F3) ↪→ S4, since when p = 3, X
has 4 elements. The two groups have the same order, by (a).
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Solutions of Qualifying Exam Problems in

Algebraic Topology in September 2012

Problem 1 (Third Homotopy Group of 2-Sphere). Let Φ : C2 − {0} → CP1

be defined by mapping the inhomogneous coordinates (z1, z2) of C2 to the
homogeneous coordinates [z1, z2] of the complex projective line CP1. Let
f : S3 → S2 be defined by restricting Φ to the unit 3-sphere in C2. Define
the group homomorphism γ : Z → π3 (S2) by setting γ(1) to be the element
of π3 (S2) defined by f . Compute the kernel and the cokernel of the group
homomorphism γ : Z → π3 (S2). Justify each step of your computation.

Solution. The action of C− {0} on C2− {0} defined by scalar multiplication
of vectors in C2 makes Φ : C2−{0} → CP1 a principal bundle with structure
group C − {0}. The map f : S3 → S2 defined by restricting Φ to the unit
3-sphere in C2 is the principal bundle with circle group S1 as the structure
group and is, in particular, a fiber bundle over S2 with fiber S1. The exact
sequence of homotopy groups for the fiber bundle f : S3 → S2 is

· · · → πi
(

S1
)

→ πi
(

S3
)

→ πi
(

S2
)

→ πi−1

(

S1
)

→ · · ·

and, in particular, the sequence

π3
(

S1
)

→ π3
(

S3
)

→ π3
(

S2
)

→ π2
(

S1
)

is exact. Since the universal cover of S1 is R which is contractible and since
any continuous map from the simply-connected 3-sphere S3 or 2-sphere S2

to S1 can be lifted to the contractible universal cover R of S1, it follows that
both π3 (S1) and π2 (S1) vanish and from the above exact sequence of four
terms the map π3 (S3) → π3 (S2) induced by f : S3 → S2 is an isomorphism.

Since πj (S3) is trivial for j = 1, 2 (as every element of πj (S3) for j = 1, 2
can be represented by a continuous map Sj → S3 whose image misses some
point of S3), it follows from Hurewicz’s theorem (relating homotopy groups to
homology groups) that the map π3 (S3) → H3 (S3) is an isomorphism and, in
particular, the homotopy group π3 (S3) is the cyclic group Z whose generator
is represented by the identity map of S3. Hence the group homomorphism
γ : Z → π3 (S2) is an isomorphism and both its kernel and cokernel are
trivial.
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Problem 2 (Fundamental Groups of Spaces Obtained by Glueing). De-
note by RP2 the real projective plane (which is the quotient of the 2-sphere
with antipodal points identified). Denote by T 2 the real 2-dimensional torus
(which is the quotient of a closed rectangle with opposite sides identified).
Let D be the interior of a closed disk in T 2 whose boundary is C. Let G be
the interior of a closed disk in RP2 whose boundary is E. Let X be the space
obtained by glueing T 2−D to RP2−G along a homeomorphism between the
two circles C and E. Compute the fundamental group of X by describing a
presentation of it. Then compute H1(X,Z).

Solution. Let f : C → E be the homeomorphism used to glue together T 2−D
and RP2 − G to construct X. The fundamental group π1(X) of X will be
computed by applying the theorem of van Kampen to X = (T 2 −D) ∪f

(RP2 −G). The fundamental group π1 (T 2 −D) of T 2 −D is the free group
generated by two elements a and b which are represented by two standard
basis loops of T 2 avoiding the topological closure of D. The removal of D
from T 2 makes the relation aba−1b−1 = 1 in π1 (T 2 −D) disappear, because
when T 2 is represented by identifying the opposite sides of a rectangle, the
removal of a disk in the center of the rectangle makes the relation obtained
by going around the boundary of the rectangle impossible. From this picture
of removing a disk in the center of rectangle, we know that going around
the boundary of the rectangle shows that aba−1b−1 is homotopic in T 2 −D
to a loop going once around the circle C (or E under identification by f).
The space RP2 −G is the same as the Möbius band, as one can easily see by
considering the map from S2 minus two antipodal disks to RP2 −G defined
by identifying antipodal points. The generator c of the fundamental group
π1 (RP2 −G) of the Möbius band RP2 −G is the loop represented by going
around the center line of the Möbius band once. The loop c2 is homotopic in
RP2 − G to going once around the circle E (or C identified by f), because
going around the edge of the Möbius band once is the same as going around
the the centerline of the Möbius band twice. By van Kampen’s theorem, c2

needs to be identified with aba−1b−1, because both represent going around
C or E once (which are identified by the glueing homeomorphism f). Hence
the fundamental group π1(X) of X is equal to the free group generated by
three elements a, b, c subject to one single relation c−2aba−1b−1 = 1. We can
compute H1(X,Z) by abelianizing π1(X). In the abelianization of π1(X) the
element aba−1b−1 of π1(X) becomes 1 and the single relation c−2aba−1b−1 = 1

2
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in π1(X) becomes the single relation c−2 = 1. Hence

H1 (X,Z) ≈ Z⊕ Z⊕ (Z /2Z) .

