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1. (CA) Evaluate ∫ ∞
−∞

sin2 x

x2
dx

Solution. Let C be the curve on the complex plane from −∞ to +∞, which
is along the real line for most part but gets around the origin by going upwards
(clockwise). We are integrating

∫
C

sin2 z

z2
dz =

∫
C

2− e2iz − e−2iz

4z2
dz =

∫
C

1− e2iz

4z2
dz +

∫
C

1− e−2iz

4z2
dz.

Let C ′ be the curve from −∞ to +∞, along the real line for most part but
now goes downwards around the origin. Then

∫
C

1− e−2iz

4z2
dz −

∫
C′

1− e−2iz

4z2
dz = −2πi · Resz=0

(
1− e−2iz

4z2

)
= π.

As 1 − e2iz is bounded when Im(z) ≥ 0,
∫
C

1−e2iz
4z2

dz = 0 as we can push the

integral up to infinity. Similarly
∫
C′

1−e−2iz

4z2
dz = 0. This shows the original

integral has value π.

2. (A) Let b be any integer with (7, b) = 1 and consider the polynomial

fb(x) = x3 − 21x+ 35b.

(a) Show that fb is irreducible over Q.
(b) Let P denote the set of b ∈ Z such that (7, b) = 1 and the Galois group

of fb is the alternating group A3. Find P .

Solution.

(a) This follows from the Eisenstein criterion on the prime 7.

(b) From (a), the Galois group is A3 if the discriminant is a square (in Q),
and S3 if otherwise. The discriminant of x3 + ax+ b is −4a3− 27b2, and
the discriminant of fb is 4 ·213−27 ·352 · b2 = 3372(28−25b). Thus we’re
looking for all b such that 3(28 − 25b) is a square. Such square must
be divisible by 9 and are congruent to 9 modulo 25, hence of the form
(75n± 3)2, i.e. 3(28− 25b) = 5625n2 ± 450n+ 9⇔ b = −75n2 ± 6n+ 1.
Thus P = {−75n2 + 6n+ 1 |n ∈ Z}.



3. (T) Let X be the Klein bottle, obtained from the square I2 = {(x, y) : 0 ≤
x, y ≤ 1} ⊂ R2 by the equivalence relation (0, y) ∼ (1, y) and (x, 0) ∼ (1−x, 1).

(a) Compute the homology groups Hn(X,Z).

(b) Compute the homology groups Hn(X,Z/2).

(c) Compute the homology groups Hn(X ×X,Z/2).

Solution. X has the following cellular decomposition: the square F , the
edges E1 = {0} × [0, 1] and E2 = [0, 1] × {0}, and the vertex V = (0, 0). We
have δF = 2E1 and δE1 = δE2 = δV = 0.

(a) H2(X,Z) = {c · F |δ(c · F ) = 0} = 0. As all other boundary maps are
zero, H1(X,Z) = (ZE1 + ZE2)/2ZE1

∼= (Z/2)⊕ Z and H0(X,Z) = Z.

(b) All boundary maps are zero in Z/2-coefficient. Thus H2(X,Z/2) = Z/2,
H1(X,Z/2) = (Z/2)2 and H0(X,Z/2) = Z/2.

(c) Z/2 may be seen as a field. Thus H i(X,Z/2) = Hi(X,Z/2) for any
i and by the Kunneth formula H∗(X × X,Z/2) = H∗(X × X,Z/2) =
H∗(X,Z/2)⊗2. Explicitly

H i(X ×X,Z/2) =


Z/2 i = 0, 4

(Z/2)4 i = 1, 3
(Z/2)6 i = 2

0 else

4. (RA) Let f be a Lebesgue integrable function on the closed interval [0, 1] ⊂ R.

(a) Suppose g is a continuous function on [0, 1] such that the integral of
|f − g| is less than ε2. Prove that the set where |f − g| > ε has measure
less than ε.

(b) Show that for every ε > 0, there is a continuous function g on [0, 1] such
that the integral of |f − g| is less than ε2.

Solution.

(a) This is obvious.

