QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday August 31, 2010 (Day 1)

1. (CA) Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

Solution. Let C be the curve on the complex plane from $-\infty$ to $+\infty$, which is along the real line for most part but gets around the origin by going upwards (clockwise). We are integrating

$$
\int_{C} \frac{\sin ^{2} z}{z^{2}} d z=\int_{C} \frac{2-e^{2 i z}-e^{-2 i z}}{4 z^{2}} d z=\int_{C} \frac{1-e^{2 i z}}{4 z^{2}} d z+\int_{C} \frac{1-e^{-2 i z}}{4 z^{2}} d z .
$$

Let C^{\prime} be the curve from $-\infty$ to $+\infty$, along the real line for most part but now goes downwards around the origin. Then

$$
\int_{C} \frac{1-e^{-2 i z}}{4 z^{2}} d z-\int_{C^{\prime}} \frac{1-e^{-2 i z}}{4 z^{2}} d z=-2 \pi i \cdot \operatorname{Res}_{z=0}\left(\frac{1-e^{-2 i z}}{4 z^{2}}\right)=\pi .
$$

As $1-e^{2 i z}$ is bounded when $\operatorname{Im}(z) \geq 0, \int_{C} \frac{1-e^{2 i z}}{4 z^{2}} d z=0$ as we can push the integral up to infinity. Similarly $\int_{C^{\prime}} \frac{1-e^{-2 i z}}{4 z^{2}} d z=0$. This shows the original integral has value π.
2. (A) Let b be any integer with $(7, b)=1$ and consider the polynomial

$$
f_{b}(x)=x^{3}-21 x+35 b .
$$

(a) Show that f_{b} is irreducible over \mathbb{Q}.
(b) Let P denote the set of $b \in \mathbb{Z}$ such that $(7, b)=1$ and the Galois group of f_{b} is the alternating group A_{3}. Find P.

Solution.

(a) This follows from the Eisenstein criterion on the prime 7.
(b) From (a), the Galois group is A_{3} if the discriminant is a square (in \mathbb{Q}), and S_{3} if otherwise. The discriminant of $x^{3}+a x+b$ is $-4 a^{3}-27 b^{2}$, and the discriminant of f_{b} is $4 \cdot 21^{3}-27 \cdot 35^{2} \cdot b^{2}=3^{3} 7^{2}(28-25 b)$. Thus we're looking for all b such that $3(28-25 b)$ is a square. Such square must be divisible by 9 and are congruent to 9 modulo 25 , hence of the form $(75 n \pm 3)^{2}$, i.e. $3(28-25 b)=5625 n^{2} \pm 450 n+9 \Leftrightarrow b=-75 n^{2} \pm 6 n+1$. Thus $P=\left\{-75 n^{2}+6 n+1 \mid n \in \mathbb{Z}\right\}$.
3. (T) Let X be the Klein bottle, obtained from the square $I^{2}=\{(x, y): 0 \leq$ $x, y \leq 1\} \subset \mathbb{R}^{2}$ by the equivalence relation $(0, y) \sim(1, y)$ and $(x, 0) \sim(1-x, 1)$.
(a) Compute the homology groups $H_{n}(X, \mathbb{Z})$.
(b) Compute the homology groups $H_{n}(X, \mathbb{Z} / 2)$.
(c) Compute the homology groups $H_{n}(X \times X, \mathbb{Z} / 2)$.

