QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Tuesday August 31, 2010 (Day 1)

1. (CA) Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

2. (A) Let b be any integer with $(7, b)=1$ and consider the polynomial

$$
f_{b}(x)=x^{3}-21 x+35 b .
$$

(a) Show that f_{b} is irreducible over \mathbb{Q}.
(b) Let P denote the set of $b \in \mathbb{Z}$ such that $(7, b)=1$ and the Galois group of f_{b} is the alternating group A_{3}. Find P.
3. (T) Let X be the Klein bottle. ${ }^{1}$
(a) Compute the homology groups $H_{n}(X, \mathbb{Z})$.
(b) Compute the homology groups $H_{n}(X, \mathbb{Z} / 2)$.
(c) Compute the homology groups $H_{n}(X \times X, \mathbb{Z} / 2)$.
4. (RA) Let f be a Lebesgue integrable function on the closed interval $[0,1] \subset \mathbb{R}$.
(a) Suppose that g is a continuous function on $[0,1]$ such that the integral of $|f-g|$ is less than ϵ^{2}. Prove that the set where $|f-g|>\epsilon$ has measure less than ϵ.
(b) Show that for every $\epsilon>0$, there is a continuous function g on $[0,1]$ such that the integral of $|f-g|$ is less than ϵ^{2}.
5. (DG) Let v denote a vector field on a smooth manifold M and let $p \in M$ be a point. An integral curve of v through p is a smooth map $\gamma: U \rightarrow M$ from a neighborhood U of $0 \in \mathbb{R}$ to M such that $\gamma(0)=p$ and the differential $d \gamma$ carries the tangent vector $\partial / \partial t$ to $v(\gamma(t))$ for all $t \in U$.
(a) Prove that for any $p \in M$ there is an integral curve of v through p.
(b) Prove that any two integral curves of v through any given point p agree on some neighborhood of $0 \in \mathbb{R}$.

[^0](c) A complete integral curve of v through p is one whose associated map has domain the whole of \mathbb{R}. Give an example of a nowhere zero vector field on \mathbb{R}^{2} that has a complete integral curve through any given point. Then, give an example of a nowhere zero vector field on \mathbb{R}^{2} and a point which has no complete integral curve through it.
6. (AG) Show that a general hypersurface $X \subset \mathbb{P}^{n}$ of degree $d>2 n-3$ contains no lines $L \subset \mathbb{P}^{n}$.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Wednesday September 1, 2010 (Day 2)

1. (T) If M_{g} denotes the closed orientable surface of genus g, show that continuous maps $M_{g} \rightarrow M_{h}$ of degree 1 exist if and only if $g \geq h$.
2. (RA) Let $f \in C\left(S^{1}\right)$ be a continuous function with a continuous first derivative $f^{\prime}(x)$. Let $\left\{a_{n}\right\}$ be the Fourier coefficients of f. Prove that $\sum_{n}\left|a_{n}\right|<\infty$.
3. (DG) Let $S \subset \mathbb{R}^{3}$ be the surface given as a graph

$$
z=a x^{2}+2 b x y+c y^{2}
$$

where a, b and c are constants.
(a) Give a formula for the curvature at $(x, y, z)=(0,0,0)$ of the induced Riemannian metric on S.
(b) Give a formula for the second fundamental form at $(x, y, z)=(0,0,0)$.
(c) Give necessary and sufficient conditions on the constants a, b and c that any curve in S whose image under projection to the (x, y)-plane is a straight line through $(0,0)$ is a geodesic on S.
4. (AG) Let V and W be complex vector spaces of dimensions m and n respectively, and $A \subset V$ a subspace of dimension l. Let $\mathbb{P H o m}(V, W) \cong \mathbb{P}^{m n-1}$ be the projective space of nonzero linear maps $\phi: V \rightarrow W \bmod$ scalars, and for any integer $k \leq l$ let

$$
\Psi_{k}=\left\{\phi: V \rightarrow W: \operatorname{rank}\left(\left.\phi\right|_{A}\right) \leq k\right\} \subset \mathbb{P}^{m n-1} .
$$

