QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday September 1, 2009 (Day 1)

1. (RA) Let H be a Hilbert space and $\left\{u_{i}\right\}$ an orthonormal basis for H. Assume that $\left\{x_{i}\right\}$ is a sequence of vectors such that

$$
\sum\left\|x_{n}-u_{n}\right\|^{2}<1
$$

Prove that the linear span of $\left\{x_{i}\right\}$ is dense in H.
Solution. To show that the linear span $L=\operatorname{span}\left\{x_{i}\right\}$ is dense, it suffices to show $\bar{L}^{\perp}=0$. Suppose not, then there exists $v \neq 0$ with $v \perp x_{i}$ for all i. We may assume $\|v\|=1$. Then

$$
v=\sum_{i=0}^{\infty}\left(v, u_{i}\right) u_{i}
$$

so $\|v\|^{2}=\sum\left|\left(v, u_{i}\right)\right|^{2}$. On the other hand, by the Cauchy-Schwarz inequality

$$
|(v, u+i)|^{2}=\left|\left(v, x_{i}-u_{i}\right)\right|^{2} \leq\|v\|\left\|x_{i}-u_{i}\right\|=\left\|x_{i}-u_{i}\right\| .
$$

Thus

$$
1=\|v\|^{2}=\sum\left|\left(v, u_{i}\right)\right|^{2} \leq \sum\left\|x_{i}-u_{i}\right\|^{2}<1
$$

a contradiction.
2. (T) Let $\mathbb{C P}^{n}$ be complex projective n-space.
(a) Describe the cohomology ring $H^{*}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$ and, using the Kunneth formula, the cohomology ring $H^{*}\left(\mathbb{C P}^{n} \times \mathbb{C P}^{n}, \mathbb{Z}\right)$.
(b) Let $\Delta \subset \mathbb{C P}^{n} \times \mathbb{C P}^{n}$ be the diagonal, and $\delta=i_{*}[\Delta] \in H_{2 n}\left(\mathbb{C P}^{n} \times \mathbb{C P}^{n}, \mathbb{Z}\right)$ the image of the fundamental class of Δ under the inclusion $i: \Delta \rightarrow$ $\mathbb{C P}^{n} \times \mathbb{C P}^{n}$. In terms of your description of $H^{*}\left(\mathbb{C P}^{n} \times \mathbb{C P}^{n}, \mathbb{Z}\right)$ above, find the Poincaré dual $\delta^{*} \in H^{2 n}\left(\mathbb{C P}^{n} \times \mathbb{C P}^{n}, \mathbb{Z}\right)$ of δ.

Solution.

(a) The cohomology ring $H^{*}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)=\mathbb{Z}[\alpha] / \alpha^{n+1}$, where $\operatorname{deg} \alpha=2$. Since $H^{*}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$ are \mathbb{Z}-free, the Künneth formula implies

$$
H^{*}\left(\mathbb{C P}^{n} \times \mathbb{C P}^{n}, \mathbb{Z}\right) \cong H^{*}\left(\mathbb{C P}^{n}, \mathbb{Z}\right) \otimes H^{*}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)
$$

(here \otimes is the graded tensor product)

$$
\cong \mathbb{Z}[\alpha] / \alpha^{n+1} \otimes \mathbb{Z}[\beta] / \beta^{n+1}=\mathbb{Z}[\alpha, \beta] /\left(\alpha^{n+1}, \beta^{n+1}\right)
$$

with $\operatorname{deg} \alpha=\operatorname{deg} \beta=2$.
(b) Put $X=\mathbb{C P}^{n} \times \mathbb{C P}^{n}$.

Poincaré duality allows us to define a pushforward map $I_{*}: H^{k}(\Delta) \rightarrow$ $H^{k+2 n}(X)$ by the diagram

were the lower horizontal map is the usual i_{*} by functoriality. This construction satisfies the projection formula

$$
i_{*}\left(a \cup i^{*} b\right)=i_{*} a \cup b
$$

for cohomology classes a, b. Observe that by construction $i_{*} 1=\delta^{*}$. Now put $i_{*} 1=\delta^{*}=\sum c_{k} \alpha^{k} \cup \beta^{n-k}$. Then

$$
c_{n-k} \alpha^{n} \beta^{n}=i_{*} 1 \cup \alpha^{k} \cup \beta^{n-k}=i_{*} \gamma^{n}
$$

where we denote by γ the generator of of the cohomology algebra $H^{*}(\Delta)=$ $H^{*}\left(\mathbb{C P}^{n}\right)$ as in the previous part of the question (note that $i^{*} \alpha=i^{*} \beta=\gamma$, since the composition of the diagonal with each projection is the identity). But γ^{n} is the Poincaré dual of the class of a point in $H_{0}(\Delta)$, so that $i_{*} \gamma^{n}$ is the dual of the class of a point in $H^{*}(X)$, which is $\alpha^{n} \beta^{n}$. Thus $c_{n-k}=1$, and $\delta^{*}=\sum \alpha^{k} \beta^{n-k}$.
3. (AG) Let $X \subset \mathbb{P}^{n}$ be an irreducible projective variety, $\mathbb{G}(1, n)$ the Grassmannian of lines in \mathbb{P}^{n}, and $F \subset \mathbb{G}(1, n)$ the variety of lines contained in X.
(a) If X has dimension k, show that

$$
\operatorname{dim} F \leq 2 k-2
$$

with equality holding if and only if $X \subset \mathbb{P}^{n}$ is a k-plane.
(b) Find an example of a projective variety $X \subset \mathbb{P}^{n}$ with $\operatorname{dim} X=\operatorname{dim} F=3$.

Solution.