(b) We have to prove that continuous functions are dense As f is Lebesgue
integrable, f can be L1-approximated by step functions, i.e. for any
δ > 0, there exist real numbers c1, ..., cn and measurable sets E1, ..., En ⊂
[0, 1] such that the integral of |f − c1χE1 − ... − cnχEn | is smaller than
δ, where we denote by χE the characteristic function of E. By picking
small enough δ and replace f by c1χE1 + ...+ cnχEn , it suffices to prove
that for any ε > 0 and any characteristic function χE of a measurable
set E ⊂ [0, 1], there is a continuous function gE such that the integral of
|gE − χE | is smaller than ε



As the Lebesgue measure is inner and outer regular, we may find compact
K and open U such that K ⊂ E ⊂ U and the measure of U − K is
arbitrarily small. Urysohn lemma now gives us a continuous function
that is 1 on K, 0 on [0, 1]−U and between 0 and 1 in U −K. This gives
the required function gE .

5. (DG) Let v denote a vector field on a smooth manifold M and let p ∈ M be
a point. An integral curve of v through p is a smooth map γ : U → M from
a neighborhood U of 0 ∈ R to M such that γ(0) = p and the differential dγ
carries the tangent vector ∂/∂t to v(γ(t)) for all t ∈ U .

(a) Prove that for any p ∈M there is an integral curve of v through p.

(b) Prove that any two integral curves of v through any given point p agree
on some neighborhood of 0 ∈ R.

(c) A complete integral curve of v through p is one whose associated map
has domain the whole of R. Give an example of a nowhere zero vector
field on R2 that has a complete integral curve through any given point.
Then, give an example of a nowhere zero vector field on R2 and a point
which has no complete integral curve through it.

Solution. Pick a local chart of the manifold M at the considered point p. The
chart may be seen as a neighborhood of a point p ∈ Rn, and the vector field v
is also given on the neighborhood. To give an integral curve through a point p
is then to solve the ordinary differential equation (system) x′(t) = v(x(t)) and
x(0) = p. As v is smooth and thus C1, (a) and (b) follows from the (local)
existence and uniqueness of solutions for ordinary differential equations.

For (c), constant vector field v(x, y) = (1, 0) on R2 gives the first required
example. Horizontal curves parametrized by arc length are all possible integral
curves. For the second required example, we may consider v(x, y) = (x2, 0).
A integral curve with respect to such a vector field is a solution to the ODE
x′(t) = x(t)2. Such a solution is of the form 1

t−a , and always blows up in finite
time (either forward or backward), i.e. there is no complete integral curve for
this vector field.

6. (AG) Show that a general hypersurface X ⊂ Pn of degree d > 2n− 3 contains
no lines L ⊂ Pn.

Solution. A hypersurface in Pn of degree d is given by a homogeneous poly-
nomial in n + 1 variable x0, x1, ..., xn of degree d up to a constant. There

are k(d, n) =

(
d+ n
n

)
such monomials, and thus the space of such polyno-

mials is Pk(d,n)−1. After a change of coordinate a line may be expressed as
x2 = x3 = ... = xn = 0. A hypersurface that contains this line then corre-
sponds to a polynomial with no xd0, x

d−1
0 x1, ..., x

d
1 terms, which constitutes a

codimension d + 1 subplane. On the other hand, the grassmannian of lines



is a variety of dimension 2 · ((n + 1) − 2) = 2n − 2 < d + 1. This proves the
assertion.

To be more rigerous, let G be the grassmannian of lines in Pn, H ∼= Pk(d,n)−1
the space of hypersurfaces of degree d in Pn. We may consider

X = {(l, S) | l ∈ G, S ∈ H such that l ⊂ S}.

Then what we have learned is that G has dimension 2n − 2 and the fiber
of the projection map X → G has dimension d + 1 less than the dimension
of H. Thus the dimension of X is the sum of the dimension of G and the
dimension of the fiber H, which is smaller than the dimension of H exactly
when d > 2n− 3. It follows that the projection X → H cannot be surjective,
which is the assertion to be proved.
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1. (T) If Mg denotes the closed orientable surface of genus g, show that contin-
uous maps Mg →Mh of degree 1 exist if and only if g ≥ h.

Solution. A closed orientable surface of genus g ≥ 1 may be described as a
polygon of 4g edges, some pairs identified in a certain way. In particular, all
vertices are identified together under this identification. For g > h, by further
identify 4g − 4h edges to the point, we can construct a map from Mg to Mh

which is a homeomorphism on the interior of the polygon (2-cell). Since the
2-cell is the generator of H2(·,Z), the map constructed has degree 1.

