QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Tuesday August 31, 2010 (Day 1)

1. (CA) Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx.$$

2. (A) Let b be any integer with (7, b) = 1 and consider the polynomial

$$f_b(x) = x^3 - 21x + 35b.$$

- (a) Show that f_b is irreducible over \mathbb{Q} .
- (b) Let P denote the set of $b \in \mathbb{Z}$ such that (7, b) = 1 and the Galois group of f_b is the alternating group A_3 . Find P.
- **3.** (T) Let X be the Klein bottle.¹
 - (a) Compute the homology groups $H_n(X,\mathbb{Z})$.
 - (b) Compute the homology groups $H_n(X, \mathbb{Z}/2)$.
 - (c) Compute the homology groups $H_n(X \times X, \mathbb{Z}/2)$.
- **4.** (RA) Let f be a Lebesgue integrable function on the closed interval $[0,1] \subset \mathbb{R}$.
 - (a) Suppose that g is a continuous function on [0, 1] such that the integral of |f g| is less than ϵ^2 . Prove that the set where $|f g| > \epsilon$ has measure less than ϵ .
 - (b) Show that for every $\epsilon > 0$, there is a continuous function g on [0, 1] such that the integral of |f g| is less than ϵ^2 .
- 5. (DG) Let v denote a vector field on a smooth manifold M and let $p \in M$ be a point. An *integral curve* of v through p is a smooth map $\gamma : U \to M$ from a neighborhood U of $0 \in \mathbb{R}$ to M such that $\gamma(0) = p$ and the differential $d\gamma$ carries the tangent vector $\partial/\partial t$ to $v(\gamma(t))$ for all $t \in U$.
 - (a) Prove that for any $p \in M$ there is an integral curve of v through p.
 - (b) Prove that any two integral curves of v through any given point p agree on some neighborhood of $0 \in \mathbb{R}$.

The Klein bottle is obtained from the square $I^2 = \{(x,y) : 0 \le x, y \le 1\} \subset \mathbb{R}^2$ by the equivalence relation $(0, y) \sim (1, y)$ and $(x, 0) \sim (1 - x, 1)$

- (c) A *complete* integral curve of v through p is one whose associated map has domain the whole of \mathbb{R} . Give an example of a nowhere zero vector field on \mathbb{R}^2 that has a complete integral curve through any given point. Then, give an example of a nowhere zero vector field on \mathbb{R}^2 and a point which has no complete integral curve through it.
- **6.** (AG) Show that a general hypersurface $X \subset \mathbb{P}^n$ of degree d > 2n 3 contains no lines $L \subset \mathbb{P}^n$.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Wednesday September 1, 2010 (Day 2)

- 1. (T) If M_g denotes the closed orientable surface of genus g, show that continuous maps $M_g \to M_h$ of degree 1 exist if and only if $g \ge h$.
- **2.** (RA) Let $f \in C(S^1)$ be a continuous function with a continuous first derivative f'(x). Let $\{a_n\}$ be the Fourier coefficients of f. Prove that $\sum_n |a_n| < \infty$.
- **3.** (DG) Let $S \subset \mathbb{R}^3$ be the surface given as a graph

$$z = ax^2 + 2bxy + cy^2$$

where a, b and c are constants.

- (a) Give a formula for the curvature at (x, y, z) = (0, 0, 0) of the induced Riemannian metric on S.
- (b) Give a formula for the second fundamental form at (x, y, z) = (0, 0, 0).
- (c) Give necessary and sufficient conditions on the constants a, b and c that any curve in S whose image under projection to the (x, y)-plane is a straight line through (0, 0) is a geodesic on S.
- 4. (AG) Let V and W be complex vector spaces of dimensions m and n respectively, and $A \subset V$ a subspace of dimension l. Let $\mathbb{P}\text{Hom}(V, W) \cong \mathbb{P}^{mn-1}$ be the projective space of nonzero linear maps $\phi : V \to W$ mod scalars, and for any integer $k \leq l$ let

$$\Psi_k = \{\phi: V \to W: \operatorname{rank}(\phi|_A) \le k\} \subset \mathbb{P}^{mn-1}.$$

Show that Ψ_k is an irreducible subvariety of \mathbb{P}^{mn-1} , and find its dimension.