(a) Consider the incidence correspondence $\Sigma=\{(l, x): x \in l\} \subset \mathbb{G}(1, n) \times$ \mathbb{P}^{n}.
Since $p r_{1}^{-1}(F) \rightarrow F$ has fiber isomorphic to \mathbb{P}^{1}, we have

$$
\operatorname{dim} \Sigma \cap p r_{1}^{-1}(F)=\operatorname{dim} F+1
$$

We now estimate the dimension of the fibers of $p r_{2}: p r_{1}^{-1}(F) \rightarrow X$, noting that $p r_{2}$ maps $p r_{1}^{-1}(F)$ into X by definition.
Let L_{x} be the fiber over x. Then $\Sigma \cap p r_{1}^{-1}\left(L_{x}\right)$ projects via $p r_{2}$ into X
with finite fibers over points in $X \backslash\{x\}$ (in fact, generically one-to-one), because a line through $x \neq y \in X$ is uniquely determined.
Thus

$$
\operatorname{dim} p r_{1}^{-1}\left(L_{x}\right) \cap \Sigma=\operatorname{dim} L_{x}+1 \leq \operatorname{dim} X=k \operatorname{dim} F+1 .
$$

It follows that $\operatorname{dim} \Sigma \cap p r_{1}^{-1}(F) \leq \operatorname{dim} X+\operatorname{dim} X-1$, so $\operatorname{dim} F \leq 2 k-2$. Equality can occur only if for generic $x \in X$, the projection $p r_{2}: \Sigma \cap$ $p r_{1}^{-1}\left(L_{x}\right) \rightarrow X$ is dominant (hence surjective). In particular this implies that for all $x \neq y \in X$, the line $x y$ is in X. The only X with such property is are linear subspaces of \mathbb{P}^{n}. (To see the last point, take a maximal set of independent points in X, then X must be contained in the plane spanned by them, but also contains the plane spanned by them).
(b) Let X be the cone over the smooth quadric $Q \subset \mathbb{P}^{3}$ with apex P. Clearly $\operatorname{dim} X=2+1=3$.
We know Q is ruled by two \mathbb{P}^{1} family of lines and any line in Q lies in one of those families.
It follows that a line in $X=C(Q)$ must lie in the plane spanned by P and a line in Q since the only rational curves on Q are the ruling lines. But the dimension of the variety of lines in \mathbb{P}^{2} is 2 , and we have two \mathbb{P}^{1} family of planes which intersect each other only at P, hence dim $F(X)=2+1=3=\operatorname{dim} X$.
4. (CA) Let $\Omega \subset \mathbb{C}$ be the open set

$$
\Omega=\{z:|z|<2 \text { and }|z-1|>1\} .
$$

Give a conformal isomorphism between Ω and the unit disc $\Delta=\{z:|z|<1\}$.
Solution. The Möbius map $z \mapsto \frac{2 z}{2-z}$ sends the disk $\{|z|<2\}$ to $\{\mathfrak{R} z<1\}$, the disk $\{|z-1|<1\}$ to $\{\mathfrak{R z}<0\}$, hence it sends Ω biholomorphically to the strip $\{0<\mathfrak{R z}<1\}$.
Now the map $z \mapsto e^{2 \pi i z}$ sends this strip biholomorphically to the upper halfplane, since we can write down an inverse by taking a branch of $\frac{1}{2 \pi i} \log$ in the complement of the negative imaginary axis.
Finally $z \mapsto \frac{-z+i}{z+i}$ maps the upper half-plane biholomorphically to the unit disk Δ.
Thus the map

$$
z \mapsto \frac{-e^{\frac{2 \pi i z}{z-2}}+i}{e^{\frac{2 \pi i z}{z-2}}+i}
$$

defines a conformal isomorphism between Ω and Δ.
5. (A) Suppose ϕ is an endomorphism of a 10 -dimensional vector space over \mathbb{Q} with the following properties.

1. The characteristic polynomial is $(x-2)^{4}\left(x^{2}-3\right)^{3}$.
2. The minimal polynomial is $(x-2)^{2}\left(x^{2}-3\right)^{2}$.

3 . The endomorphism $\phi-2 I$, where I is the identity map, is of rank 8 .
Find the Jordan canonical form for ϕ.

Solution.

(a) Denote the underlying vector space by V. We will determine V as a $\mathbb{Q}[x]$-module, where x acts via ϕ. As such, V splits into a direct sum of cyclic modules, of form $\mathbb{Q}[x] / P(x)^{k}$ for irreducible P.
Since ϕ has characteristic polynomial $(x-2)^{4}\left(x^{2}-3\right)^{2}$, $\operatorname{dim} V=10$.
Since ϕ has minimal polynomial $(x-2)^{2}\left(x^{2}-3\right)^{2}$, V must be a direct sum of factros $\mathbb{Q}[x] /(x-2)^{k}$ with $k \leq 2$ and $\mathbb{Q}[x] /\left(x^{2}-3\right)^{l}$ with $l \leq 2$, and at least one factor for which $k=2, l=2$.
This gives only two possibilities:

$$
V \cong \mathbb{Q}[x] /\left(x^{2}-3\right)^{2} \oplus \mathbb{Q}[x] /\left(x^{2}-3\right) \oplus \mathbb{Q}[x] /(x-2)^{2} \oplus \mathbb{Q}[x] /(x-2)^{2}
$$

or
$V \cong \mathbb{Q}[x] /\left(x^{2}-3\right)^{2} \oplus \mathbb{Q}[x] /\left(x^{2}-3\right) \oplus \mathbb{Q}[x] /(x-2)^{2} \oplus \mathbb{Q}[x] /(x-2) \oplus \mathbb{Q}[x] /(x-2)$.
Noting the $\phi-2 I$ has rank $6+1+1=8$ in the first case and $6+1+0+0=7$ in the second case, we conclude that the first case occurs. Thus
$V \otimes \mathbb{C} \cong \mathbb{C}[x] /(x-\sqrt{3})^{2} \oplus \mathbb{C}[x] /(x+\sqrt{3})^{2} \oplus \mathbb{C}[x] /(x-\sqrt{3}) \oplus \mathbb{C}[x] /(x+\sqrt{3}) \oplus\left(\mathbb{C}[x] /(x-2)^{2}\right)^{2}$
so that the Jordan normal form of ϕ is

$$
\left(\begin{array}{cccccccccc}
\sqrt{3} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\sqrt{3} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\sqrt{3} & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & -\sqrt{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

6. (DG) Let $\gamma:(0,1) \rightarrow \mathbb{R}^{3}$ be a smooth arc, with $\gamma^{\prime} \neq 0$ everywhere.
(a) Define the curvature and torsion of the arc.
(b) Characterize all such arcs for which the curvature and torsion are constant.