If g < h, then any map f : Mg → Mh induces f∗ : H1(Mh,Z) → H1(Mg,Z),
which cannot be injective since the former is a free abelian group of rank 2h
and the latter has rank 2g. Pick 0 6= α ∈ H1(Mh,Z) such that f∗(α) = 0, there
always exists β with α.β 6= 0 ∈ H2(Mh,Z). However f∗(α.β) = f∗(α).f∗(β) =
0, and thus f must has degree 0.

2. (RA) Let f ∈ C(S1) be continuous function with a continuous first derivative
f ′(x). Let {an} be the Fourier coefficient of f . Prove that

∑
n |an| <∞.

Solution. f ′ has n-th Fourier coefficient equal to nan. We thus have

||f ′||2L2 =
∑
n

n2a2n <∞.

Then (
∑

n |an|)2 ≤ (
∑

n n
2a2n)(

∑
n 1/n2) <∞ by Cauchy’s inequality.

3. (DG) Let S ⊂ R3 be the surface given as aa graph

z = ax2 + 2bxy + cy2

where a, b and c are constants.

(a) Give a formula for the curvature at (x, y, z) = (0, 0, 0) of the induced
Riemannian metric on S.

(b) Give a formula for the second fundamental form at (x, y, z) = (0, 0, 0).

(c) Give necessary and sufficient conditions on the constants a, b and c that
any curve in S whose image under projection to the (x, y)-plane is a
straight line through (0, 0) is a geodesic on S.

Solution. Let normal vectors to the surface may be expressed as n(x, y, z) =
l(x, y, z) · (ax + by, bx + cy,−1), where l(x, y, z) is the inverse of the length



of the vector. Note that l(x, y, z) = 0 and the first derivative of l(x, y, z) is
zero at (0, 0, 0) ∈ S. When we compute the second fundamental form we only
have to compute the first derivative of n(x, y, z). Therefore to compute the
second fundamental form at (0, 0, 0) we can treat l(x, y, z) ≡ 1 and the second
fundamental form is thus(

∂
∂x(ax+ by) ∂

∂y (ax+ by)
∂
∂x(bx+ cy) ∂

∂y (bx+ cy)

)
=

(
a b
b c

)

The curvature of the surface at (0, 0, 0) is the determinant at the point, i.e.
ac − b2. For any curve whose projection to the (x, y)-plane is a straight line
through the point to be a geodesic, the corresponding vector has to be an
eigenvector of the matrix. Thus it is necessary that a = c, b = 0, i.e. the
matrix being a multiple of the identity matrix for that to happen. On the
other hand, when a = c, b = 0, the surface is radially symmetric and thus all
such curves must be geodesics.

4. (AG) Let V and W be complex vector spaces of dimensions m and n respec-
tively and A ⊂ V a subspace of dimension l. Let PHom(V,W ) ∼= Pmn−1 be
the projective space of nonzero linear maps φ : V → W mod scalars, and for
any integer k ≤ l let

Ψk = {φ : V →W : rank(φ|A) ≤ k} ⊂ Pmn−1.

Show that Ψk is an irreducible subvariety of Pmn−1, and find its dimension.

Solution. An n×m matrix of rank ≤ k can be decomposed into the product
of an n × k matrix and a k ×m matrix. Let X ∼= Pnk−1 and Y ∼= Pkm−1 be
the space of nonzero such matrices mod scalars. Then we have a surjection
X ×Y → Ψk by the multiplication map. This shows that Ψk, as the image of
the complete irreducible variety X × Y , is irreducible and closed in Pmn−1.
When a matrix has rank exactly k, the decomposition has a GL(k) freedom
of choice, i.e. each fiber of this map over a point in Ψk −Ψk−1 has dimension
k2 − 1. As Ψk−1 is closed in irreducible Ψk, dim Ψk = dim(Ψk − Ψk−1) =
dim(X × Y )− (k2 − 1) = (nk − 1) + (mk − 1)− (k2 − 1) = k(n+m− k)− 1.
(We used the fact that k ≤ l, in which case Ψk−Ψk−1 is obviously non-empty.)

5. (CA) Find a conformal map from the region

Ω = {z : |z − 1| > 1 and |z − 2| < 2} ⊂ C

between the two circles |z − 1| = 1 and |z − 2| = 2 onto the upper-half plane.

Solution. Let S = {14 ≤ Re(z) ≤ 1
2} ⊂ C. Then we have Ω ∼= S by z 7→ 1

z

and S ∼= upper-half plane by z 7→ e2πi(z−
1
4
).