Solution. X has the following cellular decomposition: the square F, the edges $E_{1}=\{0\} \times[0,1]$ and $E_{2}=[0,1] \times\{0\}$, and the vertex $V=(0,0)$. We have $\delta F=2 E_{1}$ and $\delta E_{1}=\delta E_{2}=\delta V=0$.
(a) $H_{2}(X, \mathbb{Z})=\{c \cdot F \mid \delta(c \cdot F)=0\}=0$. As all other boundary maps are zero, $H_{1}(X, \mathbb{Z})=\left(\mathbb{Z} E_{1}+\mathbb{Z} E_{2}\right) / 2 \mathbb{Z} E_{1} \cong(\mathbb{Z} / 2) \oplus \mathbb{Z}$ and $H_{0}(X, \mathbb{Z})=\mathbb{Z}$.
(b) All boundary maps are zero in $\mathbb{Z} / 2$-coefficient. Thus $H_{2}(X, \mathbb{Z} / 2)=\mathbb{Z} / 2$, $H_{1}(X, \mathbb{Z} / 2)=(\mathbb{Z} / 2)^{2}$ and $H_{0}(X, \mathbb{Z} / 2)=\mathbb{Z} / 2$.
(c) $\mathbb{Z} / 2$ may be seen as a field. Thus $H^{i}(X, \mathbb{Z} / 2)=H_{i}(X, \mathbb{Z} / 2)$ for any i and by the Kunneth formula $H_{*}(X \times X, \mathbb{Z} / 2)=H^{*}(X \times X, \mathbb{Z} / 2)=$ $H^{*}(X, \mathbb{Z} / 2)^{\otimes 2}$. Explicitly

$$
H^{i}(X \times X, \mathbb{Z} / 2)=\left\{\begin{array}{cc}
\mathbb{Z} / 2 & i=0,4 \\
(\mathbb{Z} / 2)^{4} & i=1,3 \\
(\mathbb{Z} / 2)^{6} & i=2 \\
0 & \text { else }
\end{array}\right.
$$

4. (RA) Let f be a Lebesgue integrable function on the closed interval $[0,1] \subset \mathbb{R}$.
(a) Suppose g is a continuous function on $[0,1]$ such that the integral of $|f-g|$ is less than ϵ^{2}. Prove that the set where $|f-g|>\epsilon$ has measure less than ϵ.
(b) Show that for every $\epsilon>0$, there is a continuous function g on $[0,1]$ such that the integral of $|f-g|$ is less than ϵ^{2}.

Solution.

(a) This is obvious.
(b) We have to prove that continuous functions are dense As f is Lebesgue integrable, f can be L^{1}-approximated by step functions, i.e. for any $\delta>0$, there exist real numbers c_{1}, \ldots, c_{n} and measurable sets $E_{1}, \ldots, E_{n} \subset$ $[0,1]$ such that the integral of $\left|f-c_{1} \chi_{E_{1}}-\ldots-c_{n} \chi_{E_{n}}\right|$ is smaller than δ, where we denote by χ_{E} the characteristic function of E. By picking small enough δ and replace f by $c_{1} \chi_{E_{1}}+\ldots+c_{n} \chi_{E_{n}}$, it suffices to prove that for any $\epsilon>0$ and any characteristic function χ_{E} of a measurable set $E \subset[0,1]$, there is a continuous function g_{E} such that the integral of $\left|g_{E}-\chi_{E}\right|$ is smaller than ϵ

As the Lebesgue measure is inner and outer regular, we may find compact K and open U such that $K \subset E \subset U$ and the measure of $U-K$ is arbitrarily small. Urysohn lemma now gives us a continuous function that is 1 on $K, 0$ on $[0,1]-U$ and between 0 and 1 in $U-K$. This gives the required function g_{E}.
5. (DG) Let v denote a vector field on a smooth manifold M and let $p \in M$ be a point. An integral curve of v through p is a smooth map $\gamma: U \rightarrow M$ from a neighborhood U of $0 \in \mathbb{R}$ to M such that $\gamma(0)=p$ and the differential $d \gamma$ carries the tangent vector $\partial / \partial t$ to $v(\gamma(t))$ for all $t \in U$.
(a) Prove that for any $p \in M$ there is an integral curve of v through p.
(b) Prove that any two integral curves of v through any given point p agree on some neighborhood of $0 \in \mathbb{R}$.
(c) A complete integral curve of v through p is one whose associated map has domain the whole of \mathbb{R}. Give an example of a nowhere zero vector field on \mathbb{R}^{2} that has a complete integral curve through any given point. Then, give an example of a nowhere zero vector field on \mathbb{R}^{2} and a point which has no complete integral curve through it.