Solution. We assume γ is parameterized by arc-length, so that $\left|\gamma^{\prime}(t)\right|=1$.
(a) The curvature of γ is

$$
\kappa(t)=\left|\gamma^{\prime \prime}(t)\right|
$$

Put $v=\gamma^{\prime}$. Because $\left(\gamma^{\prime}, \gamma^{\prime}\right)=1$, differentiating with respect to t gives $\left(\gamma^{\prime}, \gamma^{\prime \prime}\right)=0$, hence $v \perp \gamma^{\prime \prime}$. Define the normal n to be the unit vector in the direction of $\gamma^{\prime \prime}$, so

$$
n(t)=\frac{\gamma^{\prime \prime}(t)}{\left|\gamma^{\prime \prime}(t)\right|}
$$

(If $\gamma^{\prime \prime}=0, \gamma$ lies on a line and has curvature 0 and we do not define n in this case).
We have

$$
\gamma^{\prime \prime}(t)=\kappa(t) \gamma^{\prime}(t)
$$

that is

$$
n=\kappa v
$$

The binormal is defined to be $b=v \wedge n$. Note that v, b, n is a positively oriented orthonormal frame at each point of γ.
Finally the torsion τ is defined by

$$
n^{\prime}=-\kappa v+\tau b
$$

(b) We have

$$
B^{\prime}=v^{\prime} \wedge n+v \wedge n^{\prime}=v \wedge(-\kappa v+\tau b)=-\tau n
$$

So

$$
\left(\begin{array}{c}
v^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
v \\
n \\
b
\end{array}\right)
$$

Suppose that κ, τ are constant along γ. We will show that γ is a helix (or a circle or a line for degenerate values of κ, τ) by setting up a differential equation that γ satisfies. Assume $\kappa, \tau \neq 0$.
We have $v=\gamma^{\prime}, v^{\prime}=\gamma^{\prime \prime}=\kappa n$, so $n=\frac{\gamma^{\prime \prime}}{\kappa}, b=\frac{\gamma^{\prime} \wedge \gamma^{\prime \prime}}{\kappa}$. Also $n^{\prime}=\frac{\gamma^{\prime \prime \prime}}{\kappa}=$ $-\kappa \gamma^{\prime \prime \prime}+\tau \frac{\gamma^{\prime} \wedge \gamma^{\prime \prime}}{\kappa}$. This gives

$$
\left(\begin{array}{l}
\gamma_{1}^{\prime \prime \prime} \\
\gamma_{2}^{\prime \prime \prime} \\
\gamma_{3}^{\prime \prime \prime}
\end{array}\right)=-\kappa^{2}\left(\begin{array}{c}
\gamma_{1}^{\prime \prime} \\
\gamma_{2}^{\prime \prime} \\
\gamma_{3}^{\prime \prime}
\end{array}\right)+\tau\left(\begin{array}{c}
\gamma_{2}^{\prime} \gamma_{3}^{\prime \prime}-\gamma_{3}^{\prime} \gamma_{2}^{\prime \prime} \\
\gamma_{3}^{\prime} \gamma_{1}^{\prime \prime}-\gamma_{1}^{\prime} \gamma_{3}^{\prime \prime} \\
\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{2}^{\prime} \gamma_{1}^{\prime \prime}
\end{array}\right)
$$

This is a third order system of ODE, so it suffices to find helices $\gamma(z)=$ $\frac{1}{r}(a \cos z, a \sin z, b z)$ (here $\left.a^{2}+b^{2}=r^{2}\right)$ with arbitrary given constant curvature κ, torsion τ and initial vectors $\gamma(0), \gamma^{\prime}(0), \gamma^{\prime \prime}(0)$ such that $\gamma^{\prime}(0) \perp \gamma^{\prime \prime}(0)$.

Looking at the helix $\gamma(z)=(a \cos z, a \sin z, b z), a^{2}+b^{2}=1, a>0$ we have

$$
\begin{gathered}
v=\gamma^{\prime}(z)=(-a \sin z, a \cos z, b) \\
\gamma^{\prime}(0)=(0, a, b) \\
\gamma^{\prime \prime}(z)=(-a \cos z, a \sin z, b) \\
\gamma^{\prime \prime}(0)=(-a, 0,0) .
\end{gathered}
$$

This gives $\kappa=a$.

$$
\begin{gathered}
n=(\cos z, \sin z, 0) \\
n^{\prime}=(-\sin z, \cos z, 0) \\
\underline{b}=v \wedge n=(-b \sin z, b \cos z,-a)
\end{gathered}
$$

so $\tau=b$.
This shows that we can arrange the helix to have arbitrary constant curvature and torsion κ, τ.
It is clear that by shifting z and scaling we can arrange the helix so that $\gamma^{\prime}(0), \gamma^{\prime \prime}(0)$ are an arbitrary pair of orthogonal vectors. By a translation, we can arrange for $\gamma(0)$ to be any given point. This shows that we can arrange our initial conditions to be arbitrary, and hence all space curves with non-zero constant curvature and torsion are helices. One can also easily show that curves with torsion 0 are circles, and curves with curvature 0 are lines.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday September 2, 2009 (Day 2)