Show that Ψ_{k} is an irreducible subvariety of $\mathbb{P}^{m n-1}$, and find its dimension.
5. (CA) Find a conformal map from the region

$$
\Omega=\{z:|z-1|>1 \text { and }|z-2|<2\} \subset \mathbb{C}
$$

between the two circles $|z-1|=1$ and $|z-2|=2$ onto the upper-half plane.
6. (A) Let G be a finite group with an automorphism $\sigma: G \rightarrow G$. If $\sigma^{2}=i d$ and the only element fixed by σ is the identity of G, show that G is abelian.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Thursday September 2, 2010 (Day 3)

1. (DG) Let $D \subset \mathbb{R}^{2}$ be the closed unit disk, with boundary $\partial D \cong S^{1}$. For any smooth map $\gamma: D \rightarrow \mathbb{R}^{2}$, let $A(\gamma)$ denote the integral over D of the pull-back $\gamma^{*}(d x \wedge d y)$ of the area 2 -form $d x \wedge d y$ on \mathbb{R}^{2}.
(a) Prove that $A(\gamma)=A\left(\gamma^{\prime}\right)$ if $\gamma=\gamma^{\prime}$ on the boundary of D.
(b) Let $\alpha: \partial D \rightarrow \mathbb{R}^{2}$ denote a smooth map, and let $\gamma: D \rightarrow \mathbb{R}^{2}$ denote a smooth map such that $\left.\gamma\right|_{\partial D}=\alpha$. Give an expression for $A(\gamma)$ as an integral over ∂D of a function that is expressed only in terms of α and its derivatives to various orders.
(c) Give an example of a map γ such that $\gamma^{*}(d x \wedge d y)$ is a positive multiple of $d x \wedge d y$ at some points and a negative multiple at others.
2. (T) Compute the fundamental group of the space X obtained from two tori $S^{1} \times S^{1}$ by identifying a circle $S^{1} \times\left\{x_{0}\right\}$ in one torus with the corresponding circle $S^{1} \times\left\{x_{0}\right\}$ in the other torus.
3. (CA) Let u be a positive harmonic function on \mathbb{C}. Show that u is constant.
4. (A) Let $R=\mathbb{Z}[\sqrt{-5}]$. Express the ideal $(6)=6 R \subset R$ as a product of prime ideals in R.
5. (AG) Let $Q \subset \mathbb{P}^{5}$ be a smooth quadric hypersurface, and $L \subset Q$ a line. Show that there are exactly two 2-planes $\Lambda \cong \mathbb{P}^{2} \subset \mathbb{P}^{5}$ contained in Q and containing L.
6. (RA) Let \mathcal{C}^{∞} denote the space of smooth, real valued functions on the closed interval $I=[0,1]$. Let \mathbb{H} denote the completion of \mathcal{C}^{∞} using the norm whose square is the functional

$$
f \mapsto \int_{I}\left(\left(\frac{d f}{d t}\right)^{2}+f^{2}\right) d t
$$

(a) Prove that the map of \mathcal{C}^{∞} to itself given by $f \mapsto T(f)$ with

$$
T(f)(t)=\int_{0}^{t} f(s) d s
$$

extends to give a bounded map from \mathbb{H} to \mathbb{H}, and prove that the norm of T is 1 .
(b) Prove that T is a compact mapping from \mathbb{H} to \mathbb{H}
(c) Let $\mathcal{C}^{1 / 2}$ be the Banach space obtained by completing \mathcal{C}^{∞} using the norm given by

$$
f \mapsto \sup _{t \neq t^{\prime}} \frac{\left|f(t)-f\left(t^{\prime}\right)\right|}{\left|t-t^{\prime}\right|^{1 / 2}}+\sup _{t}|f(t)| .
$$

Prove that the inclusion of \mathcal{C}^{∞} into \mathbb{H} and into $\mathcal{C}^{1 / 2}$ extends to give a bounded, linear map from \mathbb{H} to $\mathcal{C}^{1 / 2}$.
(d) Give an example of a sequence in \mathbb{H} such that all elements have norm 1 and such that there are no convergent subsequences in $\mathcal{C}^{1 / 2}$.

[^0]: ${ }^{1}$ The Klein bottle is obtained from the square $I^{2}=\{(x, y): 0 \leq x, y \leq 1\} \subset \mathbb{R}^{2}$ by the equivalence relation $(0, y) \sim(1, y)$ and $(x, 0) \sim(1-x, 1)$