Solution. Pick a local chart of the manifold M at the considered point p. The chart may be seen as a neighborhood of a point $p \in \mathbb{R}^{n}$, and the vector field v is also given on the neighborhood. To give an integral curve through a point p is then to solve the ordinary differential equation (system) $x^{\prime}(t)=v(x(t))$ and $x(0)=p$. As v is smooth and thus C^{1}, (a) and (b) follows from the (local) existence and uniqueness of solutions for ordinary differential equations.
For (c), constant vector field $v(x, y)=(1,0)$ on \mathbb{R}^{2} gives the first required example. Horizontal curves parametrized by arc length are all possible integral curves. For the second required example, we may consider $v(x, y)=\left(x^{2}, 0\right)$. A integral curve with respect to such a vector field is a solution to the ODE $x^{\prime}(t)=x(t)^{2}$. Such a solution is of the form $\frac{1}{t-a}$, and always blows up in finite time (either forward or backward), i.e. there is no complete integral curve for this vector field.
6. (AG) Show that a general hypersurface $X \subset \mathbb{P}^{n}$ of degree $d>2 n-3$ contains no lines $L \subset \mathbb{P}^{n}$.
Solution. A hypersurface in \mathbb{P}^{n} of degree d is given by a homogeneous polynomial in $n+1$ variable $x_{0}, x_{1}, \ldots, x_{n}$ of degree d up to a constant. There are $k(d, n)=\binom{d+n}{n}$ such monomials, and thus the space of such polynomials is $\mathbb{P}^{k(d, n)-1}$. After a change of coordinate a line may be expressed as $x_{2}=x_{3}=\ldots=x_{n}=0$. A hypersurface that contains this line then corresponds to a polynomial with no $x_{0}^{d}, x_{0}^{d-1} x_{1}, \ldots, x_{1}^{d}$ terms, which constitutes a codimension $d+1$ subplane. On the other hand, the grassmannian of lines
is a variety of dimension $2 \cdot((n+1)-2)=2 n-2<d+1$. This proves the assertion.
To be more rigerous, let G be the grassmannian of lines in $\mathbb{P}^{n}, H \cong \mathbb{P}^{k(d, n)-1}$ the space of hypersurfaces of degree d in \mathbb{P}^{n}. We may consider

$$
X=\{(l, S) \mid l \in G, S \in H \text { such that } l \subset S\} .
$$

Then what we have learned is that G has dimension $2 n-2$ and the fiber of the projection map $X \rightarrow G$ has dimension $d+1$ less than the dimension of H. Thus the dimension of X is the sum of the dimension of G and the dimension of the fiber H, which is smaller than the dimension of H exactly when $d>2 n-3$. It follows that the projection $X \rightarrow H$ cannot be surjective, which is the assertion to be proved.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics

Wednesday September 1, 2010 (Day 2)