1. (CA) Let $\Delta=\{z:|z|<1\} \subset \mathbb{C}$ be the unit disc, and $\Delta^{*}=\Delta \backslash\{0\}$ the punctured disc. A holomorphic function f on Δ^{*} is said to have an essential singularity at 0 if $z^{n} f(z)$ does not extend to a holomorphic function on Δ for any n.
Show that if f has an essential singularity at 0 , then f assumes values arbitrarily close to every complex number in any neighborhood of 0 - that is, for any $w \in \mathbb{C}$ and $\forall \epsilon$ and $\delta>0$, there exists $z \in \Delta^{*}$ with

$$
|z|<\delta \quad \text { and } \quad|f(z)-w|<\epsilon .
$$

Solution. Suppose the contrary, so there exists $\delta>0, \epsilon>0, w \in \mathbb{C}$ such that $|f(z)-w|>\epsilon$ for all $|z|<\delta$.
Then the function $g(z)=\frac{1}{f(z)-w}$ is defined and holomorphic in $|z|<\delta$.
Furthermore $|g(z)|<\frac{1}{\epsilon}$ for such z. Hence the singularity of g at 0 is removable, so $g(z)$ is holomorphic at 0 . But that means $g(z)=z^{n} h(z)$ for holomorphic h in $|z|<\delta$ and $h(0) \neq 0$, hence $\frac{1}{h}$ is holomorphic at 0 .
Now

$$
f(z)=w+\frac{1}{g(z)}=w+\frac{1}{z^{n} h(z)}
$$

so $z^{n} f(z)$ extends to a holomorphic function on Δ, a contradiction.
2. (AG) Let $S \subset \mathbb{P}^{3}$ be a smooth algebraic surface of degree d, and $S^{*} \subset \mathbb{P}^{3 *}$ the dual surface, that is, the locus of tangent planes to S.
(a) Show that no plane $H \subset \mathbb{P}^{3}$ is tangent to S everywhere along a curve, and deduce that S^{*} is indeed a surface.
(b) Assuming that a general tangent plane to S is tangent at only one point (this is true in characteristic 0), find the degree of S^{*}.

Solution. We assume $d>1$ throughout.
The projective tangent plane to $F(X, Y, Z, T)=0$ at $P \in\{F=0\}$ has equation $\frac{\partial F}{\partial X} X+\ldots+\frac{\partial F}{\partial T} T=0$ (the partial derivatives are evaluated at P). In terms of coordinates, the Gauss map $S \mapsto S^{*} \subset \mathbb{P}^{3 *}$ is given by

$$
[X: Y: Z: T] \mapsto\left[\frac{\partial F}{\partial X}: \frac{\partial F}{\partial Y}: \frac{\partial F}{\partial Z}: \frac{\partial F}{\partial T}\right]
$$

which is a morphism because S is smooth.
(a) Suppose $H \subset \mathbb{P}^{3}$ is a plane tangent to S everywhere along a curve γ. We can arrange so that H is $T=0$. Then H is tangent to $F=0$ along γ means $\frac{\partial F}{\partial X}=\frac{\partial F}{\partial Y}=\frac{\partial F}{\partial Z}=0$ along γ.
But $\operatorname{dim} \gamma=1, \operatorname{dim}\left(\frac{\partial F}{\partial X}=0\right) \geq 2$, so $\frac{\partial F}{\partial X}=0$ must intersect γ at some point P. But for this P we have $\frac{\partial F}{\partial X}=\ldots=\frac{\partial F}{\partial T}=0$, so P is a singular point of S, a contradiction.
(b) Put $\phi: S \rightarrow S^{*} \subset \mathbb{P}^{3 *}$ for the Gauss map. Since a general tangent plane to S is tangent at only one point of S, ϕ is generically one-to-one.
We can find $\operatorname{deg} S^{*}$ by intersecting S^{*} with a generic line $l \in \mathbb{P}^{3 *}$.
Arrange coordinates so that our line has equations $Z^{*}=T^{*}=0$ for dual coordinates $\left[X^{*}: Y^{*}: Z^{*}: T^{*}\right]$ of $\mathbb{P}^{3 *}$.
The image of $[X: Y: Z: T] \in S$ is in the intersection iff $\frac{\partial F}{\partial Z}=\frac{\partial F}{\partial T}=$ $F=0$ at that point. Since $\frac{\partial F}{\partial Z}=0, \frac{\partial F}{\partial T}=0$ are generically hypersurfaces of degree $d-1$, and F has degree d, a generic choice of the line (reflected in the generic choice of coordinates) makes the hypersurfaces intersect at $(d-1)^{2} d$ points. We can arrange so that $l \cap S^{*}$ lies in the open dense subset where ϕ^{-1} is a singleton, because a generic point Q will be the only point in S with image $\phi(Q)$.
Hence this shows deg $S^{*}=(d-1)^{2} d$.
(Alternatively, one has $\phi^{*} \mathcal{O}(1) \cong \mathcal{O}(d-1)$. Computing the Hilbert function we have $\chi\left(\mathcal{O}_{S^{*}}(n)\right)=\chi\left(\phi_{*} \mathcal{O}_{S}(n)\right)$ up to terms of degree <2 in n, because ϕ is generically one-to-one.
But $\phi_{*}\left(\mathcal{O}_{S} \otimes \phi^{*} \mathcal{O}(1)\right) \cong \phi_{*} \mathcal{O}_{S} \otimes \mathcal{O}(1)$, so

$$
\chi\left(\phi_{*} \mathcal{O}_{S}(n)\right)=\chi\left(\mathcal{O}_{S}((d+1) n)\right) .
$$

Since $\chi\left(\mathcal{O}_{S}(n)\right)=\frac{1}{2!} d n^{2}+\ldots$, we have $\chi\left(\mathcal{O}_{S^{*}}(n)\right)=\frac{1}{2!} d(d-1)^{2} n^{2}+\ldots$, giving the degree of S^{*} to be $d(d-1)^{2}$.)
3. (T) Let $X=S^{1} \vee S^{1}$ be a figure $8, p \in X$ the point of attachment, and let α and $\beta:[0,1] \rightarrow X$ be loops with base point p (that is, such that $\alpha(0)=\alpha(1)=\beta(0)=\beta(1)=p)$ tracing out the two halves of X. Let Y be the CW complex formed by attaching two 2 -discs to X, with attaching maps homotopic to

$$
\alpha^{2} \beta \text { and } \alpha \beta^{2} .
$$

(a) Find the homology groups $H_{i}(Y, \mathbb{Z})$.
(b) Find the homology groups $H_{i}(Y, \mathbb{Z} / 3)$.