Problem 3 (Universal Cover of One-Point Union of Two Real Projective
Planes). Let RP2 denote the real projective plane (which is the quotient of
the 2-sphere with antipodal points identified). Let X be the one point union
RP2 ∨ RP2 (or wedge sum) of two real projective planes (i.e., the result
obtained by identifying, in the disjoint union of two real projective planes,
one point on one identified with one point on the other). Find the universal
cover of X.

Solution. Let X̃ =
⋃

n∈Z (S
2 + (2n+ 1, 0, 0)), where S2 is the unit 2-sphere

(centered at the origin of radius 1) in R3 and S2 + (2n + 1, 0, 0) means
the translate of S2 by the vector (2n + 1, 0, 0) so that S2 + (2n + 1, 0, 0)
is the 2-sphere in R3 centered at the origin of radius 1. The space X̃ is
an infinite string of touching 2-spheres of radius 1 centered at (2n + 1, 0, 0)
touching the two adjacent 2-spheres. Let ϕ : R3 → R3 be the map defined by
ϕ(x, y, z) = (−x+ 2,−y,−z) and ψ : R3 → R3 be the map with ψ(x, y, z) =
(−x − 2,−y,−z). The map ϕ, when restricted to the 2-sphere of radius 1
centered at (1, 0, 0), is simply the antipodal map on that 2-sphere. The map
ψ, when restricted to the 2-sphere of radius 1 centered at (−1, 0, 0), is simply
the antipodal map on that 2-sphere. The group G of transformations in R3

generated by ϕ and ψ acts free on X̃ to give the quotient X. Since X̃ is
simply connected, X̃ is the universal cover of X. The argument given up to
this point is already the complete rigorous solution of the problem of finding
the universal cover X̃ of X.

If one wants to know how one arrives at the candidate X̃ as the universal
cover of X, one can do it either geometrically or algebraically.

The geometric way to arrive at the candidate X̃ is to find all liftings to X̃
of the universal cover S2 → RP2 of the first summand P2 of RP2∨RP2 (with
the image for each individual lifting a 2-sphere in X̃) and also all the liftings
of the universal cover S2 → RP2 of the second summand P2 of RP2 ∨ RP2

(again with the image for each individual lifting a 2-sphere in X̃). The first
sequence of 2-spheres alternates between the second sequence of 2-spheres
with points of touching being the inverse images of the common point of the
two copies of P2 in RP2 ∨ RP2. The universal cover is the union of the two
sequences of 2-spheres alternatingly touching each other to form an infinite

3
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sting of touching 2-spheres. For the rigorous proof that such a construction
of X̃ is indeed the universal cover of X, one goes back to the argument in
the preceding paragraph.

The algebraic way to arrive at the candidate X̃ is to use the theorem of
van Kampen to conclude that the fundamental group of RP2 ∨ RP2 is equal
to the group (Z /2Z) ∗ (Z /2Z) amalgamated from the fundamental group
Z /2Z of the first summand of RP2 ∨RP2 and the fundamental group Z /2Z
of the second summand of RP2 ∨ RP2. The map ϕ : R3 → R3 defined by
ϕ(x, y, z) = (−x + 2,−y,−z) can be used to represent the generator of the
fundamental group Z /2Z of the right summand of RP2 ∨ RP2, because it
represents the antipodal map of the 2-sphere in R3 of radius 1 centered at
(1, 0, 0). The map ψ : R3 → R3 defined by ψ(x, y, z) = (−x − 2,−y,−z)
can be used to represent the generator of the fundamental group Z /2Z of
the left summand of RP2 ∨ RP2, because it represents the antipodal map of
the 2-sphere in R3 of radius 1 centered at (−1, 0, 0). The group G generated
by ϕ and ψ is the fundamental group (Z /2Z) ∗ (Z /2Z) of RP2 ∨ RP2. The
orbit of the union of the two unit 2-spheres centered respectively at (1, 0, 0)
and (0, 0, 1) under the group G is the universal cover X̃ of X. Again, for
the rigorous proof that such an orbit X̃ is indeed the universal cover of X,
one goes back to the argument in the first paragraph of this solution of the
problem.