1. (T) If M_{g} denotes the closed orientable surface of genus g, show that continuous maps $M_{g} \rightarrow M_{h}$ of degree 1 exist if and only if $g \geq h$.
Solution. A closed orientable surface of genus $g \geq 1$ may be described as a polygon of $4 g$ edges, some pairs identified in a certain way. In particular, all vertices are identified together under this identification. For $g>h$, by further identify $4 g-4 h$ edges to the point, we can construct a map from M_{g} to M_{h} which is a homeomorphism on the interior of the polygon (2-cell). Since the 2-cell is the generator of $H_{2}(\cdot, \mathbb{Z})$, the map constructed has degree 1 .
If $g<h$, then any map $f: M_{g} \rightarrow M_{h}$ induces $f^{*}: H^{1}\left(M_{h}, \mathbb{Z}\right) \rightarrow H^{1}\left(M_{g}, \mathbb{Z}\right)$, which cannot be injective since the former is a free abelian group of rank $2 h$ and the latter has rank $2 g$. Pick $0 \neq \alpha \in H^{1}\left(M_{h}, \mathbb{Z}\right)$ such that $f^{*}(\alpha)=0$, there always exists β with $\alpha . \beta \neq 0 \in H^{2}\left(M_{h}, \mathbb{Z}\right)$. However $f^{*}(\alpha \cdot \beta)=f^{*}(\alpha) \cdot f^{*}(\beta)=$ 0 , and thus f must has degree 0 .
2. (RA) Let $f \in C\left(S^{1}\right)$ be continuous function with a continuous first derivative $f^{\prime}(x)$. Let $\left\{a_{n}\right\}$ be the Fourier coefficient of f. Prove that $\sum_{n}\left|a_{n}\right|<\infty$.
Solution. f^{\prime} has n-th Fourier coefficient equal to $n a_{n}$. We thus have

$$
\left\|f^{\prime}\right\|_{L^{2}}^{2}=\sum_{n} n^{2} a_{n}^{2}<\infty
$$

Then $\left(\sum_{n}\left|a_{n}\right|\right)^{2} \leq\left(\sum_{n} n^{2} a_{n}^{2}\right)\left(\sum_{n} 1 / n^{2}\right)<\infty$ by Cauchy's inequality.
3. (DG) Let $S \subset \mathbb{R}^{3}$ be the surface given as aa graph

$$
z=a x^{2}+2 b x y+c y^{2}
$$

where a, b and c are constants.
(a) Give a formula for the curvature at $(x, y, z)=(0,0,0)$ of the induced Riemannian metric on S.
(b) Give a formula for the second fundamental form at $(x, y, z)=(0,0,0)$.
(c) Give necessary and sufficient conditions on the constants a, b and c that any curve in S whose image under projection to the (x, y)-plane is a straight line through $(0,0)$ is a geodesic on S.

Solution. Let normal vectors to the surface may be expressed as $n(x, y, z)=$ $l(x, y, z) \cdot(a x+b y, b x+c y,-1)$, where $l(x, y, z)$ is the inverse of the length
of the vector. Note that $l(x, y, z)=0$ and the first derivative of $l(x, y, z)$ is zero at $(0,0,0) \in S$. When we compute the second fundamental form we only have to compute the first derivative of $n(x, y, z)$. Therefore to compute the second fundamental form at $(0,0,0)$ we can treat $l(x, y, z) \equiv 1$ and the second fundamental form is thus

$$
\left(\begin{array}{ll}
\frac{\partial}{\partial x}(a x+b y) & \frac{\partial}{\partial y}(a x+b y) \\
\frac{\partial}{\partial x}(b x+c y) & \frac{\partial}{\partial y}(b x+c y)
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

The curvature of the surface at $(0,0,0)$ is the determinant at the point, i.e. $a c-b^{2}$. For any curve whose projection to the (x, y)-plane is a straight line through the point to be a geodesic, the corresponding vector has to be an eigenvector of the matrix. Thus it is necessary that $a=c, b=0$, i.e. the matrix being a multiple of the identity matrix for that to happen. On the other hand, when $a=c, b=0$, the surface is radially symmetric and thus all such curves must be geodesics.
4. (AG) Let V and W be complex vector spaces of dimensions m and n respectively and $A \subset V$ a subspace of dimension l. Let $\mathbb{P H o m}(V, W) \cong \mathbb{P}^{m n-1}$ be the projective space of nonzero linear maps $\phi: V \rightarrow W \bmod$ scalars, and for any integer $k \leq l$ let

$$
\Psi_{k}=\left\{\phi: V \rightarrow W: \operatorname{rank}\left(\left.\phi\right|_{A}\right) \leq k\right\} \subset \mathbb{P}^{m n-1}
$$