Solution. Y has cell structure with one 0 -cell p, two 1 -cells α, β and two 2-cells A, B. The cellular chain complex of Y is

$$
0 \longrightarrow \mathbb{Z} A \oplus \mathbb{Z} B \xrightarrow{d_{2}} \mathbb{Z} \alpha \oplus \mathbb{Z} \beta \xrightarrow{0} \mathbb{Z} p \longrightarrow 0
$$

where $d_{1}=0$ because we must get a \mathbb{Z} in H_{0}, as Y is connected.
To compute d_{2}, we have $A=n_{A \alpha}+n_{A \beta} \beta$, where $n_{A \alpha}, n_{A \beta} \beta$ are degrees of the maps $\partial A \rightarrow X / \beta, \partial A \rightarrow X / \alpha$, hence $d_{2}(A)=2 \alpha+\beta$. Similarly $d_{2}(B)=\alpha+2 \beta$. Thus the cellular chain complex if Y is

$$
0 \longrightarrow \mathbb{Z} A \oplus \mathbb{Z} B \xrightarrow{\binom{21}{12}} \mathbb{Z} \alpha \oplus \mathbb{Z} \beta \xrightarrow{0} \mathbb{Z} p \longrightarrow 0
$$

The cellular chain complex for $\mathbb{Z} / 3$ coefficient is obtained by reducing the above mod 3. This gives:
(a) We already know $H_{0}(Y, \mathbb{Z})=\mathbb{Z}$.
$H_{1}(Y, \mathbb{Z})=\mathbb{Z} \alpha \oplus \mathbb{Z} \beta /(2 \alpha+\beta=0, \alpha+2 \beta=0)=\mathbb{Z} / 3$.
$H_{2}(Y, \mathbb{Z})=0$ since $2 x+y=x+2 y=0$ imples $x=y=0$ in \mathbb{Z}.
All other homology groups vanish.
(b) $H_{0}(Y / \mathbb{Z} / 3)=\mathbb{Z} / 3$.
$H_{1}(Y, \mathbb{Z} / 3)$ is the cokernel of $(\mathbb{Z} / 3)^{2} \rightarrow(\mathbb{Z} / 3)^{2}$ given by $(x, y) \mapsto(-x+$ $y, x-y)$, so $H_{1}(Y, \mathbb{Z} / 3)=\mathbb{Z} / 3$.
$H_{2}(Y, \mathbb{Z} / 3)=\mathbb{Z} / 3$, since $2 x+y=x+2 y=0$ imples $x=y$ in $\mathbb{Z} / 3$.
All other homology groups vanish.
4. (DG) Let $f=f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be smooth, and let $S \subset \mathbb{R}^{3}$ be the graph of f, with the Riemannian metric $d s^{2}$ induced by the standard metric on \mathbb{R}^{3}. Denote the volume form on S by ω.
(a) Show that

$$
\omega=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+1}
$$

(b) Find the curvature of the metric $d s^{2}$ on S

Solution.

(a) We have a parameterization of S given by $\phi:(x, y) \mapsto(x, y, f(x, y))$.

We have (the lower index denotes the variable with respect to which we differentiate)

$$
\begin{aligned}
& \phi_{x}=\left(1,0, f_{x}\right) \\
& \phi_{x}=\left(0,1, f_{y}\right)
\end{aligned}
$$

The first fundamental form is $E d x^{2}+2 F d x d y+G d y^{2}$ with

$$
\begin{gathered}
E=\left(\phi_{x}, \phi_{x}\right)=1+f_{x}^{2} \\
F=\left(\phi_{x}, \phi_{y}\right)=f_{x} f_{y} \\
G=\left(\phi_{y}, \phi_{y}\right)=1+f_{y}^{2}
\end{gathered}
$$

hence the volume form

$$
\omega=\sqrt{E F-G^{2}}=\sqrt{\left(1+f_{x}^{2}\right)\left(1+f_{y}\right)^{2}-\left(f_{x} f_{y}\right)^{2}}=\sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} .
$$

(b) The normal vector is

$$
\begin{aligned}
\underline{N}=\frac{\phi_{x} \wedge \phi_{y}}{\left|\phi_{x} \wedge \phi_{y}\right|} & =\frac{1}{1+f_{x}^{2}+f_{y}^{2}}\left(-f_{x},-f_{y}, 1\right) . \\
\phi_{x x} & =\left(0,0, f_{x x}\right) \\
\phi_{x y} & =\left(0,0, f_{x y}\right) \\
\phi_{y y} & =\left(0,0, f_{y y}\right)
\end{aligned}
$$

The second fundamental form $L d x^{2}+2 M d x d y+N d y^{2}$ is given by

$$
\begin{aligned}
L & =-\left(\underline{N}, \phi_{x x}\right) \\
M & =-f_{x x} \\
N & =-\left(\underline{N}, \phi_{x y}\right)=-f_{x y} \\
\left.\underline{N}, \phi_{y y}\right) & =-f_{y y}
\end{aligned}
$$

The Gaussian curvature is given by

$$
K(x, y)=\frac{L N-M^{2}}{E G-F^{2}}=\frac{\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}}{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

5. (RA) Suppose that $\mathcal{O} \subset \mathbb{R}^{2}$ is an open set with finite Lebesgue measure. Prove that the boundary of the closure of \mathcal{O} has Lebesgue measure 0 .

Solution. We will construct a counter-example. First we will construct a "fat" Cantor set X in the interval $I=[0,1]$. Let X_{1} be I with the interval of length $\frac{1}{4}$ in the middle removed. X_{1} consists of two intervals of length $\frac{1}{2}\left(1-\frac{1}{4}\right)$. Inductively suppose we get X_{n} consisting of 2^{n} intervals of length $\frac{1}{2^{n}}\left(1-\frac{1}{4}-\ldots \frac{2^{n-1}}{4^{n}}\right)$. Then X_{n+1} is obtained by removing the middle intervals of length $\frac{1}{4^{n+1}}$ in each interval of X_{n}. Thus X_{n+1} consists of 2^{n+1} intervals of length $\frac{1}{2^{n+1}}\left(1-\frac{1}{4}-\ldots-\frac{1}{4^{n+1}}\right)$. The X_{n} form a decreasing sequence of nonempty compact subset of I, hence $X=\cap X_{n}$ is a non-empty compact subset of I. Note that $\mu(X)=1-\frac{1}{4}-\frac{2}{4^{2}}-\ldots=\frac{1}{2} . X$ is also nowhere dense, since X_{n} can not contain an interval of size $>\frac{1}{2^{n}}$.
We now construct \mathcal{O} as the complement of $X \times[0,1]$ inside the square $[-2,2] \times$ $[2,2]$, which is open as $X \times[0,1]$ is compact. It has finite measure. Because X is nowhere dense, $X \times[0,1]$ can not contain any rectangle, so \mathcal{O} is dense in $[-2,2] \times[-2,2]$. It follows that the boundary of \mathcal{O} will contain $X \times[0,1]$ which has measure $\frac{1}{2}$. This gives the desired counter-example.
6. (A) Let R be the ring of integers in the field $\mathbb{Q}(\sqrt{-5})$, and S the ring of integers in the field $\mathbb{Q}(\sqrt{-19})$.
(a) Show that R is not a principal ideal domain
(b) Show that S is a principal ideal domain

Solution.