4



1. Differential Geometry

Exam I, Complex analysis. The integrand z5 sin( 1
z2
) is an analytic

function on the punctured complex plane (0 < |z| < ∞). The Taylor
series for sin(u) is

sin(u) =
∞∑
n=0

(−)n

(2n+ 1)!
u2n+1.

As we are in the domain 0 < |z| < ∞, we can substitute with u = z−2:

z5 sin(
1

z2
) =

∞∑
k=0

(−)n

(2n+ 1)!
z−4n+3,

The pole for z = 0 is at n = 1. It follows that the residue is − 1
3! .

For the integral, we see that the function is analytic everywhere within
the first circle |z| < 1, with the exception of the z = 0. There are no
singularities on the boundary. The second contour is a deformation of
the first one without meeting a singularity. So it has the same value.
It follows that the residue at z = 0 will contribute twice and the final
answer is −22πi

3! = −2πi
3 .

Exam II, Q2, Complex analysis. The residue of the Γ function at
z = −n is (−1)n

n! .

Defining the Γ function by the integral

Γ(z) =

∫
∞

0

tz−1e−tdt,

we have

Γ(z) =

∫
∞

1

tz−1e−tdt+

∫ 1

0

dte−ttz−1 =

∫
∞

1

tz−1e−tdt+

∫ 1

0

dttz−1
∞∑
n=0

(−1)n

n!
tn

=

∫
∞

1

tz−1e−tdt+
∞∑
n=0

(−1)n

n!

1

z + n
.

The first integral is an analytic function of z and the second terms
shows that the residue at z = −n is (−1)n

n! .

Alternatively, you can the functional relation Γ(z + 1) = zΓ(z) ti
show that the residue at z = 0 is Γ(1) = 1. You then reduce the
residue of Γ(z) at z = −n to the residue at z = 0 using recursively the
functional relation Γ(z) = Γ(z+1)

z
.

Exam III, Q2, Complex analysis. We consider analytic functions
such that

||f ||22 :=

∫
U

f(z)f(z)dz ≤ ∞.

1
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2

Using Cauchy integral formula, an analytic function f of L2(U) admits
the following estimate for every compact K strictly included in U :

supz∈K |f(z)| ≤ CK ||f ||2,

where CK is a constant depending on the compact space K. You can
use this estimate together with Cauchy-Schwarz inequality to prove the
uniform convergence of the sequence (fn). To show that the limit is
analytic, you can use Moreva theorem.



QUALIFYING EXAMINATION

Harvard University

Department of Mathematics

Differential geometry, Paul

1. (a) Prove that SUN (the set of N ×N unitary matrices with determinant 1)
is a submanifold of MN (C) (the set of N × N matrices with entries in
C).

(b) Precise the dimension of SUN and its tangent space at identity.

(c) Prove that the submanifolds SLN (the set of N × N matrices with de-
terminant 1) and UN (the set of N ×N unitary matrices) of MN (C) do
not intersect transversally.

Solution. (a) Assume first that SUN is a submanifold in a neighborhood of
Id: it is locally the zero set of a submersion F . Let M ∈ SUN . Let LM :
MN (C) → MN (C) be the left multiplication by M . It is a diffeomorphism
with inverse LM−1 . Then SUN is locally, in a neighborhood of M , the zero
set for the submersion F ◦ LM−1 .

Hence we just need to consider the case of a neighborhood of Id. Let E =
{M ∈ MN (C) : M t = M}, and consider the map

Φ :

{

MN (C) → E × R

M %→ (M tM,&(det(M)))
.

We have Φ(−1)(Id, 0) = {M ∈ MN (C) : detM = ±1}, so in a neighborhood
of identity Φ(M) = (Id, 0) is an equation for SUN : we need to check that Φ
is a submersion at Id.

A calculation yields dΦId(H) = (Ht+H,&(Tr(H))). For any (M,λ) ∈ E×R,
one therefore can find H such that dΦId(H) = (M,λ) (choose for example H0

with a real trace such that M = H0 + H0, and H to be H0 with iλ added
in the upper left entry). This proves that dΦId is surjective, concluding the
proof.

(b) The tangent space at identity for SUN is the kernel of dΦId(H) = (Ht +
H,&(Tr(H))), that is to say matrices with trace 0 and equal to the opposite
of transpose of their conjugate. The dimension of SU(N) is therefore 2N(N−
1)/2 +N − 1 = N2 − 1.