5. (CA) Find a conformal map from the region

$$\Omega = \{z : |z - 1| > 1 \text{ and } |z - 2| < 2\} \subset \mathbb{C}$$

between the two circles |z - 1| = 1 and |z - 2| = 2 onto the upper-half plane.

6. (A) Let G be a finite group with an automorphism $\sigma : G \to G$. If $\sigma^2 = id$ and the only element fixed by σ is the identity of G, show that G is abelian.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Thursday September 2, 2010 (Day 3)

- **1.** (DG) Let $D \subset \mathbb{R}^2$ be the closed unit disk, with boundary $\partial D \cong S^1$. For any smooth map $\gamma : D \to \mathbb{R}^2$, let $A(\gamma)$ denote the integral over D of the pull-back $\gamma^*(dx \wedge dy)$ of the area 2-form $dx \wedge dy$ on \mathbb{R}^2 .
 - (a) Prove that $A(\gamma) = A(\gamma')$ if $\gamma = \gamma'$ on the boundary of D.
 - (b) Let $\alpha : \partial D \to \mathbb{R}^2$ denote a smooth map, and let $\gamma : D \to \mathbb{R}^2$ denote a smooth map such that $\gamma|_{\partial D} = \alpha$. Give an expression for $A(\gamma)$ as an integral over ∂D of a function that is expressed only in terms of α and its derivatives to various orders.
 - (c) Give an example of a map γ such that $\gamma^*(dx \wedge dy)$ is a positive multiple of $dx \wedge dy$ at some points and a negative multiple at others.
- 2. (T) Compute the fundamental group of the space X obtained from two tori $S^1 \times S^1$ by identifying a circle $S^1 \times \{x_0\}$ in one torus with the corresponding circle $S^1 \times \{x_0\}$ in the other torus.
- **3.** (CA) Let u be a positive harmonic function on \mathbb{C} . Show that u is constant.
- 4. (A) Let $R = \mathbb{Z}[\sqrt{-5}]$. Express the ideal (6) = $6R \subset R$ as a product of prime ideals in R.
- 5. (AG) Let $Q \subset \mathbb{P}^5$ be a smooth quadric hypersurface, and $L \subset Q$ a line. Show that there are exactly two 2-planes $\Lambda \cong \mathbb{P}^2 \subset \mathbb{P}^5$ contained in Q and containing L.
- 6. (RA) Let \mathcal{C}^{∞} denote the space of smooth, real valued functions on the closed interval I = [0, 1]. Let \mathbb{H} denote the completion of \mathcal{C}^{∞} using the norm whose square is the functional

$$f \mapsto \int_{I} \left(\left(\frac{df}{dt} \right)^2 + f^2 \right) dt.$$

(a) Prove that the map of \mathcal{C}^{∞} to itself given by $f \mapsto T(f)$ with

$$T(f)(t) = \int_0^t f(s)ds$$

extends to give a bounded map from \mathbb{H} to \mathbb{H} , and prove that the norm of T is 1.

- (b) Prove that T is a compact mapping from \mathbb{H} to \mathbb{H}
- (c) Let $\mathcal{C}^{1/2}$ be the Banach space obtained by completing \mathcal{C}^{∞} using the norm given by

$$f \mapsto \sup_{t \neq t'} \frac{|f(t) - f(t')|}{|t - t'|^{1/2}} + \sup_{t} |f(t)|.$$

Prove that the inclusion of \mathcal{C}^{∞} into \mathbb{H} and into $\mathcal{C}^{1/2}$ extends to give a bounded, linear map from \mathbb{H} to $\mathcal{C}^{1/2}$.

(d) Give an example of a sequence in \mathbb{H} such that all elements have norm 1 and such that there are no convergent subsequences in $\mathcal{C}^{1/2}$.