(a) We have $\alpha=a+b \sqrt{-5} \in R$ iff $\operatorname{Tr}_{\mathbb{Q}(\sqrt{-5}) / \mathbb{Q}}(\alpha) \in \mathbb{Z}, N_{\mathbb{Q}(\sqrt{-5}) / \mathbb{Q}}(\alpha) \in \mathbb{Z}$ iff $2 a \in \mathbb{Z}, a^{2}+5 b^{2} \in \mathbb{Z}$. This implies $2 a, 2 b \in \mathbb{Z}$ and $4 a^{2}+20 b^{2} \in 4 \mathbb{Z}$, so $2 a, 2 b \in 2 \mathbb{Z}$, so $a, b \in \mathbb{Z}$.
Hence $R=\mathbb{Z}[\sqrt{-5}]$.
If R is a PID, it must be UFD. But in R we have $6=2 \cdot 3=(1+$ $\sqrt{-5})(1-\sqrt{-5})$.
We claim these are two essentially different factorizations. Indeed any unit $\epsilon \in R$ has norm 1 , and $N(2)=4, N(3)=9, N(\pm \sqrt{-5})=6$ (we write N as a shorthand for the norm). There are no elements of norm 2 or 3 in R (because $a^{2}+5 b^{2}=2$ or 3 has no solution $\bmod 5$), hence all factors in the above factorization are non-associated irreducible elements of R.
Thus R is not a UFD, hence not a PID.
(b) By the Minkowski bound, every class in the ideal class group of \mathcal{O}_{K} of a number field K contains an integral ideal of norm $\leq M_{K}=\sqrt{|D|}\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}}$, where $n=[K: \mathbb{Q}], 2 r_{2}$ is the number of complex embeddings of K and D the discriminant of K.
For $K=\mathbb{Q}(\sqrt{-19})$ we have $n=2, r_{2}=1$. To compute D, an argument as in (a) shows that $S=\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$. Thus a \mathbb{Z}-basis for S is given by 1 , $\frac{1+\sqrt{-19}}{2}$. Hence $D=-19$. The Minkowski bound is thus $M_{K}=\frac{2}{\pi} \sqrt{19}<$ 4.

To show that S is a PID it suffices to show that all ideal classes are trivial. By the Minkowski bound, it suffices to check that all prime ideals in S of norm <4 are principal. A prime ideal \mathfrak{p} of norm 2,3 must lie above 2. 3 respectively. Note that $S \cong \mathbb{Z}[x] /\left(x^{2}-x+5\right)$, and has discriminant -19 which is coprime to 2,3 , so the splitting behavior of 2,3 in S are determined by the factorization of $x^{2}-x+5$ in $\mathbb{F}_{2}, \mathbb{F}_{3}$. But one easily checks that $x^{2}-x+5$ has no solution in $\mathbb{F}_{2}, \mathbb{F}_{3}$, hence stay irreducible there. It follows that 2,3 are inert in S, hence there are no prime ideals in S of norm 2, 3, hence we are done.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday September 3, 2009 (Day 3)

1. (A) Let $c \in \mathbb{Z}$ be an integer not divisible by 3 .
(a) Show that the polynomial $f(x)=x^{3}-x+c \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q}.
(b) Show that the Galois group of f is the symmetric group \mathfrak{S}_{3}.

Solution.

(a) If f is reducible in $\mathbb{Q}[x]$, it is reducible in $\mathbb{Z}[x]$ by Gauss' lemma, hence reducible ober $\mathbb{F}_{3}[x]$. But f mod 3 has no zeroes in \mathbb{F}_{3}, hence can not factorize there. Thus f is irreducible in $\mathbb{Q}[x]$.
(b) Because f has degree 3, its splitting field K has degree at most 6 over \mathbb{Q}. Since f is irreducible, $3 \mid[K: \mathbb{Q}]$, hence $[K: \mathbb{Q}]=3$ or 6 , depending on whether $\operatorname{Gal}(K / \mathbb{Q})$ is A_{3} or S_{3} (it is a subgroup of S_{3} via the transitive action on the roots of f in $\overline{\mathbb{Q}}$.
If $[K: \mathbb{Q}]=3$, the discriminant $\Delta(f)$ must be a square in \mathbb{Q}. But $\Delta(f)=27 c^{2}-4=-1 \bmod 3$, hence $\Delta(f) \in \mathbb{Z}$ is not s square in \mathbb{Z}, hence not a square in \mathbb{Q}. Hence the Galois group is S_{3}.
2. (CA) Let τ_{1} and $\tau_{2} \in \mathbb{C}$ be a pair of complex numbers, independent over \mathbb{R}, and $\Lambda=\mathbb{Z}\left\langle\tau_{1}, \tau_{2}\right\rangle \subset \mathbb{C}$ the lattice of integral linear combinations of τ_{1} and τ_{2}. An entire meromorphic function f is said to be doubly periodic with respect to Λ if

$$
f\left(z+\tau_{1}\right)=f\left(z+\tau_{2}\right)=f(z) \quad \forall z \in \mathbb{C}
$$

(a) Show that an entire holomorphic function doubly periodic with respect to Λ is constant.
(b) Suppose now that f is an entire meromorphic function doubly periodic with respect to Λ, and that f is either holomorphic or has one simple pole in the closed parallelogram

$$
\left\{a \tau_{1}+b \tau_{2}: a, b \in[0,1] \subset \mathbb{R}\right\} .
$$

Show that f is constant.