Show that Ψ_{k} is an irreducible subvariety of $\mathbb{P}^{m n-1}$, and find its dimension.
Solution. An $n \times m$ matrix of rank $\leq k$ can be decomposed into the product of an $n \times k$ matrix and a $k \times m$ matrix. Let $X \cong \mathbb{P}^{n k-1}$ and $Y \cong \mathbb{P}^{k m-1}$ be the space of nonzero such matrices mod scalars. Then we have a surjection $X \times Y \rightarrow \Psi_{k}$ by the multiplication map. This shows that Ψ_{k}, as the image of the complete irreducible variety $X \times Y$, is irreducible and closed in $\mathbb{P}^{m n-1}$.

When a matrix has rank exactly k, the decomposition has a $G L(k)$ freedom of choice, i.e. each fiber of this map over a point in $\Psi_{k}-\Psi_{k-1}$ has dimension $k^{2}-1$. As Ψ_{k-1} is closed in irreducible $\Psi_{k}, \operatorname{dim} \Psi_{k}=\operatorname{dim}\left(\Psi_{k}-\Psi_{k-1}\right)=$ $\operatorname{dim}(X \times Y)-\left(k^{2}-1\right)=(n k-1)+(m k-1)-\left(k^{2}-1\right)=k(n+m-k)-1$. (We used the fact that $k \leq l$, in which case $\Psi_{k}-\Psi_{k-1}$ is obviously non-empty.)
5. (CA) Find a conformal map from the region

$$
\Omega=\{z:|z-1|>1 \text { and }|z-2|<2\} \subset \mathbb{C}
$$

between the two circles $|z-1|=1$ and $|z-2|=2$ onto the upper-half plane.
Solution. Let $S=\left\{\frac{1}{4} \leq \operatorname{Re}(z) \leq \frac{1}{2}\right\} \subset \mathbb{C}$. Then we have $\Omega \cong S$ by $z \mapsto \frac{1}{z}$ and $S \cong$ upper-half plane by $z \mapsto e^{2 \pi i\left(z-\frac{1}{4}\right)}$.
6. (A) Let G be a finite group with an automorphism $\sigma: G \rightarrow G$. If $\sigma^{2}=i d$ and the only element fixed by σ is the identity of G, show that G is abelian.
Solution. Define $\tau(x):=\sigma(x) x^{-1}$, then by assumption $\tau(x) \neq e, \forall x \neq e$. For any $x \neq x^{\prime}, \tau(x) \tau\left(x^{\prime}\right)^{-1}=\sigma(x) x^{-1} x^{\prime} \sigma\left(x^{\prime}\right)^{-1}$ is conjugate to $\sigma\left(x^{\prime}\right)^{-1} \sigma(x) x^{-1} x^{\prime}=$ $\tau\left(x^{\prime-1} x\right) \neq e$, i.e. $\tau(x) \neq \tau\left(x^{\prime}\right)$. Thus $\tau: G \rightarrow G$ is a surjective function. But we have $\sigma(\tau(x))=x \sigma(x)^{-1}=\tau(x)^{-1}$, hence $\sigma(x)=x^{-1}$ and G is abelian.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Thursday September 2, 2010 (Day 3)

1. (DG) Let $D \subset \mathbb{R}^{2}$ be the closed unit disk, with boundary $\partial D \cong S^{1}$. For any smooth map $\gamma: D \rightarrow \mathbb{R}^{2}$, let $A(\gamma)$ denote the integral over D of the pull-back $\gamma^{*}(d x \wedge d y)$ of the area 2 -form $d x \wedge d y$ on \mathbb{R}^{2}.
(a) Prove that $A(\gamma)=A\left(\gamma^{\prime}\right)$ if $\gamma=\gamma^{\prime}$ on the boundary of D.
(b) Let $\alpha: \partial D \rightarrow \mathbb{R}^{2}$ denote a smooth map, and let $\gamma: D \rightarrow \mathbb{R}^{2}$ denote a smooth map such that $\left.\gamma\right|_{\partial D}=\alpha$. Give an expression for $A(\gamma)$ as an integral over ∂D of a function that is expressed only in terms of α and its derivatives to various orders.
(c) Give an example of a map γ such that $\gamma^{*}(d x \wedge d y)$ is a positive multiple of $d x \wedge d y$ at some points and a negative multiple at others.