(c) SLN and UN do not intersect transversally at Id. Indeed the tangent
spaces of these two varieties at Id are both included in the sub-vector space
of MN (C) consisting in matrices with purely imaginary trace.

2. Let M be a dimension 2 Riemannian manifold. We write its metric in po-
lar coordinates as dr2 + f(r, θ)2dθ2. Prove that its Gaussian curvature is

Day
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K = −f−1 ∂2f
∂r2

.

Solution. Let f ′ = ∂f/∂r and f ′′ = ∂2f/∂r2. Then

(Rer,eθer) · eθ = ∇er∇eθer · eθ −∇eθ∇erer · eθ −∇[er,eθ]er · eθ

= ∇er

(

f ′

f
eθ

)

· eθ − 0−∇
−

f ′

f
eθ
er · eθ

=
ff ′′ − f ′2

f2
+

f ′

f
∇ereθ · eθ +

f ′

f
∇eθeθ

=
ff ′′ − f ′2

f2
+

f ′2

f2
eθ · eθ

=
f ′′

f
,

so K = −f ′′

f .

3. Exercise about calculating the Levi-Civita connection for the n-dimensional
hyperbolic space.

Solution. Remember that ∇∂i∂j =
∑

k Γ
k
ij∂k, where

Γk
ij =

1

2

∑

n

gkn(∂ignj + ∂jgni − ∂ngij) =
1

2
gkk(∂igkj + ∂jgki − ∂kgij),

the last equality because g is diagonal. A calculation then yields, on {i =
k, j = n} ∪ {j = k, i = n}, Γk

ij = −x−1
n , and on {i = j, k = n, i *= n},

Γk
ij = x−1

n . For all other indices, Γk
ij = 0.

Day



Solution:
1. (a) Let f = 0 and

fn(x) =
√
n, 0 ≤ x ≤ 1/n

and fn(x) = 0 otherwise. Then fn(x) → 0 a.e. but ‖fn‖2 = 1 for all n. This is a counterexample.
(b) Let gn = fn − f and for M > 0 rewrite gn = hn + kn where

hn(x) = gn(x)1(|gn(x)| > M).

Then by the dominated convergence theorem, we have

lim
n→∞

∫

|kn(x)|dx = 0.

Also,
∫

|hn(x)|dx ≤ M−1

∫

|hn(x)|2dx ≤ M−1

∫

|gn(x)|2dx ≤ M−1(‖fn‖2 + ‖f‖2)2 ≤ 4/M

Since M can be arbitrary large, this proves that

lim
n→∞

∫

|gn(x)|dx = 0.

2. Define the Fourier transform by

f(p) =

∫

e−ixpf(x)dx

Take the Fourier transform in x to get

∂tû(t, p) = −
p2

2
û(t, p)

Here the assumptions on u(t, x) make sure that the Fourier transforms can be taken on both sides of the
equation. Hence

û(t, p) = e−tp2/2û(0, p) = e−tp2/2f̂(p)

Take the inverse Fourier transform to get

u(t, x) = [g(t, ·) ∗ f ](x)

where g(t, ·) is the inverse transform of e−tp2/2. Using the well-known formula of the Fourier transform of
Gaussian, i.e.,

g(t, x) =
C1√
t
e−C2x

2/t

we prove (a).
To prove (b), we have

‖u(t, ·)‖2L2(R) ≤ C

∫

dx t−1

[
∫

R

exp

(

−C
(x− y)2

t

)

f(y)dy

]2
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Since f ∈ L1, we can use Holder (or Jensen) inequality to have

[
∫

R

exp

(

−C
(x− y)2

t

)

f(y)dy

]2

≤
∫

R

exp

(

−2C
(x− y)2

t

)

f(y)dy

∫

R

f(y)dy

Combining these two inequalities, we have

‖u(t, ·)‖2L2(R) ≤ C

∫

dx t−1

∫

R

exp

(

−2C
(x− y)2

t

)

f(y)dy‖f‖L1(R) ≤ Ct−1/2‖f‖2L1(R).

This proves (b).
3. Let Yj = Xj − 1. We have

E

(

n−1
n
∑

j=1

Yj

)2
= n−2

E

n
∑

i,j=1

YiYj ≤ n−2
E

n
∑

i,j=1

f(|i− j|) ≤ n−1A

By the Chebyshev’s inequality, we have

P(n−1
n
∑

j=1

Yj ≥ 1) ≤ A/n

Hence A = B.
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