Solution.

(a) The lattice Λ has fundamental domain $D=\left\{x \tau_{1}+y \tau_{2}: 0 \leq x \leq 1,0 \leq\right.$ $y \leq 1\}$ which is compact. If f is doubly periodic with respect to Λ, put $M=\max _{D}|f|$.

For any $z \in \mathbb{C}$, there is a $z_{0} \in D$ with $f(z)=f\left(z_{0}\right)$, hence $f(z) \leq M$ for all z. Hence f is a bounded entire function, hence constant by Liouville's theorem.
(b) Suppose f is not constant. Translating a fundamental domain if necessary and using (a), we can assume that f has a simple pole inside the fundamental domain D. By the residue theorem

$$
\int_{\partial D} f d z=\sum_{z \in \operatorname{Int}(D)} 2 \pi i \operatorname{Res}_{z}(f)
$$

with the right-hand side non-zero, because f can have non-zero residue only at the unique pole, and the residue there is non-zero since the pole is simple. But Λ-periodicity implies that in the integral on the left the integral along opposite edges of D cancel each other, so the left-hand side is 0 , a contradiction.
3. (DG) Let M and N be smooth manifolds, and let $\pi: M \times N \rightarrow N$ be the projection; let α be a differential k-form on $M \times N$. Show that α has the form $\pi^{*} \omega$ for some k-form ω on N if and only if the contraction $\iota_{X}(\alpha)=0$ and the derivative $\mathcal{L}_{X}(\alpha)=0$ for any vector field X on $M \times N$ whose value at every point is in the kernel of the differential $d \pi$.
Solution. If $\alpha=\pi^{*} \omega$

$$
\iota_{X}(\alpha)\left(Y_{1}, \ldots, Y_{k-1}\right)=\pi^{*} \omega\left(X,, Y_{1}, \ldots, Y_{k-1}\right)=\omega\left(d \pi(X), \ldots, d \pi\left(Y_{k-1}\right)=0\right.
$$

for arbitrary vector fields Y_{1}, \ldots, Y_{k-1} on $M \times N$ and X whose value at every point is in ker $d \pi$.

Also

$$
\mathcal{L}_{X}(\alpha)\left(Y_{1}, \ldots, Y_{k}\right)=X\left(\pi^{*} \omega\left(Y_{1}, \ldots Y_{k}\right)\right)=\pi_{*} X\left(\omega\left(Y_{1}, \ldots, Y_{k}\right)\right)=0
$$

because $\pi_{*} X=0$ for X as above.
We now show the converse.
The problem is local on both M and N (by taking partitions of unity on M, N and take their product as a partition of unity on $M \times N$), so we work in a neighborhood of $M \times N$ which is of the form $U \times V$ for coordinate neighborhoods U, V of M, N. Call the corresponding local coordinates x_{1}, \ldots, x_{m} amd y_{1}, \ldots, y_{n}. We will also use standard multi-index notation.
Let

$$
\alpha=\sum_{|I|+|J|=k, I \subset\{1, \ldots, m\}, J \subset\{1, \ldots, n\}} f_{I} d x_{I} \wedge d y_{J}
$$

be a k-form satisfying the necessary conditions. A general vector field X killed by π_{*} is of form $\sum a_{i} \frac{\partial}{\partial x_{i}}$.

We have

$$
\iota_{\frac{\partial}{\partial x_{i}}}\left(f d x_{I} \wedge d y_{J}\right)=z= \begin{cases}0 & \text { if } i \notin I \\ \pm f d x_{I \backslash\{i\}} \wedge d y_{J} & \text { if } i \in I\end{cases}
$$

Hence the condition $\iota \frac{\partial}{\partial x_{i}} \alpha=0$ implies $f_{I J}=0$ for all $I \ni i$. Since i is arbitrary, $f_{I J}=0$ for all $I \neq \emptyset$. This means

$$
\alpha=\sum_{|J|=k, J \subset\{f r m[o]--, \ldots, n\}} f_{J}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots y_{n}\right) d y_{J} .
$$

But

$$
0=\mathcal{L}_{\frac{\partial}{\partial x_{i}}} \alpha\left(\frac{\partial}{\partial y_{i_{1}}}, \ldots, \frac{\partial}{\partial y_{i_{k}}}\right)=\frac{\partial}{\partial x_{i}}\left(f_{i_{1} \ldots i_{k}}\right)
$$

for $i_{1}<\ldots<i_{k}$, hence the functions f_{J} are functions on the y_{j} only, so they are of form $\pi^{*} g_{J}$ for smooth functions g_{J} on N. Since the $d y_{J}$ are pulled back from N , we have $\alpha=\pi^{*} \omega$ for some k-form ω on N.
4. (RA) Show that the Banach space ℓ^{p} can be embedded as a summand in $L^{p}(0,1)$-in other words, that $L^{p}(0,1)$ is isomorphic as a Banach space to the direct sum of ℓ^{p} and another Banach space.

Solution. Choose disjoint intervals $I_{n} \subset(0,1)$ and let f_{n} be a positive multiple of the characteristic function of I_{n}, normalized by $\left\|f_{n}\right\|_{p}=1$. Define an embedding $\iota: l^{p} \rightarrow L^{p}(0,1)$ by $\left(a_{n}\right) \mapsto \sum a_{n} f_{n}$. Observe that

$$
\int\left|\sum_{r}^{s} a_{n} f_{n}\right|^{p}=\sum_{r}^{s} \int_{I_{n}}\left|a_{n}\right|^{p}\left|f_{n}\right|^{p}=\sum_{r}^{s}\left|a_{n}\right|^{p}
$$