Solution. Consider the differential $\omega=y d x$ on \mathbb{R}^{2}, so $d \omega=d x \wedge d y$. We have $\gamma^{*}(d \omega)=d \gamma^{*}(\omega)$. Thus if $\left.\gamma\right|_{\partial D}=\alpha$, the by Stoke's theorem

$$
\int_{D} \gamma^{*}(d x \wedge d y)=\int_{D} d \gamma^{*}(\omega)=\int_{\partial D} \alpha^{*}(\omega) .
$$

and depends only on α instead of γ. This finishes both (a) and (b).
For (c), one take for example $\gamma(x, y)=\left(x^{2}, y\right)$, then $\gamma^{*}(d x \wedge d y)=2 x(d x \wedge d y)$.
2. (T) Compute the fundamental group of the space X obtained from two tori $S^{1} \times S^{1}$ by identifying a circle $S^{1} \times\left\{x_{0}\right\}$ in one torus with the corresponding circle $S^{1} \times\left\{x_{0}\right\}$ in the other torus.
Solution. The space X is $S^{1} \times Y$, where Y is obtained from two circle S^{1} by identifying a point $x_{0} \in S^{1}$ with the corresponding point on the other circle. Thus $\pi_{1}(X)=\pi_{1}\left(S^{1}\right) \times \pi_{1}(Y)$, the product of \mathbb{Z} and a free group on two generators.
3. (CA) Let u be a positive harmonic function on \mathbb{C}. Show that u is a constant.

Solution. There exists a holomorphic function f on \mathbb{C} such that u is the real part of it. Then e^{-f} has image in the unit disk. By Liouville's theorem e^{-f} must be a constant, hence so is u.
4. (A) Let $R=\mathbb{Z}[\sqrt{-5}]$. Express the ideal $(6)=6 R \subset R$ as a product of prime ideals in R.
Solution. $(6)=(2)(3)$ and $(2)=(2,1+\sqrt{-5})^{2},(3)=(3,1+\sqrt{-5})(3,1-$ $\sqrt{-5}$). The final resulting ideals are prime because their indices (to R) are prime numbers.
5. (AG) Let $Q \subset \mathbb{P}^{5}$ be a smooth quadric hypersurface, and $L \subset Q$ a line. Show that there are exactly two 2-planes $\Lambda \cong \mathbb{P}^{2} \subset \mathbb{P}^{5}$ contained in Q and containing L.