6. (A) Let G be a finite group with an automorphism σ : G→ G. If σ2 = id and
the only element fixed by σ is the identity of G, show that G is abelian.

Solution. Define τ(x) := σ(x)x−1, then by assumption τ(x) 6= e, ∀x 6= e. For
any x 6= x′, τ(x)τ(x′)−1 = σ(x)x−1x′σ(x′)−1 is conjugate to σ(x′)−1σ(x)x−1x′ =
τ(x′−1x) 6= e, i.e. τ(x) 6= τ(x′). Thus τ : G→ G is a surjective function. But
we have σ(τ(x)) = xσ(x)−1 = τ(x)−1, hence σ(x) = x−1 and G is abelian.
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1. (DG) Let D ⊂ R2 be the closed unit disk, with boundary ∂D ∼= S1. For any
smooth map γ : D → R2, let A(γ) denote the integral over D of the pull-back
γ∗(dx ∧ dy) of the area 2-form dx ∧ dy on R2.

(a) Prove that A(γ) = A(γ′) if γ = γ′ on the boundary of D.

(b) Let α : ∂D → R2 denote a smooth map, and let γ : D → R2 denote
a smooth map such that γ|∂D = α. Give an expression for A(γ) as an
integral over ∂D of a function that is expressed only in terms of α and
its derivatives to various orders.

(c) Give an example of a map γ such that γ∗(dx∧ dy) is a positive multiple
of dx ∧ dy at some points and a negative multiple at others.

Solution. Consider the differential ω = ydx on R2, so dω = dx∧dy. We have
γ∗(dω) = dγ∗(ω). Thus if γ|∂D = α, the by Stoke’s theorem∫

D
γ∗(dx ∧ dy) =

∫
D
dγ∗(ω) =

∫
∂D

α∗(ω).

and depends only on α instead of γ. This finishes both (a) and (b).

For (c), one take for example γ(x, y) = (x2, y), then γ∗(dx∧dy) = 2x(dx∧dy).

2. (T) Compute the fundamental group of the space X obtained from two tori
S1 × S1 by identifying a circle S1 × {x0} in one torus with the corresponding
circle S1 × {x0} in the other torus.

Solution. The space X is S1×Y , where Y is obtained from two circle S1 by
identifying a point x0 ∈ S1 with the corresponding point on the other circle.
Thus π1(X) = π1(S

1) × π1(Y ), the product of Z and a free group on two
generators.

3. (CA) Let u be a positive harmonic function on C. Show that u is a constant.

Solution. There exists a holomorphic function f on C such that u is the real
part of it. Then e−f has image in the unit disk. By Liouville’s theorem e−f

must be a constant, hence so is u.

4. (A) Let R = Z[
√
−5]. Express the ideal (6) = 6R ⊂ R as a product of prime

ideals in R.

Solution. (6) = (2)(3) and (2) = (2, 1 +
√
−5)2, (3) = (3, 1 +

√
−5)(3, 1 −√

−5). The final resulting ideals are prime because their indices (to R) are
prime numbers.



5. (AG) Let Q ⊂ P5 be a smooth quadric hypersurface, and L ⊂ Q a line. Show
that there are exactly two 2-planes Λ ∼= P2 ⊂ P5 contained in Q and containing
L.

Solution. By a linear change of coordinate we may assume the line is x2 =
x3 = x4 = x5 = 0, where x0, ..., x5 are coordinates of the projective space P5.
Then the degree two homogeneous polynomial defining Q may be written as
F = f0(x2, x3, x4, x5)x0 + f1(x2, x3, x4, x5)x1 + q(x2, x3, x4, x5), where neither
f0 nor f1 are a constant multiple of the other since ∂F

∂x0
and ∂F

∂x1
have to be

independent for Q to be smooth. We may thus arrange another change of
coordinate among x2, x3, x4, x5 so that f0 = x2, f1 = x3. The F = x0x2 +
x1x3 + q(x2, x3, x4, x5).

Any plane that lies within Q and contains L is then of the form (x0 = x1 =
0, ax4+bx5 = 0), where ax4+bx5 is nontrivial and divides q(0, 0, x4, x5). Note
∂F
∂x0

= x2 and ∂F
∂x1

= x3. For Q to be smooth we need ∂F
∂xi

to be independent,

thus ∂F
∂x4

q(0, 0, x4, x5) and ∂F
∂x5

q(0, 0, x4, x5) have to be independent, which is
equivalent to q(0, 0, x4, x5) is non-degenerate, in which case it has two linear
divisors.