This shows that if $\left(a_{n}\right) \in l^{p}$ then $\sum a_{n} f_{n}$ converges in $L^{p}(0,1)$ and has the same norm. This shows that our map is defined and is an isometric embedding. Therefore it remains to write down a continuous projection P splitting it. Define $P: L^{p}(0,1) \rightarrow l^{p}$ by $f \mapsto\left(\int f\left|f_{n}\right|^{p-1}\right)_{n}$. The map is defined since $f \in L^{1}(0,1)$. Now we have by Hölder's inequality (note that $(p-1) q=p$)

$$
\left.\left.\sum_{n}\left|\int_{I_{n}} f\right| f_{n}\right|^{p-1}\right|^{p} \leq \sum_{n}\left(\int_{I_{n}}|f|^{p}\right)\left(\int\left|f_{n}\right|^{(p-1) q}\right)^{\frac{p}{q}}=\sum_{n} \int_{I_{n}}|f|^{p} \leq\|f\|_{p}^{p}
$$

This shows that P is continuous (indeed of norm ≤ 1), and clearly $P \iota=i d$. This gives the desired decomposition of $L^{p}(0,1)$ with one summand l^{p}.
5. (T) Find the fundamental groups of the following spaces:
(a) $S L_{2}(\mathbb{R})$
(b) $S L_{2}(\mathbb{C})$
(c) $\mathrm{SO}_{3}(\mathbb{C})$

Solution.

(a) By the polar decomposition, any $A \in G L_{2}(\mathbb{R})$ can be written uniquely as $A=P U$ with $U \in O_{2}(\mathbb{R})$ and P a positive definite symmetric matrix. If $A \in S L_{2}(\mathbb{R})$ thn $U \in S O_{2}(\mathbb{R})$.
This gives a homeomorphism

$$
S L_{2}(\mathbb{R}) \cong P_{+} \times S O_{2}(\mathbb{R})
$$

The space P_{+}of positive definite symmetric matrices is contractible since it is an open cone in a real vector space while $\mathrm{SO}_{2}(\mathbb{R}) \cong S^{1}$. Thus $\pi_{1}\left(S L_{2}(\mathbb{R})\right) \cong \pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$.
(b) Similar to (a), the complex polar decomposition gives a unique decomposition $A=P U$ for $A \in S L_{2}(\mathbb{C})$, where $U \in S U_{2}(\mathbb{C})$ and P a positive definite Hermitian matrix. Again, the space of positive definite Hermitian matrix is contractible, hence

$$
\pi_{1}\left(S L_{2}(\mathbb{C})\right) \cong \pi_{1}\left(S U_{2}(\mathbb{C})\right) \cong \pi_{1}\left(S^{3}\right)=0
$$

noting that $S U_{2}(\mathbb{C}) \cong S^{3}$ via $(a, b) \mapsto\left(\begin{array}{cc}a & \bar{b} \\ b & \bar{a}\end{array}\right)$ where a, b are complex numbers such that $|a|^{2}+|b|^{2}=1$.
(c) $S L_{2}(\mathbb{C})$ acts on $\mathfrak{s l}_{2} \cong \mathbb{C}^{3}$ (the subspace of $M_{2}(\mathbb{C})$ consisting of trace 0 matrices). This action preserves the non-degenerate symmetric bilinear form given by $K(A, B)=\operatorname{Tr}(\operatorname{ad}(A) \cdot a d(B))$ where $a d(A)$ is the operator $X \mapsto[A, X]=A X-X A$ on $s l_{2}$. This gives a morphism $S L_{2}(\mathbb{C}) \rightarrow$ $S O_{3}(\mathbb{C})$ whose kernel is $\pm I$. Hence we get $P S L_{2}(\mathbb{C}) \hookrightarrow S O_{3}(\mathbb{C})$. Since both sides are connected Lie groups of the same complex dimension, the map is an isomorphism. From (b) we know that $S L_{2}(\mathbb{C})$ is simply connected, hence is the universal cover of $\mathrm{SO}_{3}(\mathbb{C})$, so $\pi_{1}\left(\mathrm{SO}_{3}(\mathbb{C})\right) \cong \mathbb{Z} / 2$.
6. (AG) Let $X \subset \mathbb{A}^{n}$ be an affine algebraic variety of pure dimension r over a field K of characteristic 0 .
(a) Show that the locus $X_{\text {sing }} \subset X$ of singular points of X is a closed subvariety.
(b) Show that $X_{\text {sing }}$ is a proper subvariety of X.

Solution.

(a) Let $I(X)=\left(f_{1}, \ldots, f_{m}\right)$. Then $x \in X$ is singular iff the Jacobian matrix $J=\left(\frac{\partial f_{i}}{x_{j}}\right)$ has rank $<\operatorname{codim}(X)=n-r$ at x. This happens iff every $(n-r) \times(n-r)$ minors of $J(x)$ vanish. Since these are regular functions, $X_{\text {sing }}$ is a closed subvariety of X.
(b) It suffices to treat the case X irreducible. In characteristic $0, X$ is birational to a hypersurface $F=0$ in some affine space \mathbb{A}^{n}. To see this, observe that the function field $K(X)$ is a simple extension of a purely transcendental field $k\left(t_{1}, \ldots t_{r}\right)$, by the primitive element theorem. Hence $K(X)=k\left(t_{1}, \ldots t_{r}, u\right)$ with u algebraic over $k\left(t_{1}, \ldots t_{r}\right)$. Note $t_{1}, \ldots t_{r}$ is a transcendental basis of $K(X)$. If G is the minimal polynomial of u over $k\left(t_{1}, . . t_{r}\right)$, after clearing denominators we see that $K(X)$ is the function field of a hypersurface $F=0$ in \mathbb{A}^{r+1}. In particular they have some isomorphic dense open subsets.
Thus we are reduced to the case X is a hypersurface $F=0$ in \mathbb{A}^{r+1}. In this case $X_{\text {sing }}$ is the locus $\frac{\partial F}{\partial X_{i}}=0$ and $F=0$. If $X_{\text {sing }}=X$, using the UFD property of $k\left[X_{1}, \ldots, X_{r+1}\right]$ and the fact F is irreducible, we deduce that $F \left\lvert\, \frac{\partial F}{\partial X_{i}}\right.$. This forces $\frac{\partial F}{\partial X_{i}}=0$ for degree reasons. But this can not happen in characteristic 0 , as can be seen by looking at a maximal monomial appearing in F with respect to the lexicographic order. This shows that X must contain non-singular points.