Solution. By a linear change of coordinate we may assume the line is $x_{2}=$ $x_{3}=x_{4}=x_{5}=0$, where x_{0}, \ldots, x_{5} are coordinates of the projective space \mathbb{P}^{5}. Then the degree two homogeneous polynomial defining Q may be written as $F=f_{0}\left(x_{2}, x_{3}, x_{4}, x_{5}\right) x_{0}+f_{1}\left(x_{2}, x_{3}, x_{4}, x_{5}\right) x_{1}+q\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$, where neither f_{0} nor f_{1} are a constant multiple of the other since $\frac{\partial F}{\partial x_{0}}$ and $\frac{\partial F}{\partial x_{1}}$ have to be independent for Q to be smooth. We may thus arrange another change of coordinate among $x_{2}, x_{3}, x_{4}, x_{5}$ so that $f_{0}=x_{2}, f_{1}=x_{3}$. The $F=x_{0} x_{2}+$ $x_{1} x_{3}+q\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$.
Any plane that lies within Q and contains L is then of the form ($x_{0}=x_{1}=$ $0, a x_{4}+b x_{5}=0$), where $a x_{4}+b x_{5}$ is nontrivial and divides $q\left(0,0, x_{4}, x_{5}\right)$. Note $\frac{\partial F}{\partial x_{0}}=x_{2}$ and $\frac{\partial F}{\partial x_{1}}=x_{3}$. For Q to be smooth we need $\frac{\partial F}{\partial x_{i}}$ to be independent, thus $\frac{\partial F}{\partial x_{4}} q\left(0,0, x_{4}, x_{5}\right)$ and $\frac{\partial F}{\partial x_{5}} q\left(0,0, x_{4}, x_{5}\right)$ have to be independent, which is equivalent to $q\left(0,0, x_{4}, x_{5}\right)$ is non-degenerate, in which case it has two linear divisors.
6. (RA) Let \mathcal{C}^{∞} denote the space of smooth, real-valued functions on the closed interval $I=[0,1]$. Let \mathbb{H} denote the completion of \mathcal{C}^{∞} using the norm whose square is the functional

$$
f \mapsto \int_{I}\left(\left(\frac{d f}{d t}\right)^{2}+f^{2}\right) d t
$$

(a) Prove that the map of \mathcal{C}^{∞} to itself given by $f \mapsto T(f)$ with

$$
T(f)(t)=\int_{0}^{t} f(s) d s
$$

extends to give a bounded map from \mathbb{H} to \mathbb{H}, and prove that the norm of T is 1. (Remark: Its norm is actually not 1)
(b) Prove that T is a compact mapping from \mathbb{H} to \mathbb{H}.
(c) Let $\mathcal{C}^{1 / 2}$ be the Banach space obtained by completing \mathcal{C}^{∞} using the norm given by

$$
f \mapsto \sup _{t \neq t^{\prime}} \frac{\left|f(t)-f\left(t^{\prime}\right)\right|}{\left|t-t^{\prime}\right|^{1 / 2}}+\sup _{t}|f(t)| .
$$

Prove that the inclusion of \mathcal{C}^{∞} into \mathbb{H} and into $\mathcal{C}^{1 / 2}$ extends to give a bounded, linear map from \mathbb{H} to $\mathcal{C}^{1 / 2}$.
(d) Give an example of a sequence in \mathbb{H} such that all elements have norm 1 and such that there are no convergent subsequences in $\mathcal{C}^{1 / 2}$.

Solution.

(a) To prove the linear map T extends to a bounded map, it suffices to prove that it is bounded on the dense \mathcal{C}^{∞}. We have, for any $t \in[0,1]$,

$$
T(f)(t)^{2}=\left(\int_{0}^{t} f(s) d s\right)^{2} \leq t\left(\int_{0}^{t} f(s)^{2} d s\right) \leq \int_{0}^{t} f(s)^{2} d s
$$

and therefore also

$$
\int_{0}^{1} T(f)(t)^{2} d t \leq \int_{0}^{1} f(s)^{2} d s
$$

Thus we have $\|T(f)\|_{\mathbb{H}}^{2} \leq 2\|f\|_{L^{2}}^{2} \leq 2\|f\|_{\mathbb{H}}^{2}$.
If one consider the constant function $f \equiv 1$, then $\|f\|_{\mathbb{H}}=1$ but $\|T(f)\|_{\mathbb{H}}>$ 1. This shows the norm must be greater than 1 .
(b) The plan is to apply the Arzela-Ascoli theorem. For a bounded sequence $f_{1}, \ldots, f_{n}, \ldots$ in \mathbb{H}, as the operator is bounded by further approximation we are free to assume each $f_{i} \in \mathcal{C}^{\infty}$ and we have to prove $\left\{T\left(f_{i}\right)\right\}$ has a convergent subsequence. We have, for any $t_{1}, t_{2} \in[0,1]$,