6. (RA) Let C∞ denote the space of smooth, real-valued functions on the closed
interval I = [0, 1]. Let H denote the completion of C∞ using the norm whose
square is the functional

f 7→
∫
I

(
(
df

dt
)2 + f2

)
dt.

(a) Prove that the map of C∞ to itself given by f 7→ T (f) with

T (f)(t) =

∫ t

0
f(s)ds

extends to give a bounded map from H to H, and prove that the norm
of T is 1. (Remark: Its norm is actually not 1)

(b) Prove that T is a compact mapping from H to H.

(c) Let C1/2 be the Banach space obtained by completing C∞ using the norm
given by

f 7→ sup
t6=t′

|f(t)− f(t′)|
|t− t′|1/2

+ sup
t
|f(t)|.

Prove that the inclusion of C∞ into H and into C1/2 extends to give a
bounded, linear map from H to C1/2.

(d) Give an example of a sequence in H such that all elements have norm 1
and such that there are no convergent subsequences in C1/2.

Solution.



(a) To prove the linear map T extends to a bounded map, it suffices to prove
that it is bounded on the dense C∞. We have, for any t ∈ [0, 1],

T (f)(t)2 =

(∫ t

0
f(s)ds

)2

≤ t
(∫ t

0
f(s)2ds

)
≤
∫ t

0
f(s)2ds

and therefore also ∫ 1

0
T (f)(t)2dt ≤

∫ 1

0
f(s)2ds.

Thus we have ||T (f)||2H ≤ 2||f ||2L2 ≤ 2||f ||2H.
If one consider the constant function f ≡ 1, then ||f ||H = 1 but ||T (f)||H >
1. This shows the norm must be greater than 1.

(b) The plan is to apply the Arzela-Ascoli theorem. For a bounded sequence
f1, ..., fn, ... in H, as the operator is bounded by further approximation
we are free to assume each fi ∈ C∞ and we have to prove {T (fi)} has a
convergent subsequence. We have, for any t1, t2 ∈ [0, 1],

|fi(t1)− fi(t2)| = |
∫ t2

t1

f ′i(s)ds| ≤
(
|t1 − t2|

∫ 1

0
f ′i(s)

2ds

)1/2

is bounded. Also

inf
t∈[0,1]

fi(t) ≤
(∫ 1

0
fi(s)

2ds

)1/2

.

These toghther show that fi are uniformly bounded and equicontinuous.
Thus by the Arzela-Ascoli theorem these fi have a uniformly convergent
subsequence, thus a L2 convergent subsequence. As we’ve seen in (a)
that the H-norm of T (f) is bounded by the L2-norm of f , this gives us
a convergent subsequence T (fi) in H.

(c) The second last inequality just used is just

|f(t1)− f(t2)|
|t1 − t2|1/2

≤
(∫ 1

0
f ′(s)2ds

)1/2

.

Also by the two inequalities in (b) sup f is bounded when f has bounded
H-norm. Thus the map from C∞ to C1/2 is bounded with respect to the
H-norm on C∞, and therefore extends.

(d) Let g0 : [0,+∞)→ R be any nonzero smooth function supported only on
[12 , 1]. Let gn+1(t) = 1

2gn(4t) for any n ≥ 0. Then these gi have disjoint
support. Note that ||gn+1||L2 = 1

4 ||gn||L2 and ||g′n+1||L2 = ||g′n||L2 . Thus
||gn||H converges to ||g′0||L2 6= 0. Similarly,

sup
t1 6=t2

|gn+1(t1)− gn+1(t2)|
|t1 − t2|1/2

= sup
t1 6=t2

|gn(t1)− gn(t2)|
|t1 − t2|1/2

6= 0



and sup gn+1 = 1
2 sup gn. Thus ||gn||C1/2 also converges to some positive

number (which is finite by (c)).

We can now normalize each gn so that ||gn||H = 1, and still have ||gn||C1/2
converges to a positive number. As these gn have disjoint support, ||gn−
gm||C1/2 ≥ max(||gn||C1/2 , ||gm||C1/2) and thus they have no convergent
subsequence.