$$
\left|f_{i}\left(t_{1}\right)-f_{i}\left(t_{2}\right)\right|=\left|\int_{t_{1}}^{t_{2}} f_{i}^{\prime}(s) d s\right| \leq\left(\left|t_{1}-t_{2}\right| \int_{0}^{1} f_{i}^{\prime}(s)^{2} d s\right)^{1 / 2}
$$

is bounded. Also

$$
\inf _{t \in[0,1]} f_{i}(t) \leq\left(\int_{0}^{1} f_{i}(s)^{2} d s\right)^{1 / 2}
$$

These toghther show that f_{i} are uniformly bounded and equicontinuous. Thus by the Arzela-Ascoli theorem these f_{i} have a uniformly convergent subsequence, thus a L^{2} convergent subsequence. As we've seen in (a) that the \mathbb{H}-norm of $T(f)$ is bounded by the L^{2}-norm of f, this gives us a convergent subsequence $T\left(f_{i}\right)$ in \mathbb{H}.
(c) The second last inequality just used is just

$$
\frac{\left|f\left(t_{1}\right)-f\left(t_{2}\right)\right|}{\left|t_{1}-t_{2}\right|^{1 / 2}} \leq\left(\int_{0}^{1} f^{\prime}(s)^{2} d s\right)^{1 / 2}
$$

Also by the two inequalities in (b) $\sup f$ is bounded when f has bounded \mathbb{H}-norm. Thus the map from \mathcal{C}^{∞} to $\mathcal{C}^{1 / 2}$ is bounded with respect to the \mathbb{H}-norm on \mathcal{C}^{∞}, and therefore extends.
(d) Let $g_{0}:[0,+\infty) \rightarrow \mathbb{R}$ be any nonzero smooth function supported only on $\left[\frac{1}{2}, 1\right]$. Let $g_{n+1}(t)=\frac{1}{2} g_{n}(4 t)$ for any $n \geq 0$. Then these g_{i} have disjoint support. Note that $\left\|g_{n+1}\right\|_{L^{2}}=\frac{1}{4}\left\|g_{n}\right\|_{L^{2}}$ and $\left\|g_{n+1}^{\prime}\right\|_{L^{2}}=\left\|g_{n}^{\prime}\right\|_{L^{2}}$. Thus $\left\|g_{n}\right\|_{\mathbb{H}_{1}}$ converges to $\left\|g_{0}^{\prime}\right\|_{L^{2}} \neq 0$. Similarly,

$$
\sup _{t_{1} \neq t_{2}} \frac{\left|g_{n+1}\left(t_{1}\right)-g_{n+1}\left(t_{2}\right)\right|}{\left|t_{1}-t_{2}\right|^{1 / 2}}=\sup _{t_{1} \neq t_{2}} \frac{\left|g_{n}\left(t_{1}\right)-g_{n}\left(t_{2}\right)\right|}{\left|t_{1}-t_{2}\right|^{1 / 2}} \neq 0
$$

and $\sup g_{n+1}=\frac{1}{2} \sup g_{n}$. Thus $\left\|g_{n}\right\|_{\mathcal{C}^{1 / 2}}$ also converges to some positive number (which is finite by (c)).
We can now normalize each g_{n} so that $\left\|g_{n}\right\|_{\mathbb{H}}=1$, and still have $\left\|g_{n}\right\|_{\mathcal{C}^{1 / 2}}$ converges to a positive number. As these g_{n} have disjoint support, $\| g_{n}-$ $g_{m} \|_{\mathcal{C}^{1 / 2}} \geq \max \left(\left\|g_{n}\right\|_{\mathcal{C}^{1 / 2}},\left\|g_{m}\right\|_{\mathcal{C}^{1 / 2}}\right)$ and thus they have no convergent subsequence.

